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Grégoire ALLAIRE, Lukas JAKABCIN

CMAP, Ecole Polytechnique
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There is plenty of room for modelling...
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Paraphrasing the famous punch line of Richard Feynman...

There is plenty of room at the bottom.
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✞
✝

☎
✆The dilemma of modelling

☞ A very precise model is usually computationally expensive.

☞ A computationally cheap model is usually not very precise.

In an optimization loop, with many calls to the model, we must reach a

compromise between cost and precision.
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-I- INTRODUCTION

Additive manufacturing: structures built layer by layer.

Metallic powder melted by a laser or an electron beam.
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✄
✂

�
✁Some failures...
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✞
✝

☎
✆Shape and topology optimization

☞ Tremendous progresses were achieved on academic research about shape

and topology optimization.

☞ Many commercial softwares which are heavily used by industry.

☞ Pending issue: manufacturability.

Thermal residual stresses G. Allaire



11

✞
✝

☎
✆Shape and topology optimization

Minimize an objective function J(Ω) over a set Uad of admissibles shapes Ω

(including possible topology changes)

inf
Ω∈Uad,P (Ω)≤0

J(Ω)

with a (possible) constraint P (Ω)

J(Ω) =

∫

Ω

j(uΩ) dx , P (Ω) =

∫

Ω

c(uΩ) dx

where uΩ is the solution of a partial differential equation (state equation)

PDE(uΩ) = 0 in Ω

Thermal residual stresses G. Allaire



12

✞
✝

☎
✆Model problem

Shape Ω ⊂ R
d with boundary ∂Ω = Γ ∪ ΓN ∪ ΓD, where ΓD and ΓN are fixed.

Uad =

{

Ω ⊂ D open set such that ΓD

⋃

ΓN ⊂ ∂Ω and

∫

Ω

dx = V0

}

,

with D ⊂ R
d, a given “working domain” and V0 a prescribed volume.

Γ

Γ

Γ

Γ

N

D

D
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✞
✝

☎
✆The model of linearized elasticity

For a given load g : ΓN → R
d, the displacement u : Ω → R

d is the solution of


























− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ

with the strain tensor e(u) = 1
2

(

∇u+ (∇u)T
)

, the stress tensor σ = Ae(u),

and A an homogeneous isotropic elasticity tensor.

Typical objective function: compliance

J(Ω) =

∫

ΓN

g · u dx,

where u depends on Ω.
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✞

✝

☎

✆
LEVEL SET METHOD (Osher and Sethian)

A shape Ω is parametrized by a level set function

ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D, ψ(x) < 0 ⇔ x ∈ Ω, ψ(x) > 0 ⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then its motion is governed by the following Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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✞

✝

☎

✆
Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective function.

To compute this shape gradient we recall Hadamard’s method.

Let Ω0 be a reference domain. Shapes are parametrized by a vector field θ

Ω = ( Id + θ)Ω0 with θ ∈ C1(Rd;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

Thermal residual stresses G. Allaire



16

✞

✝

☎

✆Shape derivative

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(

( Id + θ)Ω0

)

at 0.

Hadamard structure theorem: the shape derivative of J(Ω) can always be

written (in a distributional sense)

J ′(Ω0)(θ) =

∫

∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint p.

We choose the normal velocity V = θ · n such that J ′(Ω0)(θ) ≤ 0.

Simplest choice: V = θ · n = −j but other ones are possible.
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✞
✝

☎
✆NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Compute the elastic displacement uk for the shape ψk.

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to

obtain a new shape ψk+1.

——————————————————————————————

Optimization algorithms:

1. Lagrangian (possibly augmented) algorithm,

2. SLP (sequential linear programming).

Thermal residual stresses G. Allaire
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✞

✝

☎

✆
Examples of results with complex topologies

Hard to manufacture with traditional technologies (e.g. casting).

☞ Either, add geometrical constraints.

☞ Or, go for additive manufacturing.

Thermal residual stresses G. Allaire



19

-II- Mechanical constraints for additive manufacturing

Although there are less constraints than for casting, here is a partial list of

constraints for additive manufacturing:

☞ overhang limitation,

☞ thermal residual stress,

☞ preferred orientation of thin and slender structures,

☞ minimal time (or energy) for completion,

☞ removing the powder (no closed holes),

☞ adding (and removing) supports.

We discuss the two first issues.

Many works on overhang limitations: Leary et al. (2014), Gaynor and Guest

(2016), Langelaar (2016, 2017).
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✞
✝

☎
✆Layer by layer modelling

Additive manufacturing involves a layer by layer process.
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✞
✝

☎
✆Layer by layer modelling

For a final shape Ω, define intermediate shapes Ωi of increasing height hi

Ωi = {x ∈ Ω such that xd ≤ hi} 1 ≤ i ≤ n.

Two different state equations:

1. for the objective function of the final shape Ω, evaluated for its final use,

2. for the additive manufacturing constraint on the intermediate shapes Ωi.
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✞
✝

☎
✆Overhang limitations

A first example is proposed in

G. Allaire, Ch. Dapogny, A. Faure, G. Michailidis, Shape optimization of a

layer by layer mechanical constraint for additive manufacturing, C. R. Math.

Acad. Sci. Paris, 355, no. 6, 699-717 (2017).

G. Allaire, C. Dapogny, R. Estevez, A. Faure and G. Michailidis, Structural

optimization under overhang constraints imposed by additive manufacturing

technologies, J. Comput. Phys. 351, pp.295-328 (2017).
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✞

✝

☎

✆
1st state equation for the final shape

For a given applied load f : ΓN → R
d,



























− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = f on ΓN
(

Ae(u)
)

n = 0 on Γ

Objective function: compliance

J(Ω) =

∫

ΓN

f · u dx,
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✞

✝

☎

✆
2nd state equation for the intermediate shapes

Apply self-weight (gravity g) to the top layer of intermediate shapes Ωi:















− div (Ae(ui)) = ρgδ in Ωi,

ui = 0 on ΓD,
(

Ae(ui)
)

n = 0 on Γi,

with gδ(x) =







g if hi − δ < xd < hi,

0 otherwise,

The boundary conditions are different from the first state equation.

Total self-weight compliance constraint:

P (Ω) =
n
∑

i=1

∫

Ωi

Ae(ui) : e(ui) dx =
n
∑

i=1

∫

Ωi

ρgδ · ui dx

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Self-weight compliance constraint

We solve the optimization problem:

min
Ω⊂D

J(Ω)

s.t. V (Ω) ≤ 0.20|D|

P (Ω) ≤ αP (Ωref ), α ∈ (0, 1).

where Ωref is the optimal design without constraint and α is a parameter of

the method.

Recall that J(Ω) is the compliance for the final shape and P (Ω) is the

self-weight constraint for the intermediate shapes.

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Self-weight compliance constraint
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✞
✝

☎
✆Self-weight compliance constraint in 3-d
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-III- Thermal residual stresses

Same idea with a more involved model:

☞ Keep the intermediate ”layer by layer” shapes Ωi, 1 ≤ i ≤ n.

☞ Each layer i is built between time ti−1 and ti.

☞ Holes are now filled by a metallic powder.

☞ Thermal residual stress computed by a model as in

L. Van Belle, J.-C. Boyer, G. Vansteenkiste, Investigation of residual

stresses induced during the selective laser melting process, Key

Engineering Materials, 1828-2834 (2013).

M. Megahed, H.-W. Mindt, N. NâDri, H. Duan, O. Desmaison, Metal

additive-manufacturing process and residual stress modeling, Integrating

Materials and Manufacturing Innovation, 5:4, (2016).
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✞

✝

☎

✆
Final shape in the build chamber
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✞

✝

☎

✆
Intermediate shape at height h
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✄

✂

�

✁Notations

☞ Each layer i is built between time ti−1 and ti, 1 ≤ i ≤ n.

☞ Build chamber D, vertical build direction ed.

☞ Intermediate domains Di = {x ∈ D such that xd ≤ hi}.

☞ Final shape Ω and intermediate shapes Ωi = Ω ∩Di.

☞ Mixture Di = Ωi ∪ Pi of solid and powder.

Thermal residual stresses G. Allaire
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✄
✂

�
✁Thermo-mechanical model

Heat equation:






























ρ
∂T

∂t
− div(λ∇T ) = Q(t) in (ti−1, ti)×Di

T = Tinit on (ti−1, ti)× Γbase

λ∇T · n = −He(T − Tinit) on (ti−1, ti)× (∂Di \ Γbase)

T (t = ti−1) = Tinit in Di \Di−1

Thermoelastic quasi-static equation:






− div(σ) = 0 and σ = σel + σth in (ti−1, ti)×Di,

σel = Ae(u) and σth = K(T − Tinit) Id,

The material parameters ρ, λ, A,K are different for the solid and the powder.

The source term Q(t) is the beam spot, traveling on the upper layer.

Weak coupling: first, solve the heat equation, second, thermoelasticity.
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✞
✝

☎
✆Thermo-mechanical objective

The objective (or constraint) function is

J(Ω) =

∫

Ω

f · ufinal dx+ β

n
∑

i=1

∫ ti

ti−1

∫

Di

j(u, σ, T ) dx dt

where ufinal is the elastic displacement for the final shape, (u, σ, T ) is the

displacement, stress and temperature fields for the intermediate shapes and

β is a Lagrange multiplier.

☞ Static linearized elasticity for the final shape

− div (Ae(ufinal)) = f in Ω

☞ We compute the shape derivative of J(Ω) by an adjoint method.

☞ The adjoints are backward in time (huge cost and storage !).

☞ The shape boundary ∂Ω is an interface Γ (between metal and powder) for

the intermediate domains Di.
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✞
✝

☎
✆Adjoint problems

Example for an objective j(u) without temperature and stress (for

simplicity).

Elasticity adjoint equation: no ”backward effect”

− div (e(η)) = −j′(u) in (ti−1, ti)×Di

Adjoint heat equation: backward in time, from i = n to 1,






























ρ
∂p

∂t
+ div(λ∇p) = K divη in (ti−1, ti)×Di

p = 0 on (ti−1, ti)× Γbase

λ∇p · n = −Hep on (ti−1, ti)× (∂Di \ Γbase)

p(t = tn) = 0 in Dn

Reversed order of coupling: first, solve the adjoint elasticity, second, the

adjoint heat equation.
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✞
✝

☎
✆Shape derivative

Denote by Γ the interface between solid and powder and by [·] the jump

through the interface Γ.

J ′(Ω)(θ) = −

∫

Γ

θ · nAe(ufinal) : e(ufinal) ds

+ β

n
∑

i=1

∫ ti

ti−1

∫

Γ

θ · n

{

[ρ]
∂T

∂t
p+ [λ]∇T · ∇p− [Q]p

}

ds dt

+ β

n
∑

i=1

∫ ti

ti−1

∫

Γ

θ · n {([A]e(u) + [K](T − Tinit) Id) : e(η)} ds dt

+ β

n
∑

i=1

∫ ti

ti−1

∫

(∂Di\Γbase)∩∂Γ

θ · τ [H](T − Tinit)p dL dt

where τ is a unit vector, tangent to Γ and normal to ∂Γ.

Technical assumption: the direct solutions (u, T ) and adjoint ones (η, p) are

discretized (say by FEM).
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✞
✝

☎
✆Two objective functions

☞ Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =
n
∑

i=1

∫ ti

ti−1

∫

Di

|σD|2 dx dt

☞ Minimize the top vertical displacement (to allow the rake or roller to coat

a new powder layer)

J2(Ω) =
n
∑

i=1

∫ ti

ti−1

∫

Di\Di−1

|max(0, u · ed − umax)|
2
dx dt

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Simplified model

Ideas:

1. forget the layer by layer construction,

2. forget the moving source term.

Consequences:

☞ apply the thermo-mechanical model only at the final shape Ω,

☞ take a source term Q(t, x) constant in time and in the solid (zero in the

powder),

☞ perform just a few time steps,

☞ simpler and faster ! (More simplification are possible...)
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✞
✝

☎
✆Material parameters

Solid: E1 = 200 GPa, ν1 = 0.3, ρ1 = 8000 kg.m−3, λ1 = 15 W.m−1C−1,

K1 = 0.000015 C−1, H1
e = 10 Wm−2C−1

Powder: E2 = 1.6 GPa, ν2 = 0.3, ρ2 = 4000 kg.m−3, λ2 = 0.25 W.m−1C−1,

K2 = 0.000001 C−1, H2
e = 10 Wm−2C−1

Source term: Q1 = 76800 J, Q2 = 10−3Q1

Heat capacity: C1
p = C2

p = 450 J.kg−1C−1

Computational parameters: ∆t = 0.01 s, mesh with 5359 nodes in 2-d and

108840 nodes in 3-d.

(Some further dimensionalization is required in 2-d...)
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✄
✂

�
✁Test case 1

☞ Half MBB beam (2-d).

☞ Simplified model with n = 5 time steps.

☞ Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =

n
∑

i=1

∫ ti

ti−1

∫

D

|σD|2 dx dt

☞ Constraints on volume (fixed) and compliance.

☞ Initial design: optimal design for compliance minimization.

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Initial and final shape
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✞

✝

☎

✆Convergence history (weight, compliance, thermal stress)
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☛

✡

✟

✠
Plot of thermal stress

√

∫ T

0
|σD|2(x) dt
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✄
✂

�
✁Test case 2

☞ Half MBB beam (2-d).

☞ Simplified model with 5 time steps.

☞ Minimize the vertical displacement (to allow the rake or roller to coat a

new powder layer)

J2(Ω) =
n
∑

i=1

∫ ti

ti−1

∫

D

|max(0, u · ed − umax)|
2
dx dt

☞ The value umax is guessed from the initial design.

☞ Constraints on volume (fixed) and compliance.

☞ Initial design: optimal design for compliance minimization.

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Initial and final shape
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✞

✝

☎

✆Convergence history (weight, compliance, thermal stress)
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✞
✝

☎
✆Initial and final constraint on the vertical displacement
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✄
✂

�
✁Test case 3

☞ Half MBB beam (3-d).

☞ Simplified model with 10 time steps.

☞ Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =

n
∑

i=1

∫ ti

ti−1

∫

D

|σD|2 dx dt

☞ Constraints on volume (fixed) and compliance.

☞ Initial design: optimal design for compliance minimization.
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✄
✂

�
✁Test case 3bis

☞ Half MBB beam (3-d).

☞ Simplified model with 10 time steps.

☞ Minimize the vertical displacement (to allow the rake or roller to coat a

new powder layer)

J2(Ω) =
n
∑

i=1

∫ ti

ti−1

∫

D

|max(0, u · ed − umax)|
2
dx dt

☞ Constraints on volume (fixed) and compliance.

☞ Initial design: optimal design for compliance minimization.
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✞

✝

☎

✆Initial (left) and final (right) shapes

Thermal residual stresses G. Allaire



51

✞
✝

☎
✆Vertical cut of the vertical displacement
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✄
✂

�
✁Test case 4

☞ Half MBB beam (2-d).

☞ Full model with 20 layers and 5 time steps per layer.

☞ Minimize the deviatoric part of the stress σD = 2µe(u)D

J1(Ω) =
n
∑

i=1

∫ ti

ti−1

∫

D

|σD|2 dx dt

☞ The value umax is guessed from the initial design.

☞ Constraints on volume (fixed) and compliance.

☞ Initial design: optimal design for compliance minimization.

Thermal residual stresses G. Allaire
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✞
✝

☎
✆Initial and final shape
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✞

✝

☎

✆Convergence history (thermal stress)
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✥�✆✂
✝
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☛

✡

✟

✠
Plot of thermal stress

√

∫ T

0
|σD|2(x) dt
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✞
✝

☎
✆Conclusions and perspectives

1. Work still going on.

2. Need to calibrate the model and assess the objective and constraints.

3. Add plasticity.

4. Could a simplified modeling be enough ?

5. More material issues: porosity, phase change, hardening, etc.

G. Allaire, L. Jakabcin, Taking into account thermal residual stresses in

topology optimization of structures built by additive manufacturing, HAL

preprint: hal-01666081 (2017).
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