
 5 mars 2018                           Séminaire Maths et Matériaux                                             Grenoble

Variational approach to fracture:
Formulation, general properties and examples

Jean-Jacques Marigo

(Palaiseau, Ecole Polytechnique)

joint work with

Gilles Francfort (Villetaneuse, Paris 13)
Blaise Bourdin (Baton Rouge, LSU)

Corrado Maurini (Paris, UPMC)

1



– quasi-static, rate independent evolution law  
– scalar damage variable 
– variational approach

Damage models without or with plasticity

softening
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Justification of  “standard” laws

✓Drucker-Ilyushin Postulate
The strain work must be non negative in every strain cycle

✓In perfect plasticity
The D-I postulate is equivalent to the Hill principle of 
maximal plastic work which is equivalent to the convexity of 
the yield surface and the normality rule

✓For brittle scalar damage laws
‣ stress-strain relation

‣ yield criterion : damage grows only when the strains (or 
the stresses) reach some yield surface which is damage 
dependent
‣ Théorem (JJM, ’89)
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Endommagement sans plasticité
rupture fragile



General form of standard non regularized damage laws

✓constitutive relations

✓energetic interpretation
the strain work is a state function equal to the sum of the 
elastic energy and the dissipated energy
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Hardening and softening conditions

✓ Strain hardening

✓Stress softening

stress space

strain space

↵ 7! S0(↵)/w0(↵) increasing
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✓Examples
‣Ambrosio-Tortorelli model

‣A model with finite critical stress and stress softening
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Construction of the gradient damage models

✓Definition of the strain work density function

⇥(�) = material characteristic length

✓ Choice of the damage parameter 

✓ Constitutive inequalities

E(↵) > 0, E0(↵) < 0

S(↵) = E(↵)�1
= compliance tensor

E(0) = E0 > 0, E(1) = 0

W (⇥,�,⇥�) = 1
2 E(�)(⇥� ⇥th) · (⇥� ⇥th) + w(�) + 1

2 w1⇤(�)
2⇥� ·⇥�

W (⇥,�,⇥�) = w(�) + 1
2w1⇤

2⇥� ·⇥�+ 1
2E(�)(⇥� ⇥th) · (⇥� ⇥th)

stress softening = � 7! S0(�)/w0
(�) increasing

w0(�) > 0w(0) = 0 w1 = w(1) < +1

� 2 [0, 1]



✓the global evolution problem
‣the global total energy

‣the evolution problem in its variational form

E 0
t(ut,↵t)(v � ut,� � ↵t) � 0, 8v 2 Ct, 8� : ↵t  �  1

↵̇t � 0

1. Irreversibility

2. First order stability condition

3. Global energy balance
d

dt
Et(ut,�t) =

⇥Et
⇥t

(ut,�t)

2’. Complete stability condition

8(v,�) admissible and h small enough, Et(ut,↵t)  E(ut + hv,↵t + h�)

��0

Et(u,↵) =
Z

⌦
Wt("(u),↵,r↵)dV � ft(u)



‣the evolution problem in its local form
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div �t + ft = 0 in ⌦

�tn = Ft on @F⌦

ut = Ut on @D⌦

Stress-strain relation : ⇥t = E(�t)(⇤t � ⇤tht ) in ⇥

Irreversibility : �̇t ⇤ 0 in ⇥

Damage condition : 1
2S

0(�t)⇥t · ⇥t � w0(�t) + w1⇧
2��t ⇥ 0 in ⇥

Consistency condition :
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1
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⌅�t
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�̇t = 0 on ⌅⇥
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‣damage localization

‣until rupture
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Construction of a solution with damage localization in 1D
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1. � decreases from �c to 0,

2. damage localization in (xi �D,xi +D)
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Le problème modèle



✓ Problem of a thermal shock 

✓ model 

✓ numerical method 
– time discretization 
– alternate minimization algorithm: uni = argminuEi(u,�n

i )
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: no damage, no crack
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b)

a)

Ceramic parameters: E0=340 GPa, Gc =42 J.m−2, σc =340 MPa, ν = .22 
(from Gc and σc one deduces  = .05 mm)
Temperature gradient T0-T1 = 380°. 

(a) Experimental crack pattern in a slab (10 mm × 50 mm × 1mm) after a 
thermal shock (from Jiang et al. [2012]). 

(b) Value of the computed damage field. 
Numerical simulation: 20 × 106 d.o.f., mesh size h = .01mm
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La question du trajet des fissures
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drying
transverse cracks

debonding



16 Tianyi Li, Jean-Jacques Marigo

5.2 Dynamic branching

Here we study the same pre-cracked plate under a constant pressure applied on the upper and lower edges, as
studied in Borden et al (2012); Song et al (2008). The problem is treated in plane strain hypothesis but plane
stress analysis is also possible. The mirror symmetry has been exploited and only yhe upper half of the domain is
modeled.

100 mm

40
m

m

s = 1 MPa

Fig. 15: Pre-cracked plate under a constant pressure applied on the upper and lower edges

A sensibility analysis with respect to the mesh size and the time step parameter has been conducted to numer-
ically verify our model for convergence. Three unstuructured Delaunay meshes are generated with a typical mesh
size h = 0.2 mm, h = 0.15 mm and h = 0.1 mm knowing that the internal length is fixed at ` = 0.25 mm. From
the figure we see that the elastic energy seemes to converge with a smaller mesh size is used but the dissipated
energy corresponding to cracks isn’t quite clear. In theory, the surface energy should converge as h as the e↵ecitve
fracture toughness is given by (Gc)e↵ =

�

1 + 3h/(8`)
�

Gc. For sensibility with respect to the time step �t used, we
fix a mesh and vary the security factor s modulating the stable CFL time step. We observe that for larger time steps
solutions may diverge from the correct one.

(a) Mesh sensitivity (b) Time-step sensitivity

A profiling analysis is implemented to analyze the amount of time spent on di↵erent phases of the whole
simulation. where we observe that an large amount of time is devoted to the assembly of the Hessian matrix H

Table 3: Profiling results

Damage assembly Damage resolution Dynamic equilibrium Total

CPU time 51.2% 8.1% 36.9% 96.2%

and the second member b of the damage problem and the resolution itself doesn’t take much time. The time for
dynamic equilibruim calculation should be constant in spite of the damage equation so the total calculation time
should be nearly tripled with respect to a purely elastodynamic calculation, as confirmed by the following figure.
We conduct three types of simulation within a same node of the cluster ASTER5 of EDF: 1) an elastodynamic one,
2) an elastodynamic one plus the assembly of H and b at each time step and 3) a complete simulation involving
the damage resolution. We observe indeed that we only tripled the calculation time (in fact by a factor of 2.5)
compared to an elastodynamic calculation and it is the assembly phase that is to be blamed.



La question de la nucléation des fissures



Nucléation en fond d’entaille
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Material E [MPa] ⌫ K
Ic

[MPa
p

m] �
c

[MPa] source
Al

2

O
3

� 7%ZrO
2

350,000 0.24 4.1 290 [93]
PMMA 2,300 0.36 1.03 124 [39, 93]
Plexiglass 3,000 0.36 1.86 104.9 [86]
PVC H80 85 0.32 0.32 2.51 [48, 51]
PVC H100 125 0.32 0.26 4.02 [48, 51]
PVC H130 175 0.32 0.34 5.70 [48, 51]
PVC H200 310 0.32 0.57 9.38 [48, 51]
Steel 205,000 0.3 52 1170 [48, 89]
Duraluminium 70,000 0.3 50.6 705 [86]

Table 2: Material properties used in the numerical simulations as given in the literature

Figure 7: Critical generalized stress intensity factor kc vs notch angle. Comparison between numerical simulations with
the AT1 and AT2 models and damaged and undamaged boundary conditions on the notch edges with experiments in steel
from [89] (left), and Duraluminium (middle) and PMMA (right) from [86].

Figures 7 and 8 compare the critical generalized stress intensity factor from our numerical simu-
lations with experimental values reported in the literature for V-notch with varying aperture. The
definition (11) for k is used. For the AT

1

model, we observe a good agreement for the entire range of
notch openings, as long as damaged notch conditions are used for small notch angles and undamaged
notch conditions for large notch angles. For the AT

2

model, the same is true, but the agreement is not
as good for large notch angles, due to the presence of large areas of distributed damage prior tio crack
nucleation.

The numerical values of the critical generalized stress intensity factors for the AT
1

models and the
experiments from the literature are included in Tables A.5, A.6, A.7, and A.8 using the convention
of (11) for k. As suggested by Figure 5 and reported in the literature [see 60], nucleation is best
captured if damaged notch boundary conditions are used for sharp notches and undamaged notch
conditions for flat ones.

These examples strongly suggest that variational phase-field models of fracture are capable of
predicting mode-I nucleation in stress and toughness dominated situations, as seen above, but also in
the intermediate cases. Conceptually, toughness and strength (or equivalently internal length) could
be measured by matching generalized stress intensity factors in experiments and simulations. When
doing so, however, extreme care has to be exerted in order to ensure that the structural geometry
has no impact on the measured generalized stress. Similar experiments were performed in [39, 93] for
three and four point bending experiments on PMMA and Aluminium oxyde-Zirconia ceramics samples.
While the authors kept the notch angle fixed, they performed three and four point bending experiments
or varied the relative depth of the notch as a fraction of the sample height (see Figure 9).

Figure 10 compares numerical values of the generalized stress intensity factor using the AT
1

model
with experimental measurements, and the actual numerical values are included in Table A.9 and A.10.

For the Aluminium oxyde-Zirconia ceramic, we observe that the absolute error between measure-
ment and numerical prediction is typically well within the standard deviation of the experimental
measurement. As expected, damaged notch boundary conditions lead to better approximation of k

c

for small angles, and undamaged notches are better for larger values of !̄.
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Endommagement avec plasticité
rupture ductile



�

�

perte de rigidité et déformations résiduelles



Damage alone Plasticity alone

ṗ =

r
2

3
�̇p · �̇p

WP = 1
2 E(⇥� ⇥p) · (⇥� ⇥p) + �Y p

Damage with Plasticity

�Y (↵) decreasing from �0
Y to 0

WD = 1
2 E(↵)" · "+ w(↵) + w1`

2�↵ ·�↵

W = 1
2 E(�)(⇤� ⇤p) · (⇤� ⇤p) + w(�) + ⇥Y (�)p + w1⌅

2⇥� ·⇥�



Evolution law (variational approach)

✓ Stress-strain relation 

✓ Plasticity criterion 

✓ Damage criterion

Flow rule : ⇤̇p = ṗ
⇥D

⇥Y (�)

� = E(↵)("� "p)

r
3

2
�D · �D � �Y (↵)

2 critical stress

�c :=

s
2w0(0)

S0(0)

1
2 S

0(�)⇥ · ⇥ + 2w1⇤
2�� � w0(�) + ⇥0

Y (�)p

�p := �Y (0)



✓ Onset of damage

�D

Tr�

r
3

2
�D · �D  �p

�p < �c :=

s
2w0(0)

S0(0)

1
2 S

0(0)� · �  w0(0) + �0
Y (0)p



Uniaxial local response

✓ Case where plasticity occurs before damage

�

"

p0 p0�

"

E–P–DP E–P–D–R

Evolution of the damage criterion during the P stage

1
2 S

0(0)�0
Y
2  w0(0)�

���0
Y (0)

�� p

Then damage alone or damage with plasticity according to w(↵), S(↵), �Y (↵) properties

�p < �c :=

s
2w0(0)

S0(0)

Onset of damage : p0 =
S0(0)

2
���0

Y (0)
��(�

2
c � �p

2)



Example k > 1

p0�

""r

Homogeneous response

E0 ⌫

E(↵) =
(1� ↵)2

k� (k� 1)(1� ↵)2
E0 w(↵) =

k�2
c

2E0
(1� (1� ↵)2)

�p ✓ =
�p
�c

< 1

�Y (↵) = (1� ↵)2�p

p0 =
k(1� ✓2)�p

2✓E0

"r =
k(1 + ✓2)�p

2✓E0



Example

x1 �
⇥⇤

2�
x1 +

⇥⇤

2�
x1

1

↵

Response with damage localization

damage profile

cohesive law

Gc =
⇥k�

2

⇤2
c ⌅

E0

dissipated energy to create a crack

�

[[u]]

Nucleation of a cohesive crack at the center of the damage zone
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�Y (↵) = (1� ↵)2�p
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✓ numerical method 
– time discretization 

– alternate minimization algorithm:

local problem=projection

Ei(u,↵, "p) =

Z

⌦

⇣
1
2 E(↵)("(u)� "

p) · ("(u)� "

p + w(↵) + w1`
2r↵ ·r↵

⌘
dx

+

Z

⌦
�Y (↵)

⇣
pi�1 + k"p � "

p
i�1k

⌘
dx� fi(u)

("p)n+1
i = argmin"pEi(uni ,↵n+1

i , "p)

↵n+1
i = argmin↵�↵i�1

Ei(uni ,↵, ("p)ni )

uni = argminuEi(u,↵n
i , ("

p)ni )
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Figure 5.5: Shows fracture path angle vs. the initial yields stress ratio r
Y

. Transition
form straight to slant crack characteristic of a brittle - ductile fracture transition.

Figure 5.6: Stress vs. displacement plot for �
c

/�
p

= 5, shows the influence of the
internal length on the stress jump amplitude signature of the snap back intensity.
Letters on the curve ` = .1 referees to loading times when snap-shots of ↵ and p̄ are
illustrated in Figure 5.9.

120

W = 1
2 E(↵)("� "p) · ("� "p) + w(↵) + �Y (↵)p+ w1`

2r↵ ·r↵

E(↵) = (1� ↵)2E0 w(↵) =
�2
c

E0
↵

Consider a rectangular specimen of length (L = 2) and width (H = 1) in plane strain
setting, made of a sound material with the set up E = 1, ⌫ = .3 and �

p

= 1, fixed on the
left and stretched on the right extremity by a time loading displacement with rollers at
interfaces illustrated on the Figure 5.4.

L

H
U

Figure 5.4: Rectangular specimen in tensile with rollers boundary condition on the
left-right extremities and stress free on the remainder. The characteristic mesh size
is h = `/5

Let first performed numerical simulations by varying the stress ratio of initial yields
surfaces r

Y

2 [.5, 6] with an internal length equal to ` = .02 smaller than the geometric
parameters (L, H) and let others parameter unchanged.

The damage fields obtained after failure of samples are summarized on the Figure 5.5.
A transition from a straight to a slant fracture for an increasing r

Y

is observed similarly
to the Ti glass alloy on the Figure 5.1. A higher initial yields stress ratio induce a larger
plastic strain accumulation leading to a thicker damage localization strip. The measure
of the fracture angle reported in Figure 5.5 do not take into account the turning crack
path profile around free surfaces caused by the damage condition r↵ ·⌫ = 0. Clearly, for
the case �

c

< �
p

the fracture is straight and there is mostly no accumulation of plastic
strain. However due to plasticity, damage is triggered along one of shears bands, resulting
of a slant fracture observation in both directions but never two at the same time.

Now, lets pick up one of this stress ratio r
Y

= 5 for instance and let vary the internal
length ` 2 [0.02, 0.2]. The stress vs. displacement is plotted in Figure 5.6 and shows
various stress jumps amplitude during the damage localization due to the snap-back
intensity. This effect is well known in phase field model to brittle fracture and point it
out by [3, 6, 4, 157, 158]. A consequence of this brutal damage localization is a sudden
drop of the stress, when this happens the energy balance is not satisfied. Continuous and
discontinuous energies evolution is observed for respectively ` = 0.2 and ` = 0.02 plotted
on Figure 5.7.

The attentive reader will notice that the plastic energy decreases during the damage
localization which contradict the irreversibility hypothesis of the accumulation of dissi-
pated plastic energy. Actually the plotted curve is not properly the dissipated plasticity
energy but a combination of damage and plasticity such that a part of this energy is
transformed into a surface energy contribution. Hence, those dissipations potentials are
not the proper one to consider because there are coupled, correct potentials are �

p

and
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Figure 5.5: Shows fracture path angle vs. the initial yields stress ratio r
Y

. Transition
form straight to slant crack characteristic of a brittle - ductile fracture transition.
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Figure 5.6: Stress vs. displacement plot for �
c

/�
p

= 5, shows the influence of the
internal length on the stress jump amplitude signature of the snap back intensity.
Letters on the curve ` = .1 referees to loading times when snap-shots of ↵ and p̄ are
illustrated in Figure 5.9.
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Figure 5.9: Rectangular stretched specimen with rollers boundary displacement for
parameters �

c

/�
p

= 5 and ` = .1, showing snap-shots of damage, cumulated plastic
strain and damage in deformed configuration at different loading time refereed to the
plot 5.6 for (a, b, c, d). The cumulated plastic strain defined as p̄ =

R

t

0

||ṗ(s)||ds has
a piecewise linear color table with two pieces, [0, 14] for the homogeneous state and
[14, 600] for visibility during the localization process. Moreover the maximum value
is saturated. The deformed configuration is 1% of the displacement field applied to
the mesh.
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Figure 5.12: Zoom in the center of mild notched stretched specimen with clamped
boundary displacement (set-up A) showing snap-shots of damage, cumulated plastic
strain and damage in deformed configuration at different loading time refers to Figure
5.11 for (a, b, c, d). The cumulated plastic strain color table is piecewise linear with
two pieces, [0, .35] for the homogeneous state and [.35, 2.5] for visibility during the
localization process. Moreover the maximum value is saturated. The damage in
deformed configuration is 100% of the displacement field applied to the mesh and the
pseudo color vanishes for (↵ � 0.995).
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E ⌫ �p �c `
[GPa] [MPa] [GPa] [µm]

70 .33 100 2 400

Table 5.3: Material parameters used for AA5754 Al–Mg

deformed configuration are presented in Figure 5.12 and Figure 5.13 for respectively the
set-up A and B. Time loadings highlighted by letter are reported in the stress vs. strain
plot in Figure 5.11. Main phenomenon are: (a) during the pure plastic phase there is
no damage and the cumulated plastic strain is the sum of two large shear bands where
the maximum value is located at the center, (b) the damage is triggered on the middle
and develops following shear bands as a “X” shape, (c) a macro fracture nucleates at the
center but stiffness remained and the material is not broken, (d) failure of the specimen
with the final crack pattern.
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Set�up A

Set�up B

Figure 5.11: Plot of the stress vs. strain (tensile axis component) for the mild notch
specimen with clamped and rollers interfaces conditions respectively set-up A and
set-up B

Close similarities between pictures of ductile fracture nucleations from simulations
and experimental observations can be drawn. However, we were not able to capture cup-
cones fractures. To recover the desire effect we introduced a perturbation in the geometry
such that the parabola shape notch is no more symmetric along the shortest cross section
axis, i.e. an eccentricity is introduced by taking ⇢ < 1 see the Figure 5.10. In a sens there
is no reason that necking induces a perfectly symmetric mild notch specimen. Leaving
all parameters unchanged and taking ⇢ = .9 we observed two cracks patterns: a shear
dominating and cup-cones for respectively set-up B and set-up A illustrated in Figure
5.14. This type of none symmetric profile with respect to the shortest cross section axis
implies a different stress concentration between the right and the left side of the sample
which consequently leads to unbalance the plastic strain concentrations intensity on both
parts. Since damage is guided by the dissipated plastic energy we have recovered this
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Table 5.3: Material parameters used for AA5754 Al–Mg

deformed configuration are presented in Figure 5.12 and Figure 5.13 for respectively the
set-up A and B. Time loadings highlighted by letter are reported in the stress vs. strain
plot in Figure 5.11. Main phenomenon are: (a) during the pure plastic phase there is
no damage and the cumulated plastic strain is the sum of two large shear bands where
the maximum value is located at the center, (b) the damage is triggered on the middle
and develops following shear bands as a “X” shape, (c) a macro fracture nucleates at the
center but stiffness remained and the material is not broken, (d) failure of the specimen
with the final crack pattern.

Figure 5.11: Plot of the stress vs. strain (tensile axis component) for the mild notch
specimen with clamped and rollers interfaces conditions respectively set-up A and
set-up B

Close similarities between pictures of ductile fracture nucleations from simulations
and experimental observations can be drawn. However, we were not able to capture cup-
cones fractures. To recover the desire effect we introduced a perturbation in the geometry
such that the parabola shape notch is no more symmetric along the shortest cross section
axis, i.e. an eccentricity is introduced by taking ⇢ < 1 see the Figure 5.10. In a sens there
is no reason that necking induces a perfectly symmetric mild notch specimen. Leaving
all parameters unchanged and taking ⇢ = .9 we observed two cracks patterns: a shear
dominating and cup-cones for respectively set-up B and set-up A illustrated in Figure
5.14. This type of none symmetric profile with respect to the shortest cross section axis
implies a different stress concentration between the right and the left side of the sample
which consequently leads to unbalance the plastic strain concentrations intensity on both
parts. Since damage is guided by the dissipated plastic energy we have recovered this

124

L H W r D d l h ⇢

6 2.2 1.3 .5 1.2 1.09 1.1 `/3 1



↵

0 .5 1

p̄

0 .35 2.5

↵ deformed

0 .5 1

(a)

(b)

(c)

(d)

Figure 5.13: Zoom in the center of mild notched stretched specimen with rollers
boundary displacement (set-up B) showing snap-shots of damage, cumulated plastic
strain and damage in deformed configuration at different loading time refers to Fig-
ure 5.11 for (a, b, c, d). The cumulated plastic strain color table is piecewise linear
with two pieces, [0, .35] for the homogeneous state and [.35, 2.5] for visibility during
the localization process. Moreover the maximum value is saturated.The damage in
deformed configuration is 100% of the displacement field applied to the mesh and the
pseudo color vanishes for (↵ � 0.995).
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Figure 5.15: Photo produced by [114]
showing cup cones fracture in a post
mortem rounded bar.

Figure 5.16: Photo produced by [114]
showing shear dominating fracture in a
post mortem rounded bar.

Figure 5.17: Snap-shot of the damage
in deformed configuration for the set-up
A after failure, two pieces next to each
other.

Figure 5.18: Snap-shot of the damage
in deformed configuration for the set-up
B after failure, two pieces next to each
other.

in multiple geometries in simple case of functions under Von Mises perfect plasticity. We
confirmed observations reported elsewhere in the literature that fracture nucleates at the
center of the specimen and propagates following shear bands before reaching free surfaces
for low triaxiality configuration in ductile materials. Our numerical simulations also
highlight that crack patterns observed is strongly dependent of the prescribed boundary
conditions and geometry which leads to a plastic dissipated energy concentrations path.
The strength of the proposed phase-field model is the ability to handle with both ductile
and brittle fractures which mostly have been separated like oil and water. The key
parameter to capture this transition is the ratio of initial yields surfaces of damage
over plastic one. We show that variational phase-field models are capable of qualitative
predictions of crack nucleation and propagation in a mild notch range of geometries
including two and three dimensions, hence, this model is a good candidate to address the
aforementioned issues. Also, the energy balance is preserved since the fracture evolution
is smooth driven by and internal length.

Of course, there still many investigations to performed before claiming the superiority
of the model such that, fracture nucleation at a notch of a specimen (high triaxiality)
which due to the unbounded hydrostatics pressure for the plasticity criteria (Von Mises
for instance) leads to hit the damage yield surface first, consequently a brittle response
is attended. To get a cohesive response a possible choice of plastic yield surface is to
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