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A foreword around multi-phase optimization
Multi-phase optimization is about finding the optimal repartition of two, or
several, materials with conflicting properties within a fixed set. This problem
has multiple applications in industrial design:
• At the macroscopic level: Repartition of several materials within a given

structure to combine their respective assets.

• At the microscopic level: Mixture of several phases to achieve new
materials with unique features (e.g. design of materials with negative
Poisson’s ratio, or negative coefficient of thermal expansion...).

D

Design of a material with negative CTE [Mi].
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Preliminaries: the usual linear elasticity setting (I)

A shape is a bounded domain Ω ⊂ Rd , which is

• fixed on a part ΓD of its boundary,

• submitted to surface loads g , applied on
ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:
−div(Ae(uΩ)) = 0 in Ω

uΩ = 0 on ΓD

Ae(uΩ)n = g on ΓN

Ae(uΩ)n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2 (∇uT + ∇u) is the strain tensor,

and A is the Hooke’s law of the material.

Ω

ΓD

ΓN

A ‘Cantilever’

The deformed cantilever
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Preliminaries: the usual linear elasticity setting (II)
Goal: Starting from an initial structure Ω0, find a new one Ω that minimizes
a certain functional of the domain J(Ω).

Examples:

• The work of the external loads g or compliance C (Ω) of domain Ω:

C (Ω) =

∫
Ω

Ae(uΩ) : e(uΩ)dx =

∫
ΓN

g .uΩ ds

• A least-square error between uΩ and a target displacement u0 ∈ H1(Ω)d

(useful when designing micro-mechanisms):

D(Ω) =

(∫
Ω

k(x)|uΩ − u0|αdx
) 1
α

,

where α is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter `:

Minimize J(Ω) := C (Ω) + `Vol(Ω), or D(Ω) + `Vol(Ω).
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Differentiation with respect to the domain: Hadamard’s method

Hadamard’s boundary variation
method describes variations of a
reference, Lipschitz domain Ω of
the form:

Ω→ Ωθ := (I + θ)(Ω),

for ‘small’ θ ∈W 1,∞ (Rd ,Rd
)
.

Definition 1.
Given a smooth domain Ω, a functional F (Ω) of the domain is shape
differentiable at Ω if the function

W 1,∞ (Rd ,Rd
)
3 θ 7→ F (Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds around 0:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd )

)
.
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Differentiation with respect to the domain: Hadamard’s method

Techniques close to optimal control theory make it possible to compute shape
gradients; in the case of ‘many’ functionals of the domain J(Ω), the shape
derivative has the particular structure:

J ′(Ω)(θ) =

∫
Γ

vΩ θ · n ds,

where vΩ is a scalar field depending on uΩ, and possibly on an adjoint state pΩ.

Example: If J(Ω) = C (Ω) =
∫

ΓN
g · uΩ ds is the compliance,

vΩ = −Ae(uΩ) : e(uΩ).
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The generic numerical algorithm

This shape gradient provides a natural descent direction for functional J: for
instance, defining θ as

θ = −vΩn

yields, for t > 0 sufficiently small (to be found numerically):

J((I + tθ)(Ω)) = J(Ω)− t

∫
Γ

v2
Ωds + o(t) < J(Ω)

Gradient algorithm: For n = 0, ... convergence,
1. Compute the solution uΩn (and pΩn) of the elasticity system on Ωn.

2. Compute the shape gradient J ′(Ωn) thanks to the previous formula, and
infer a descent direction θn for the cost functional.

3. Advect the shape Ωn according to θn, so as to get Ωn+1 := (I + θn)(Ωn).
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The multi-material shape optimization setting (I)

• A fixed working domain D ⊂ Rd is occupied by two complementary
phases Ω0 and Ω1, filled with elastic materials with Hooke’s laws A0, A1.

• The structure D is clamped on a region ΓD ⊂ ∂D, surface loads are
applied on ΓN ⊂ ∂D, as well as body forces f .

• The total, discontinuous Hooke’s law in D is:

AΩ0 := A0χ0 + A1χ1,

where χi is the characteristic function of the phase Ωi .

D

⌦1

�D

�N

g�

⌦0
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The multi-material shape optimization setting (II)

• The displacement

uΩ0 ∈ H1
ΓD

(D)d :=
{
u ∈ H1(D)d , u = 0 on ΓD

}
of the total structure D satisfies: −div(AΩ0e(u)) = f in D

u = 0 on ΓD

A1e(u)n = g on ΓN

.

• Goal: Minimize a functional of the mixture of the form:

J(Ω0) =

∫
D

j(x , uΩ0) dx +

∫
ΓN

k(x , uΩ0) ds,

under constraints (e.g. on the volume of one of the phases).

• Example: The compliance of the total structure D:

C (Ω0) =

∫
D

AΩ0e(uΩ0) : e(uΩ0) dx =

∫
D

f · uΩ0 dx +

∫
ΓN

g · uΩ0 ds.
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The multi-material shape optimization setting (III)

• The material properties are different from either side of Γ ⇒ some
quantities are discontinuous across Γ.

• If α is a discontinuous quantity, with values α0, α1 in Ω0, Ω1 respectively,
[α] := α1 − α0 is the jump of α across Γ.

• IfM is a tensor-valued function, denote as:

∀x ∈ Γ, M =

(
Mττ (x) Mτn(x)
Mnτ (x) Mnn(x)

)
its representation in a local basis (τ, n) of Rd .

• Difficulty: The strain tensor e ≡ e(uΩ0) has continuous components eττ ,
but discontinuous components eτn, enτ , enn. The stress tensor
σ ≡ σ(uΩ0) has continuous components σnτ , στn and σnn, but σττ is
discontinuous.
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Shape derivative in the sharp-interface context (I)

Theorem 1 ([AlJouVG]).
The functional J(Ω0) is shape differentiable, and its derivative reads:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω0)(θ) = −
∫

Γ

D(x , uΩ0 , pΩ0) θ · n ds,

where the integrand factor D(x , u, p) is defined as:

D(x , u, p) = −σ(p)nn : [e(u)nn]− 2σ(u)nτ : [e(p)nτ ] + [σ(u)ττ ] : e(p)ττ ,

and pΩ0 ∈ H1
ΓD

(D)d is an adjoint state, defined as the solution to: −div (AΩ0 e(p)) = −j ′(x , uΩ0) in D,
p = 0 on ΓD ,

(A1 e(p)) n = −k ′(x , uΩ0) on ΓN ,
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Shape derivative in the sharp-interface context (II)

This formula is difficult to use in numerical practice, since it involves the jumps
of discontinuous quantities across Γ.

Potential remedies:

• Discrete approach: [AlDaDelMi]

Consider the shape derivative of the discretization Jh(Ω0) of J(Ω0) on
the actual mesh, which features the numerical solution uh (resp. ph) of
the state (resp. adjoint) elasticity system.

• Body-fitted approach: [AlDaFr]

The interface Γ is explicitely dis-
cretized at each step of the pro-
cess.
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The signed distance function

Definition 2.
The signed distance function dΩ to a bounded domain Ω ⊂ Rd is defined as:

∀x ∈ Rd ,


−d(x , ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω
d(x , ∂Ω) if x ∈ cΩ

,

where d(·, ∂Ω) stands for the usual Euclidean distance function to ∂Ω.

Graph of the signed distance function to a union of two disks (in black)
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The smoothed-interface setting (I)

• The discontinuous tensor AΩ0 is approximated by:

∀x ∈ D, AΩ0,ε(x) := A0 + hε(dΩ0(x))(A1 − A0),

where hε is a smooth approximation of the Heaviside function:

hε(t) =


0 if t < −ε

1
2

(
1 + t

ε + 1
π sin

(
πt
ε

))
if − ε ≤ t ≤ ε

1 if t > ε
.

• This accounts for a smooth
interpolation of the material
properties between the two
phases over a tubular neigh-
borhood of Γ of fixed width 2ε.

0 d⌦(x)

E

E0

E1

" "
⌦0 ⌦1
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The smoothed-interface setting (II)

• The smoothed-interface problem is then that of minimizing:

Jε(Ω0) =

∫
D

j(x , uΩ0,ε) dx +

∫
ΓN

k(x , uΩ0,ε) ds

(under constraints), where uΩ0,ε arises as the solution to: −div(AΩ0,εe(u)) = f in D
u = 0 on ΓD

A1e(u)n = g on ΓN

.

• It is worth considering for at least two reasons:

• It is an approximation of the sharp-interface problem, and is easier to
handle numerically.

• It has some interest on its own, especially when it comes to modelling
interfaces: interfaces may involve complex and ill-understood processes,
which are better described e.g. by non monotone transition regions.
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Signed distance function and geometry (I)

Definition 3.
Let Ω ⊂ Rd be a Lipschitz, bounded open set;

• Let x ∈ Rd ; the set of projections Π∂Ω(x) of x onto ∂Ω is:

Π∂Ω(x) = {y ∈ ∂Ω, d(x , ∂Ω) = |x − y |} .

• When this set is a singleton, p∂Ω(x) is the projection of x onto ∂Ω.

• The skeleton Σ of ∂Ω is:

Σ :=
{
x ∈ Rd , d2

Ω is not differentiable at x
}
.

• For x ∈ ∂Ω, the ray emerging from x is:

ray∂Ω(x) := p−1
∂Ω(x).
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Signed distance function and geometry (II)

⌦

⌃•

•

x

p@⌦(x)

x0

•

•

•

y1

y2

z•

ray@⌦(z)

x has a unique projection over ∂Ω, whereas x ′ has two such points y1, y2.
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Signed distance function and geometry (III)

Proposition 2.
Let Ω ⊂ Rd be a Lipschitz, bounded open set;

• A point x ∈ Rd has a unique projection point p∂Ω(x) iff x /∈ Σ. In such a
case, dΩ is differentiable at x , and its gradient reads:

∇dΩ(x) =
x − p∂Ω(x)

dΩ(x)
.

In particular, |∇dΩ(x)|= 1 wherever it makes sense.

• If Ω is of class C1, this last quantity equals ∇dΩ(x) = n(p∂Ω(x)).

• If Ω is of class Ck , k ≥ 2, then dΩ is also of class Ck on a neighborhood
of ∂Ω.
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Signed distance function and geometry (IV)

⌦

⌃x

•

•

p@⌦(x)

rd⌦(x)

n(p@⌦(x))

Some level sets of dΩ are depicted in color; dΩ is as smooth as the boundary ∂Ω on
the shaded area (at least).
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Shape differentiability of the signed distance function (I)

Lemma 3.
Let Ω ⊂ Rd be a C1 bounded domain, and x /∈ Σ. The function θ 7→ dΩθ (x),
from W 1,∞(Rd ,Rd) into R is Gâteaux-differentiable at θ = 0, with derivative:

d ′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

⌦ ⌦✓

•

•

•
x

p@⌦(x)

⇡ p@⌦✓
(x)

d⌦(x)

•
✓(p@⌦(x)) · n(p@⌦(x))
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Shape differentiability of the signed distance function (II)
Remark: A more general formula holds, which encompasses the case x ∈ Σ:

If x ∈ Ω, d ′Ω(θ)(x) = − inf
y∈Π∂Ω(x)

θ(y) · n(y),

If x ∈ cΩ, d ′Ω(θ)(x) = − sup
y∈Π∂Ω(x)

θ(y) · n(y).

x

•

•

•

y2

d⌦(x)

⌦

⌃
y1

⌦✓

✓(y2) · n(y2)

✓(y1) · n(y1)
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Shape differentiability of the signed distance function (II)

• Formal clue: Taking the shape derivative in

|∇dΩ(x)|2= 1

yields:
∇d ′Ω(θ)(x) · ∇dΩ(x) = 0.

⇒ The shape derivative of dΩ is constant along the rays.

• Rigorous proof: Use of the definition:

d2
Ω(x) = min

y∈∂Ω
|x − y |2

in combination to a theorem for differentiating a minimum value with
respect to a parameter.
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Shape differentiability of the signed distance function (III)

Lemma 4.

Let Ω be a C1 bounded domain, enclosed in a large computational domain D,
and j : Rx × Rs → R be of class C1; define the functional:

J(Ω) =

∫
D

j(x , dΩ(x)) dx .

Then θ 7→ J(Ωθ) is Gâteaux-differentiable at θ = 0 with derivative:

J ′(Ω)(θ) = −
∫
D

∂j

∂s
(x , dΩ(x)) θ(p∂Ω(x)) · n(p∂Ω(x)) dx .

This formula is awkward insofar it is not easily put under the form:

J ′(Ω)(θ) =

∫
Γ

v θ · n ds,

and does not lend itself to the inference of a ‘natural’ descent direction for J.
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A coarea formula

Proposition 5.
Let Ω ⊂ D be a bounded domain of class C2, and let ϕ ∈ L1(D). Then,∫

D

ϕ(x)dx =

∫
∂Ω

(∫
ray∂Ω(y)∩D

ϕ(z)
d−1∏
i=1

(1 + dΩ(z)κi (y))dz

)
dy ,

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line
integration along that ray.

Hint of proof:

Apply the coarea formula to the mapping:

p∂Ω : D \ Σ→ ∂Ω

to recast the integration over D ≈ D \Σ as
an integration over ∂Ω composed with an
integration over the pre-images p−1

∂Ω(x) =
ray∂Ω(x), x ∈ ∂Ω. D

⌃
⌦
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Shape derivative of the smoothed-interface functional (I)

Theorem 6.

The objective function

Jε(Ω0) =

∫
D

j(x , uΩ0,ε) dx +

∫
ΓN

k(x , uΩ0,ε) ds,

is s.t. θ 7→ Jε(Ω0
θ) admits a Gâteaux-derivative at θ = 0, which is

∀ θ ∈W 1,∞(D,Rd), J ′ε(Ω0)(θ) = −
∫

Γ

j(x) θ(x) · n(x)ds(x).

Here, n is the outer unit normal to Ω0 and j is the scalar function defined by

j(x) =

∫
rayΓ(x)∩D

h′ε (dΩ0(z)) (A1 − A0)e(u)(z) : e(p)(z)
d−1∏
i=1

(1 + dΩ0(z)κi (x))dz ,

where u ≡ uΩ0,ε and the adjoint state p ≡ pΩ0,ε is the solution to: −div (AΩ0,ε e(p)) = −j ′(x , uΩ0,ε) in D,
p = 0 on ΓD ,

(A1 e(p)) n = −k ′(x , uΩ0,ε) on ΓN ,
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Shape derivative of the smoothed-interface functional (II)

Sketch of (formal) proof: For functions v , q ∈ H1
ΓD

(D)d , define the Lagrangian
functional L(Ω0, v , q) as:

L(Ω0, v , q) =

∫
D

j(x , v) dx +

∫
ΓN

k(x , v) ds

+

∫
D

AΩ0,ε(x)e(v) : e(q) dx −
∫
D

f · q dx −
∫

ΓN

g · q ds.

By definition,
∀q ∈ H1

ΓD
(D)d , Jε(Ω0) = L(Ω0, uΩ0,ε, q).

Let us search for the critical points (u, p) of L(Ω0, ·, ·).

• Expressing ∂L
∂p (Ω0, u, p) = 0 yields u = uΩ0,ε.

• Expressing ∂L
∂u (Ω0, u, p) = 0 yields p = pΩ0,ε.
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Shape derivative of the smoothed-interface functional (III)

Thus, for any q ∈ H1
ΓD

(D)d , assuming that uΩ0,ε is differentiable with respect
to the domain,

J ′ε(Ω0)(θ) =
∂L
∂Ω

(Ω0, uΩ0,ε, q) +
∂L
∂u

(Ω0, uΩ0,ε, q)(u′Ω0,ε(θ)).

Now choosing q = pΩ0,ε, and using ∂L
∂u (Ω0, u, p) = 0 yield:

J ′ε(Ω0)(θ) =
∂L
∂Ω

(Ω0, uΩ0,ε, pΩ0,ε),

which can be calculated thanks to Lemma 4.

34 / 59



Approximate formulae

The formula of Theorem 6 can be given consistent and convenient
approximations in two important limits in applications:

• Jacobian-free formula: If the interface Γ is approximately plane, that is
dΩ0κi ≈ 0, we obtain:

J ′ε(Ω0)(θ) = −
∫

Γ

j(x) θ(x) · n(x)ds(x),

with

j(x) ≈
∫
rayΓ(x)∩D

h′ε (dΩ0(z)) (A1 − A0)e(u)(z) : e(p)(z)dz .

• Thin-interface formula: If the transition layer is very thin, i.e. ε is very
small,

J ′ε(Ω0)(θ) ≈ −
∫

Γ

(A1 − A0)e(u)(x) : e(p)(x) θ(x) · n(x)ds(x).
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Consistency of the smoothed-interface approach

Theorem 7.
Assume that Ω0 is of class C2. Then the smoothed-interface problem
converges to its sharp-interface counterpart in the sense that:

Jε(Ω0)
ε→0−→ J(Ω0),

and, for any deformation field θ ∈W 1,∞(Rd ,Rd),

J ′ε(Ω0)(θ)
ε→0−→ J ′(Ω0)(θ).
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The Level Set Method

A paradigm: [OSe] the motion of an evolving domain is best described in an
implicit way.

A bounded domain Ω ⊂ Rd is equivalently defined by a function φ : Rd → R
such that:

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

A bounded domain Ω ⊂ R2 (left); graph of an associated level set function (right).
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Surface evolution equations in the level set framework
The motion of an evolving domain Ω(t) ⊂ Rd

along a velocity field v(t, x) ∈ Rd translates
in terms of an associated ‘level set function’
φ(t, .) into the level set advection equation:

∀t, ∀x ∈ Rd ,
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

In many applications, the velocity v(t, x)
is normal to the boundary ∂Ω(t):

v(t, x) := V (t, x)
∇φ(t, x)

|∇φ(t, x)| .

Then the evolution equation rewrites as a
Hamilton-Jacobi equation:

∀t, ∀x ∈ Rd ,
∂φ

∂t
(t, x) + V (t, x)|∇φ(t, x)| = 0

Ω(t) = [φ(t, .) < 0]

Ω(t + dt) = [φ(t + dt, .) < 0]

v(t, x)

x
•

•

•
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The level set method for shape optimization [AlJouToa]

• The shapes Ωn under evolution are
embedded in a working domain D equipped
with a fixed mesh.

• The successive shapes Ωn are accounted for
in the level set framework, i.e. via a function
φn : D → R which implicitly defines them.

• This approach is very versatile and does not
require a mesh of the shapes at each
iteration.

74 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0, −1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is ! = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-

Shape accounted for with a level
set description
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Two-phase long cantilever (I)

•1

2

• Optimization of the repartition of two materials with the same Poisson
ratio ν0 = ν1 = 0.3, but different Young’s moduli E0 = 0.5, E1 = 1.

• The thickness parameter ε is set to 2∆x .

• The compliance of the total structure D is minimized.

• A constraint is imposed on the volume of the stronger phase:
VT = 0.7|D|, owing to an augmented Lagrangian algorithm.
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Two-phase long cantilever (II)

Initial shape, optimized shape using the ‘true’ formula, optimized shape using the
‘Jacobian-free’ formula, optimized shape using the ‘thin-interface’ formula.

44 / 59



Two-phase long cantilever (III)

Convergence histories in the three cases of interest.
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Two-phase long cantilever (IV)

Use of a larger thickness parameter ε = 8∆x for the transition zone.

Initial shape, optimized shape using the ‘true’ formula, optimized shape using the
‘Jacobian-free’ formula, optimized shape using the ‘thin-interface’ formula.
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Extension to more than 2 (e.g. 3, 4) phases

D

O0

cO0

D

O1

cO1

D

Ω0

Ω1

Ω2

Ω3

Two subdomains O0,O1 ⊂ D, and the 4 phases derived by combining them.

• One subdomain O0 ⊂ D accounts for two phases Ω0 = O0, Ω1 = cO0.

• Combining 2 subdomains O0,O1 ⊂ D, one can represent up to 4 phases:

Ω0 = O0 ∩ O1, Ω1 = cO0 ∩ O1, Ω2 = ...

• The previous framework can be easily extended to deal with multiple
phases:

⇒ Using m different level set functions allows to account for up to 2m

distinct phases.
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Multiple-phase short cantilever

• Two phases and void:

The Young’s moduli of the different
phases are:

E0 = 0.5, E2 = 1, E1 = E3 = 1e−3.

(Phases 1 and 3 mimick void).
Volume constraint:

V0 = 0.2|D|, V2 = 0.1|D|.

• Three phases and void:

The Young’s moduli are:

E0 = 0.5, E1 = 0.25, E2 = 1, E3 = 1e−3.

Volume constraint:

V0 = V1 = V2 = 0.1|D|.

•

1

2
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Two-phase short cantilever

Short cantilever using two phases and void; (left) initialization, (right) optimal shape.
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Three-phase short cantilever

Short cantilever with three phases and void; (left) initialization, (right) optimal shape.
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Two-phase L-Beam

• Phase 0 has Young’s modulus
E0 = 1.

• Phases 1 and 3 mimick void
(E1 = E3 = 1e−3).

• Phase 2 has different Young’s
moduli depending on the
considered example.

• A constraint on the volumes
of phases 0 and 2 is imposed:

V 0
T = V 2

T = 0.25|D|. 1

1

•
0.6

0.6

51 / 59



Two-phase L-Beam

Optimal designs for the two-phase L-Beam problem with (from left to right)
E2 = 0.2, 0.5, 0.8.
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An example using non monotone interfaces

D
g

•

1

2

• Work carried out by G. Allaire, Y. Bréchet, R. Estevez, G. Michailidis, G.
Parry and N. Vermaak [VerMi].

• Optimization of the repartition of two materials with the same Poisson
ratio ν0 = ν1 = 0.3, but different Young’s moduli E0 = 0.1, E1 = 1.

• The compliance of the total structure D is minimized, under a constraint
V 1
T = 0.5|D| on the volume of the stronger phase.

• The properties of the material inside the transition layer are non
monotone.
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An example using non monotone interfaces

(Top-left) Profile of the Young’s modulus in the transition layer, (top-right) final
design, (bottom) iterations 1, 10, 25, 40.
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An example using non monotone interfaces

(Top-left) Profile of the Young’s modulus in the transition layer, (top-right) final
design, (bottom) iterations 1, 50, 75, 90.
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An example using non monotone interfaces

(Top-left) Profile of the Young’s modulus in the transition layer, (top-right) final
design, (bottom) iterations 1, 5, 50, 110.
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Thank you !

Thank you for your attention!
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