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1. Motivations and objectives
Micromechanics? Every material is heterogeneous at a small enough scale !

Natural materials Man-made

Bone: Composite
2-phase  FW (Ti/SiC)
« composite » §
solid+porous @
Polycrystalline Duplex
Ilce steel

N
< ’ L
DO o L5 il sl B

P. Suquet Model Reduction in Micromechanics of Materials Grenoble. October 12th 2020 2




Different steps in a micromechanical analysis

Mechanics of solid materials at small scale.

1. Microstructure description:
Representative volume element(s).

Representativity? Statistical information?

2. Mechanical properties of constituents

Constitutive relations known or identified in situ.

3. Determination of local fields

Experimentally, numerically or theoretically.

4. Homogenization

(also called: coarse graining, upscaling ....).

Averaging of certain quantities.

Mathematically: weak limit of the fields when the size of the heterogeneities goes to 0.
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Link with (periodic) mathematical homogenization

1) — le) U Qg) domain with a fine microstructure ¢ ojo\
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3. Assuming w'?) convex, then: w® RNy
- . 1
w(A) = inf —/ w(x, X+ Vu) dx V : unit-cell
u periodic ‘V’ 1%

4. u°® = Argmin / w*(Vu) de  —  u’ = Argmin / w(Vu) dr
0 e—0 0
U U

Effective energy = minimum of the average energy
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Here, more realistic constitutive relations

Individual constituents Nonlinear dissipative constituents

State of the system (state variables) : e,a ex:a=¢P, v .

Energy available in the system : w(e, @),

= Driving forces a:g—Z(s,a),

Evolution of the internal variables

When Onsager’s symmetry relations are satisfied: Generalized Standard Materials
(GSM) (Halphen & Nguyen, 1975):
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Typical constitutive relations: (elasto-visco-plasticity)

bo CSi—icheiciy

=he e =1 E e

Internal variable

Energy available in the system

= Driving forces

Dissipation potential
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Recent progress in Micromechanics...

New expe_rimental :&fﬁf

techniques g

(CT, EBSD, 3D bl
XRD, 3D DIC...) |

New homogenization
approaches

Full-Field simulations

: : Reduced order models
High resolution

N >

e BUT:
%."&q:%«‘l"‘u:“f{ :’."‘7’ / -

b L % - Bounds and estimates through

< S . . c
""42 P e Linear Comparison Composite
(Willis, 1989, Ponte Castaneda 1991,

FEM: A. Needleman,... you! PS, 1993).
Spectral methods: Khatchaturyan, PS & H.

Moulinec, G. Milton, W. Muller, R. - 1st moment AND fluctuations of the
Lebensohn... fields (PPC, 1996, 2002).
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Recent progress in Micromechanics...

New experimental  #0248*
techniques ”
(CT, EBSD, 3D
XRD, 3D DIC...)

New homogenization
approaches

Full-Field simulations

: : Reduced order models
High resolution

BUT:

Limited: simple constitutive relations,
- High cost microstructure, local fields

- N0 macroscopic constitutive
relations
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Objectives: 1) derive « reduced » constitutive relations

Fatigue a MMC insert subject to cyclic loading

- Al matrix (viscous at 300°C)

- AI203 fibers (elastic)

- Fibers parallel to the (x,y) plane with
random orientation

- Aspect ratio >15; Vol. frac. = 10%

- Matrix with nonlinear kinematic hardening.

3. s— X
oc=L:(E—€&"), eP=—p :
( ) U .
— X)ew—a)t\ L 2
p: (((U )eq (Ty) ) ,X:§H€VP—77XP
n

e Coupled FEM2 still too expensive

e Full-field simulations on a Representative volume
element
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Full-field simulations (FFT)

RVE (fibers alone) -
40
£
= 0
= -20 1
e Full-field simulations dono °©
provide effective constitutive -40 t
relations.
eCan be used to calibrate a
macroscopic model chosena |

priori.
eHuge quantity of information
(local fields) is generated but lost.

60 r

-60

------ Full-Field
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<>_01 w=15
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Obijective 2: Cost reduction (for parameter calibration)

4——+—— Ductile: +—7 Brilllg——

Compressive Stress, ¢ —»

yC

reep )
(elasto-viscoplastic)

Delayed response (viscous)

o Experiments
Ashby & Duval (1985) after Jacka (1984)

B3y 5 10

Axial strain
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Crystal plasticity model for Ice

SINGLE CRYSTALS deform

by slip along 12 slip systems: m, ()

e =g 1 e

(k)
(k) — x (k)

: . (k T

7(k) _ %() ) (‘ ‘)

7o

12
i = (rB) -7 p®, 5P =3 nk |50,
/=1

X0 = W50 — g0 X B [40)] — ) | x| ™ sign (X9

Involves many material parameters (and a few nontrivial)! CALIBRATION?
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Compression tests on single crystals at 45°/c axis

show significant softening (and rate-dependence):
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Axial strain Axial strain

Material parameters for basal systems can be identified from single crystal
experiments. But not for the prismatic and pyramidal systems.
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Prismatic and pyramidal systems?

10 ' '
5 — Full-field (4096 grains)
) without prismatic
5|0 and pyramidal systemss
@ 10 5 ) Py y ,
Q 5 ©
w °s
i B
- -6 |
= 10
s 5
N
B
< 10 |
< 5
z o Experiments
10 |

[y

5 10° 2 5 10° 2 5 10

Axial strain

1

®Prismatic and pyramidal systems
cannot be neglected

®Their material parameters and
latent hardening parameters
cannot be determined
experimentally (basal too soft)

—>  Full-field simulations

One full-field simulation on a
500 grain aggregate: 3 days.

Identification of the major
material parameters took us 6
months!
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Objective 3: local fields reconstruction problem

Fatigue of a composite beam subject to 4-point bending

A 5 mm EBR

<> PAN
A =
Half-beam (120 fibers)
A =@ T T
cycle 1 cycle 2
t

\VARRV/

Loading: prescribed vertical displacement at
points A and A’, frequency 0.1 Hz, 3 different
amplitudes

|
=
c

Umaz = 0.15, 0.25, 0.5 mm

Elastic fibers

Elasto-viscoplastic matrix with
isotropic and kinematic hardening

(Armstrong Frederick law)

Local fatigue criterion (at pointx) based
on the energy dissipated along the
stabilized cycle
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Full-field simulation of the composite structure

30

. =05
S 5 mm B’ Structural e
7 20 +
000000000000000000000000000000 response
000000000000000000000000000000
000000000000000000000000000000 10 |
000000000000000000000000000000
o a =
A = I
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20 |
30 | — ‘Full-Fi‘eld | | |
Mg s o we 0
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Fine mesh: 26880 elements (6 or 8 nodes)
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st ST RRRREXERENENX] hotspots

Snapshot of the energy dissipated & ,
along the stabilized cycle - -db- e

Can the global and local responses of the structure be predicted by a
homogenization / localization approach? Location of « hot spots » ?
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Objectives in brief
(a bit different from more general Reduced-Order-Modelling):
1) reduce COMPUTATIONAL COST (common to all ROM’s),
2) Extract CONSTITUTIVE RELATIONS from « big data » (specific to micro
mechanics)
3) Generate local fields where and when necessary,

- Define the local fields in the RVE with only a few variables describing physical

mechanisms: REDUCED VARIABLES (serve as macroscopic internal variables).

- Derive macroscopic constitutive relations for these variables = REDUCED
« DYNAMICS »:

* preserving variational structures whenever possible,

» accounting for field statistics (first and second moments).
= Two model reductions at the same time:
= computational model,

= mechanical model.
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2. Model reduction: what is this? Linear systems

® Given a large system of ordinary differential C. q + K. q =

equations (ODEs), typically
C(q) + K(q)=F,
find a low-dimensional approximation.

e Main idea: the high-dimensional state vector g

actually belongs to a low-dimensional subspace :
q : fine variable, Q : coarse variable.
Projection
® 2 questions:

— What are the Q'’s ?
— How to get the ODE’s for Q? weliehva Q 2 Q = vI F
For linear systems, the ODEs can be

rojected on the low-dimensional space. o

Non trivial for nonlinear systems

More examples on http ://modelreduction.com !

P. Suquet Model Reduction in Micromechanics of Materials Grenoble. October 12th 2020 18




Familiar procedure: vibrations of linear structures

« Fine » variables u(x,t), x € 2

(displacement field)

« Fine » dynamics Mu(t) + Ku(t) = f(t)
M

« Reduced » variables £ : (w t) = Zﬁ(k)(t)u(k>(w)
=il

1. Normal modes u(k)
- Physical patterns (experimentally or through
modal analysis of the whole structure),
- summation limited to M << oo modes,
depending on f(t).

2. « Reduced » dynamics: m") (£F) (1) + w2eP (1)) = Fi(t), k=1,...,. M

Finding the reduced dynamics is much more difficult for nonlinear systems!
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Composites. Unit-cell problem

What are the « fine » variables and the ODE’s?

Given: - the microstructure
- the constitutive relations of the phases
( «x internal variables)
- the history £(t) of macroscopic strain
Determine:
- the local fields o (x,t),e(x,t), a(x,t)

- the effective response G(t) = F (g ( )|o<s<t, other variables ?)

Ow o
)6’ 50" T 34 oo

(&) =0, Constitutive relations

Compatibility

Equilibrium

Loading

u* = u — €.x periodic, o.n anti-periodic  Boundary conditions
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Variational structure

It can be shown that the effective behavior derives RIGOUSLY from 2 effective
potentials (PS 1982, 1985):

Looks great:
- preserves the structure with 2 potentials,
- has a variational structure (similar to 1-potential nonlinear homogenization).

BUTITISNOT! o« = (a(x)|zcv) isaFIELD!
In order to determine O, one needs to determine the whole field of microscopic
internal variables.
Can it be reduced to a finite number of variables £ ?

What are the evolution equations for these variables? Preserve the
structure with two potentials. (similar idea in Marsden & al, 2003)
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« Fine » variables: 1. Fix the field a(x)and solve fore(x)

o=L:(e—a),e=-(Vu+'Vu),div (o) =0, () =€ + Boundary conditions

( div (L : Vu) =div (L : o), (e) = € + Boundary conditions )

e(x,t) = A(x) : €(t) + (D * ) (x), D nonlocal Green operator

2. Solve the systems of differential equations

ODE'’s to be
reduced!

Fine variables: «(x), x € V.

Note that the loading depends only on the 6 independent components of &
One can expect the fine variables to live in a finite-dimensional space!
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3. Reduced variables (reduced basis)

Experiments © A. Guéry (LMT&EdF) Full-field simulations by FFT (LMA)

<e>=0.0%

- Limited number of features of the deformation field appearing gradually,
- The patterns remain stable with an increasing amplitude

M

a(z,t) =Y W) p(a).

k=1
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Reduced variables

1st approximation: finite number of internal variables: achieved by a
decomposition on a finite set of « shape » functions

M

afe,t) = 3 eP(t) P ().

k=1

e £ = (f( ))‘kzl : reduced variables (macroscopic internal variables).
e The p®’s are the plastic modes.

e Transformation Field Analysis (TFA): the 1™ are uniform within each phase
or subdomain (very stiff...) Dvorak 1992.

e Nonuniform TFA (NTFA): the ©™ are NON-uniform within each phase.
Galvanetto, Michel &PS (2000), Michel &PS, 2003, 2004, Fritzen & Bohlke (2010)

e Unlike the usual decomposition in ROM (reduced order modelling),
decomposition of the field of internal variables, not of the displacement field.

® A systematic procedure to determine the modes is the P.O.D. (proper orthogonal
decomposition, although known as Karhunen-Loeve decomposition, PCA....)
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Mode selection by snapshot POD (or any other mean)

1. Using full-field simulations, generate snapshots H(i) of the fields of internal
variables along appropriately chosen training paths.

2. Form and diagonalize the correlation matrix:

Matrix

10" X Inclusions Pu
w2 | * Inclusions U
G -3
=10
S
Pl
: ~e 5
The higher Ay, the better the ~ g
correlation of v*)with the snapshots 100 |
107
3. 10°

01 2 3 45 6 7 8 910
k

Number of modes <= information contained in the modes
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What do these modes look like?

Elastic fibers. Elasto-plastic matrix with isotropic hardening.
Fiber volume fraction : 0.25.

VER (64 fibers) Ul

NTFA : 2 modes up'*) generated from the plastic strain field along two loading paths
o =oct)=®, =M —simple tension, = = pure shear, g, :="* =5%.
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4. Reduced « Dynamics » (structure-preserving...)

Initial version in Michel & PS (IJSS 2003)
- improved in the hybrid model of Fritzen & Leuschner (IJSS 2013) using
variational techniques.
- improved by Michel & PS (JMPS 2016, Comput. Mech 2016) using nonlinear
homogenization techniques.

For simplicity: elasto-(visco)plastic constituents o = eP

1

w is quadratic = 5(e—¢); L : (e —€P) inphaser,

Effective constitutive relations derived from 2 effective potentials:

Using the NTFA decomposition eP Zgﬂﬁ) p®) (x

(,£) Macroscopic
state variables
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1st potential Z £®)(8) (2
IS easy

div (o) =0, Boundary conditions,

l
DR SrLIOV IS

kﬁl

! Pre-computed e A(zx) elastic strain localization tensor, D Green operator,
by solving elastic

problems e D« u'®)(x) strain field induced elastically by p(*

Derivation | & = a® k) (¢)
v Z
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2nd potential is difficult
1. Computing 3(¢) = <gp (Z ¢k) (t)u(k)(ac)>> is expensive:

[l

e store the modes (memory)
e compute the local plastic strain-rate at each local point =
e average.

2. Doubly nonlinear differential equation

Nice feature: the approximation is reasonably accurate. But
1) still the cost of computing (p*(o (2, £))),remains very high.

2) Does not provide an explicit macroscopic constitutive relation.
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Dramatic acceleration: NL homogenization

Choose your favorite homogenization scheme
Option 1

closely related to the Tangent Second-Order Method (Ponte Castaneda, JMPS,
1996, 2002).

b S
= ")
where @™, C") (o) can be expressed in terms of &,& and pre-computed
quantities %", C™ (p*)),
Advantage: Really fast, BUT: limitations of the TSO (very poor for porous

Exact to second-order materials), requires a tangent operator
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Option 2 (for polycrystals only)

S

P
bla.a) = YA @) 3 e, ) = o ml?)
=

io==H[;

closely related to the Fully Optimized Method, Ponte Castaneda, PRS 2015,

where 7(r) (") (+{r)) can be expressed in terms of £,£ and pre-computed
quantities p="), C™(p®*).

Advantage: Really fast, does not require a tangent operator, works for
porous materials
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Examples. 1. Metal-matrix composites (short-fiber)
Full-field simulations (FFT)

Fibers alone

- Al matrix (viscous at 300°C)

- Al203 fibers (elastic)

- Fibers parallel to the (x,y) plane Matrix + Fibers
with random orientation

- Aspect ratio~15; Vol. frac. = 10%

- Matrix identification with nonlinear
kinematic hardening.

- no residual stress accounted for
(hence the error in compression)
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NTFA Modes

- 2 500
- 100 snapshots generated from the FF simulations 478
- POD : modes with 99.99% « information » I’l’eq [
- — 5 modes for NLKH —

J 000

Mode 1 (NL) Mode 2 (NL) Mode 3 (NL)
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Overa" response: 80 | Matrlix Witllq nonlinear klinemaltic harldeniné
60 r
40
—~ 20
Full-Field versus NTFA. =
NTFA: Integration of the S
effective constitutive relations at
a single material point 40
-60 Full-field
e T P NTFA hybrid
B e Ol
-0.004 -0.003 -0.002 -0.001 0.0 0.001 0.002 0.003 0.004
€11
Full-field (FFT) NTFA hybrid NTFA-TSO
Reference (CPU ratio= FFT/ hybrid) | (CPU ratio= FFT/TSO)
189 800 s. 72 159 s. 15.96 s.
> 2 days (CPU ratio = 2.63) (CPU ratio = 11 892)

Spectacular speed-up due to the NL homogenization approximation!
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Reconstruction of the local (stress) field

((t),&(t)) known = o(x,t) = L(xz) : A o®) (2

Full-field (reference) NTFA-hybrid NTFA-TSO
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2. Creep of polycrystalline ice

Delayed response (viscous)

O Experiments
_Ashby & Duval (1985) after Jacka (1984)

Axial strain

P. Suquet Model Reduction in Micromechanics of Materials Grenoble. October 12th 2020



1) Run full-field simulations with 1st
guess of parameters.

2) Extract modes by P.O.D.

3) Use the ROM to calibrate material
parameters.

4) Fine tune with Full-field sim.

500 grains

Mode 1 Mode 2 Mode 3
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Calibration: latent hardening prismatic/pyramidal

2
: e Full—ﬁeld O Experi.ments .
E I — NTFA-TSO 1 1 0-5 LN e Full-Field (4096 gFams) )
N == - NTFA-FO 1 o —— Full-field (500 grams)
S N\ data2: hg =0,y =0 L . N NTFA-TSO 1
b N\ data3: g = 1100, 7y = 1200 o — NTFA-FO1
= N\ data2 S
= 9 N ata ,
5 ~ -
8 106 £ 10°
Ca &
Z@ 5 T.—.G )
o %
datad <
2
. Ssesisae o,
"""""" _7 datal: h3:110, h4:0 B
0 ‘ 10 |
! e =) b ik e
== 2 5 107° o2 slome 0" 2 5 107 2 5 107 2
Axial strain Axial strain
Full-field (FFT) NTFA-TSO NTFA-FO
CPU 261 499 s. 614 s. 540 s.
Intel Xeon X5687 @ 3.6 GHz 3 days 10 min less than 10 min

Acceleration ~ 400

Acceleration ~ 500
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EX3: Structural problem, composite structure

30

. =05
S 5 mm B’ Structural e
7 20 +
000000000000000000000000000000 response
000000000000000000000000000000
000000000000000000000000000000 e |
000000000000000000000000000000
S 7S z o
A’ = I
10 |
20t
30 | — ‘Full—Fi‘eld | | |
Mg s o we 0

U (mm)

Fine mesh: 26880 elements (6 or 8 nodes)

oW _w _.-m
| ) }

9999900880808 Local
POttt bbb bbddd response: —

hot spots

Snapshot of the energy dissipated
along the stabilized cycle
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Unit-cell response

zoom 1/ Determination of modes with
A Som . @ 99.99% of the information:
:::::::::::::::::::::::::A::g\' o
e B \Y%
80
ol
40 ¢
5 modes generated
20 from tensile and
0y shear « tests ».
20 | 5 internal variables
40 t
N o —— Reference |
""""""""""""""""" NTFA
-80 - : : : -
-0.003 -0.002 -0.001 0.0 0.001 0.002 0.003
_ 0
B

Unit-cell response to a

uniaxial tensile test

P. Suquet
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Structural response A Smm. _p

Q0 0000000000000 00O OOO®O®O®OSGEOGSEOSOO®OSOSNPO

Q0 0000000000000 00O OO®O®O®O®OGEOSEOOS®OSOSNLPO

e e R e e e SR R s
Coarse mesh X, =,

Structural response:

Force/displacement at point A

30 - - - - -
Unax = 0.25 s 30
20 1
20
10
10
Z o i
o I
10! -10
-20
-20
s — Heterogeneous Heterogeneous
------ = ----- NTFA =0T ---- NTFA '
-30 - : : : ; . . : ; :
-0.3 -0.2 -0.1 0.0 0.1 0.2 03 04 02 0.0 02 0.4
U (mm) u (mm)
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Local fields

o(X,z.t)=L(z): A(z) : &(X,t) + > ¢W(X,4)pM) (x)

k=1

., Full-field

Io 011
250 NTFA+ localization

IO 012
<« NTFA+ localization
b)

Localization by postprocessing the response of the homogenized model.
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Energy dissipated along the stabilized cycle

S S B N N N E N NNNEHNNDNEZS®RH~NHN.;
cesccscsacsccsansecsascassesssil INLETECE
Ei ' 8920008002000 00008 —0.75

—0.50

eSO EBEDOREED - 0.25

::I::::::::::::::::::::::::::: Bl ., b) NTFA+ localization

( | | | 1

WEWE . W .
a) Full-field b) NTFA+ localization

P. Suquet Model Reduction in Micromechanics of Materials Grenoble. October 12th 2020 43




Take-home messages

® Reduced-order modeling is useful in order to:
- arrive at tractable macroscopic constitutive relations,
- expressed in terms of quantities computed off-line (entailing the
morphological information).
- benefit from progress recently made in full-field simulations and
theoretical homogenization,

- solve efficiently inverse problems.

e The Nonuniform Transformation Field Analysis (NTFA) is one possibility
based on observed plastic strain patterning. Localization can be a linear

operation, even for nonlinear constituents.

® Reducing the « dynamics » is essential and much more cost-effective than

only reducing the variables (by orders of magnitude).
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Open problems

e Domain of validity (in loading space):
- The NTFA has a limited domain of validity.
- Can this domain be predicted from the sole knowledge of the training paths?
e Convergence/ error estimates:
- CV as the number of modes goes to infinity?

- error estimate for a finite number of modes?

® Mode determination:
- « on-the-fly »: PGD (Chinesta et al), else?

- optimized for specific loadings?

e Uncertainties.
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