Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing

Grégoire ALLAIRE, Lukas JAKABCIN

CMAP, Ecole Polytechnique

Séminaire Mathériaux, 15 Janvier 2018, Grenoble

CONTENTS

- 1. Introduction, review, and motivation.
 - Additive manufacturing.
 - Review of the level set method for shape and topology optimization.
- 2. Mechanical constraint for overhang limitation.
- 3. Thermal residual stresses.

There is plenty of room for modelling...

Paraphrasing the famous punch line of Richard Feynman...

There is plenty of room at the bottom.

The dilemma of modelling

- A very precise model is usually computationally expensive.
- A computationally cheap model is usually not very precise.

In an optimization loop, with many calls to the model, we must reach a compromise between cost and precision.

-I- INTRODUCTION

Additive manufacturing: structures built layer by layer.

Metallic powder melted by a laser or an electron beam.

Some failures...

Some failures...

Shape and topology optimization

- Tremendous progresses were achieved on academic research about shape and topology optimization.
- Many commercial softwares which are heavily used by industry.
- Pending issue: manufacturability.

Shape and topology optimization

Minimize an objective function $J(\Omega)$ over a set \mathcal{U}_{ad} of admissibles shapes Ω (including possible topology changes)

$$\inf_{\Omega \in \mathcal{U}_{ad}, P(\Omega) \le 0} J(\Omega)$$

with a (possible) constraint $P(\Omega)$

$$J(\Omega) = \int_{\Omega} j(u_{\Omega}) dx$$
, $P(\Omega) = \int_{\Omega} c(u_{\Omega}) dx$

where u_{Ω} is the solution of a partial differential equation (state equation)

$$PDE(u_{\Omega}) = 0$$
 in Ω

Model problem

Shape $\Omega \subset \mathbb{R}^d$ with boundary $\partial \Omega = \Gamma \cup \Gamma_N \cup \Gamma_D$, where Γ_D and Γ_N are fixed.

$$\mathcal{U}_{ad} = \left\{ \Omega \subset D \text{ open set such that } \Gamma_D \bigcup \Gamma_N \subset \partial \Omega \text{ and } \int_{\Omega} dx = V_0 \right\},$$

with $D \subset \mathbb{R}^d$, a given "working domain" and V_0 a prescribed volume.

The model of linearized elasticity

For a given load $g: \Gamma_N \to \mathbb{R}^d$, the displacement $u: \Omega \to \mathbb{R}^d$ is the solution of

$$\begin{cases}
-\operatorname{div}(A e(u)) = 0 & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
(A e(u)) n = g & \text{on } \Gamma_N \\
(A e(u)) n = 0 & \text{on } \Gamma
\end{cases}$$

with the strain tensor $e(u) = \frac{1}{2} (\nabla u + (\nabla u)^T)$, the stress tensor $\sigma = Ae(u)$, and A an homogeneous isotropic elasticity tensor.

Typical objective function: compliance

$$J(\Omega) = \int_{\Gamma_N} g \cdot u \, dx,$$

where u depends on Ω .

LEVEL SET METHOD (Osher and Sethian)

A shape Ω is parametrized by a **level set** function

$$\psi(x) = 0 \Leftrightarrow x \in \partial\Omega \cap D, \quad \psi(x) < 0 \Leftrightarrow x \in \Omega, \quad \psi(x) > 0 \Leftrightarrow x \in (D \setminus \Omega)$$

Assume that the shape $\Omega(t)$ evolves in time t with a normal velocity V(t,x). Then its motion is governed by the following Hamilton Jacobi equation

$$\frac{\partial \psi}{\partial t} + V |\nabla_x \psi| = 0 \quad \text{in } D.$$

Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective function.

To compute this shape gradient we recall Hadamard's method.

Let Ω_0 be a reference domain. Shapes are parametrized by a vector field θ

$$\Omega = (\mathrm{Id} + \theta)\Omega_0 \quad \text{with} \quad \theta \in C^1(\mathbb{R}^d; \mathbb{R}^d).$$

Shape derivative

Definition: the shape derivative of $J(\Omega)$ at Ω_0 is the Fréchet differential of $\theta \to J((\mathrm{Id} + \theta)\Omega_0)$ at 0.

Hadamard structure theorem: the shape derivative of $J(\Omega)$ can always be written (in a distributional sense)

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \theta(x) \cdot n(x) j(x) ds$$

where j(x) is an integrand depending on the state u and an adjoint p.

We choose the normal velocity $V = \theta \cdot n$ such that $J'(\Omega_0)(\theta) \leq 0$.

Simplest choice: $V = \theta \cdot n = -j$ but other ones are possible.

NUMERICAL ALGORITHM

- 1. Initialization of the level set function ψ_0 (including holes).
- 2. Iteration until convergence for $k \geq 1$:
 - (a) Compute the elastic displacement u_k for the shape ψ_k . Deduce the shape gradient = normal velocity = V_k
 - (b) Advect the shape with V_k (solving the Hamilton Jacobi equation) to obtain a new shape ψ_{k+1} .

Optimization algorithms:

- 1. Lagrangian (possibly augmented) algorithm,
- 2. SLP (sequential linear programming).

Examples of results with complex topologies

Hard to manufacture with traditional technologies (e.g. casting).

Either, add geometrical constraints.

Or, go for additive manufacturing.

-II- Mechanical constraints for additive manufacturing

Although there are less constraints than for casting, here is a partial list of constraints for additive manufacturing:

- overhang limitation,
- ** thermal residual stress,
- preferred orientation of thin and slender structures,
- minimal time (or energy) for completion,
- removing the powder (no closed holes),
- adding (and removing) supports.

We discuss the two first issues.

Many works on overhang limitations: Leary et al. (2014), Gaynor and Guest (2016), Langelaar (2016, 2017).

Layer by layer modelling

Additive manufacturing involves a layer by layer process.

Layer by layer modelling

For a final shape Ω , define **intermediate shapes** Ω_i of increasing height h_i

$$\Omega_i = \{x \in \Omega \text{ such that } x_d \leq h_i\} \quad 1 \leq i \leq n.$$

Two different state equations:

- 1. for the objective function of the final shape Ω , evaluated for its final use,
- 2. for the additive manufacturing constraint on the intermediate shapes Ω_i .

Overhang limitations

A first example is proposed in

- G. Allaire, Ch. Dapogny, A. Faure, G. Michailidis, Shape optimization of a layer by layer mechanical constraint for additive manufacturing, C. R. Math. Acad. Sci. Paris, 355, no. 6, 699-717 (2017).
- G. Allaire, C. Dapogny, R. Estevez, A. Faure and G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys. 351, pp.295-328 (2017).

1st state equation for the final shape

For a given applied load $f: \Gamma_N \to \mathbb{R}^d$,

$$\begin{cases}
-\operatorname{div}(A e(u)) = 0 & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
(A e(u)) n = f & \text{on } \Gamma_N \\
(A e(u)) n = 0 & \text{on } \Gamma
\end{cases}$$

Objective function: compliance

$$J(\Omega) = \int_{\Gamma_N} f \cdot u \, dx,$$

2nd state equation for the intermediate shapes

Apply self-weight (gravity g) to the top layer of intermediate shapes Ω_i :

$$\begin{cases}
-\operatorname{div}(A e(u_i)) &= \rho g_{\delta} & \text{in } \Omega_i, \\
u_i &= 0 & \text{on } \Gamma_D, \\
(A e(u_i))n &= 0 & \text{on } \Gamma_i,
\end{cases}$$

with
$$g_{\delta}(x) = \begin{cases} g & \text{if } h_i - \delta < x_d < h_i, \\ 0 & \text{otherwise,} \end{cases}$$

The boundary conditions are different from the first state equation.

Total self-weight compliance constraint:

$$P(\Omega) = \sum_{i=1}^{n} \int_{\Omega_i} Ae(u_i) : e(u_i) dx = \sum_{i=1}^{n} \int_{\Omega_i} \rho g_{\delta} \cdot u_i dx$$

Self-weight compliance constraint

We solve the optimization problem:

$$\min_{\Omega \subset D} J(\Omega)$$
s.t. $V(\Omega) \leq 0.20|D|$

$$P(\Omega) \leq \alpha P(\Omega_{ref}), \ \alpha \in (0,1).$$

where Ω_{ref} is the optimal design without constraint and α is a parameter of the method.

Recall that $J(\Omega)$ is the compliance for the final shape and $P(\Omega)$ is the self-weight constraint for the intermediate shapes.

Self-weight compliance constraint

Self-weight compliance constraint in 3-d

-III- Thermal residual stresses

Same idea with a more involved model:

- Keep the intermediate "layer by layer" shapes Ω_i , $1 \leq i \leq n$.
- Each layer i is built between time t_{i-1} and t_i .
- Holes are now filled by a metallic powder.
- Thermal residual stress computed by a model as in
 - L. Van Belle, J.-C. Boyer, G. Vansteenkiste, *Investigation of residual stresses induced during the selective laser melting process*, Key Engineering Materials, 1828-2834 (2013).
 - M. Megahed, H.-W. Mindt, N. NâDri, H. Duan, O. Desmaison, *Metal additive-manufacturing process and residual stress modeling*, Integrating Materials and Manufacturing Innovation, 5:4, (2016).

Notations

Each layer i is built between time t_{i-1} and t_i , $1 \le i \le n$.

 \blacksquare Build chamber D, vertical build direction e_d .

Intermediate domains $D_i = \{x \in D \text{ such that } x_d \leq h_i\}.$

Final shape Ω and intermediate shapes $\Omega_i = \Omega \cap D_i$.

Mixture $D_i = \Omega_i \cup P_i$ of solid and powder.

Thermo-mechanical model

Heat equation:

$$\begin{cases} \rho \frac{\partial T}{\partial t} - \operatorname{div}(\lambda \nabla T) = Q(t) & \text{in } (t_{i-1}, t_i) \times D_i \\ T = T_{init} & \text{on } (t_{i-1}, t_i) \times \Gamma_{base} \\ \lambda \nabla T \cdot n = -H_e(T - T_{init}) & \text{on } (t_{i-1}, t_i) \times (\partial D_i \setminus \Gamma_{base}) \\ T(t = t_{i-1}) = T_{init} & \text{in } D_i \setminus D_{i-1} \end{cases}$$

Thermoelastic quasi-static equation:

$$\begin{cases}
-\operatorname{div}(\sigma) = 0 & \text{and } \sigma = \sigma^{el} + \sigma^{th} & \text{in } (t_{i-1}, t_i) \times D_i, \\
\sigma^{el} = Ae(u) & \text{and } \sigma^{th} = K(T - T_{init}) \operatorname{Id},
\end{cases}$$

The material parameters ρ, λ, A, K are different for the solid and the powder.

The source term Q(t) is the beam spot, traveling on the upper layer.

Weak coupling: first, solve the heat equation, second, thermoelasticity.

Thermo-mechanical objective

The objective (or constraint) function is

$$J(\Omega) = \int_{\Omega} f \cdot u_{final} \, dx + \beta \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \int_{D_i} j(u, \sigma, T) \, dx \, dt$$

where u_{final} is the elastic displacement for the **final shape**, (u, σ, T) is the displacement, stress and temperature fields for the **intermediate shapes** and β is a Lagrange multiplier.

Static linearized elasticity for the **final shape**

$$-\operatorname{div}\left(A\,e(u_{final})\right) = f \quad \text{ in } \Omega$$

- We compute the shape derivative of $J(\Omega)$ by an adjoint method.
- The adjoints are backward in time (huge cost and storage!).
- The shape boundary $\partial\Omega$ is an interface Γ (between metal and powder) for the **intermediate domains** D_i .

Adjoint problems

Example for an objective j(u) without temperature and stress (for simplicity).

Elasticity adjoint equation: no "backward effect"

$$-\operatorname{div}(e(\eta)) = -j'(u) \quad \text{in } (t_{i-1}, t_i) \times D_i$$

Adjoint heat equation: backward in time, from i = n to 1,

$$\begin{cases} \rho \frac{\partial p}{\partial t} + \operatorname{div}(\lambda \nabla p) = K \operatorname{div}\eta & \text{in } (t_{i-1}, t_i) \times D_i \\ p = 0 & \text{on } (t_{i-1}, t_i) \times \Gamma_{base} \\ \lambda \nabla p \cdot n = -H_e p & \text{on } (t_{i-1}, t_i) \times (\partial D_i \setminus \Gamma_{base}) \\ p(t = t_n) = 0 & \text{in } D_n \end{cases}$$

Reversed order of coupling: first, solve the adjoint elasticity, second, the adjoint heat equation.

Shape derivative

Denote by Γ the interface between solid and powder and by $[\cdot]$ the jump through the interface Γ .

$$J'(\Omega)(\theta) = -\int_{\Gamma} \theta \cdot n \, Ae(u_{final}) : e(u_{final}) \, ds$$

$$+ \beta \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \int_{\Gamma} \theta \cdot n \, \left\{ [\rho] \frac{\partial T}{\partial t} p + [\lambda] \nabla T \cdot \nabla p - [Q] p \right\} \, ds \, dt$$

$$+ \beta \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \int_{\Gamma} \theta \cdot n \, \left\{ ([A]e(u) + [K](T - T_{init}) \operatorname{Id}) : e(\eta) \right\} \, ds \, dt$$

$$+ \beta \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \int_{(\partial D_{i} \setminus \Gamma_{base}) \cap \partial \Gamma} \theta \cdot \tau \, [H](T - T_{init}) p \, dL \, dt$$

where τ is a unit vector, tangent to Γ and normal to $\partial\Gamma$.

Technical assumption: the direct solutions (u, T) and adjoint ones (η, p) are discretized (say by FEM).

Two objective functions

Minimize the deviatoric part of the stress $\sigma_D = 2\mu e(u)_D$

$$J_1(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_{D_i} |\sigma_D|^2 \, dx \, dt$$

Minimize the top vertical displacement (to allow the rake or roller to coat a new powder layer)

$$J_2(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_{D_i \setminus D_{i-1}} |\max(0, u \cdot e_d - u_{max})|^2 dx dt$$

Simplified model

Ideas:

- 1. forget the layer by layer construction,
- 2. forget the moving source term.

Consequences:

- \square apply the thermo-mechanical model only at the final shape Ω ,
- take a source term Q(t,x) constant in time and in the solid (zero in the powder),
- perform just a few time steps,
- simpler and faster! (More simplification are possible...)

Material parameters

Solid: $E_1 = 200 \text{ GPa}, \ \nu_1 = 0.3, \ \rho_1 = 8000 \text{ kg.} m^{-3}, \ \lambda_1 = 15 \ W.m^{-1}C^{-1}, \ K_1 = 0.000015 \ C^{-1}, \ H_e^1 = 10 \ Wm^{-2}C^{-1}$

Powder: $E_2 = 1.6 \text{ GPa}, \ \nu_2 = 0.3, \ \rho_2 = 4000 \text{ kg.} m^{-3}, \ \lambda_2 = 0.25 \ W.m^{-1}C^{-1}, \ K_2 = 0.000001 \ C^{-1}, \ H_e^2 = 10 \ Wm^{-2}C^{-1}$

Source term: $Q_1 = 76800 \text{ J}, Q_2 = 10^{-3}Q_1$

Heat capacity: $C_p^1 = C_p^2 = 450 \ J.kg^{-1}C^{-1}$

Computational parameters: $\Delta t = 0.01$ s, mesh with 5359 nodes in 2-d and 108840 nodes in 3-d.

(Some further dimensionalization is required in 2-d...)

Half MBB beam (2-d).

Simplified model with n = 5 time steps.

Minimize the deviatoric part of the stress $\sigma_D = 2\mu e(u)_D$

$$J_1(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_D |\sigma_D|^2 \, dx \, dt$$

Constraints on volume (fixed) and compliance.

Initial design: optimal design for compliance minimization.

Initial and final shape

Convergence history (weight, compliance, thermal stress)

- Half MBB beam (2-d).
- Simplified model with 5 time steps.
- Minimize the vertical displacement (to allow the rake or roller to coat a new powder layer)

$$J_2(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_D |\max(0, u \cdot e_d - u_{max})|^2 dx dt$$

- The value u_{max} is guessed from the initial design.
- Constraints on volume (fixed) and compliance.
- Initial design: optimal design for compliance minimization.

Initial and final shape

Half MBB beam (3-d).

Simplified model with 10 time steps.

Minimize the deviatoric part of the stress $\sigma_D = 2\mu e(u)_D$

$$J_1(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_D |\sigma_D|^2 \, dx \, dt$$

Constraints on volume (fixed) and compliance.

Initial design: optimal design for compliance minimization.

Thermal residual stresses G. Allaire

Test case 3bis

- Half MBB beam (3-d).
- Simplified model with 10 time steps.
- Minimize the vertical displacement (to allow the rake or roller to coat a new powder layer)

$$J_2(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_D |\max(0, u \cdot e_d - u_{max})|^2 dx dt$$

- Constraints on volume (fixed) and compliance.
- Initial design: optimal design for compliance minimization.

Initial (left) and final (right) shapes

- \bowtie Half MBB beam (2-d).
- Full model with 20 layers and 5 time steps per layer.
- Minimize the deviatoric part of the stress $\sigma_D = 2\mu e(u)_D$

$$J_1(\Omega) = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \int_D |\sigma_D|^2 \, dx \, dt$$

- The value u_{max} is guessed from the initial design.
- Constraints on volume (fixed) and compliance.
- Initial design: optimal design for compliance minimization.

Initial and final shape

Convergence history (thermal stress)

Conclusions and perspectives

- 1. Work still going on.
- 2. Need to calibrate the model and assess the objective and constraints.
- 3. Add plasticity.
- 4. Could a simplified modeling be enough?
- 5. More material issues: porosity, phase change, hardening, etc.
- G. Allaire, L. Jakabein, Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing, HAL preprint: hal-01666081 (2017).