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A foreword around multi-phase optimization

Multi-phase optimization is about finding the optimal repartition of two, or
several, materials with conflicting properties within a fixed set. This problem
has multiple applications in industrial design:

e At the macroscopic level: Repartition of several materials within a given
structure to combine their respective assets.

e At the microscopic level: Mixture of several phases to achieve new
materials with unique features (e.g. design of materials with negative
Poisson's ratio, or negative coefficient of thermal expansion...).

Design of a material with negative CTE
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© Introduction and definitions

@ A short reminder of ‘classical’ shape optimization in linear elasticity
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A shape is a bounded domain Q C R?, which is T'p

e fixed on a part ['p of its boundary,

e submitted to surface loads g, applied on
FNCGQ,FDQFN:Q]. l Q
The displacement vector field ug : Q — RY is gov-

k ! A ‘Cantilever’
erned by the linear elasticity system:

—div(Ae(uq)) = 0 in Q
uqQ = 0 on I'D
Ae(ug)n = only ’
Ae(uq)n = 0 on =00\ (MpUTly)

where e(u) = 3(Vu" + Vu) is the strain tensor,
and A is the Hooke's law of the material. The deformed cantilever
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Starting from an initial structure Qop, find a new one € that minimizes
a certain functional of the domain J(Q).

e The work of the external loads g or compliance C(Q2) of domain :

c(Q) = /QA@(IJQ) se(uq)dx = /r g.ug ds

N

e A least-square error between uq and a target displacement up € H(Q)9
(useful when designing micro-mechanisms):

D(Q) = (/Q k(x)| o — uo|adx> "

where « is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter /:

Minimize J(Q) := C(Q) + £ Vol(Q2), or D(2) + ¢ Vol(Q). ‘
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Differentiation with respect to the domain: Hadamard's method

Hadamard's .boundar.y  variation (I +6)(%)
method describes variations of a
reference, Lipschitz domain Q of

the form:
Q—Qy:=(1+6)Q),

for ‘small’ 6 € W1 (R?,R?). \

Definition 1.
Given a smooth domain Q, a functional F(Q2) of the domain is shape
differentiable at Q) if the function
Wb (RY,RY) 5 0 — F(Q)
is Fréchet-differentiable at 0, i.e. the following expansion holds around 0:

F(Q0) = F(Q) + F'(2)(0) + o (1101w (re re)) -
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Techniques close to optimal control theory make it possible to compute shape
gradients; in the case of ‘many’ functionals of the domain J(2), the shape
derivative has the particular structure:

J(Q)(0) = / v 0 n ds,

r

where vq is a scalar field depending on uq, and possibly on an adjoint state pgq.

If J(Q) = C(Q) = [, & ua ds is the compliance,

v = —Ae(uq) : e(uq).
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This shape gradient provides a natural descent direction for functional J: for

instance, defining 6 as
0 = —vqn

yields, for t > 0 sufficiently small (to be found numerically):

I+ t6)(Q)) = J(Q) t/ Rds + o(t) < J(Q)
r

Gradient algorithm: For n =0, ... convergence,
1. Compute the solution ugn» (and pqn) of the elasticity system on Q".

2. Compute the shape gradient J'(2") thanks to the previous formula, and
infer a descent direction " for the cost functional.

3. Advect the shape Q" according to 6, so as to get Q"1 := (I + 6™)(Q").
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e A fixed working domain D C R? is occupied by two complementary

phases Q° and Q1 filled with elastic materials with Hooke's laws Ag, Aj.

e The structure D is clamped on a region ['p C 9D, surface loads are

applied on 'y C OD, as well as body forces f.

e The total, discontinuous Hooke's law in D is:

where y; is the characteristic function of the phase Q.

I'p

Agqo = Aoxo + A1x1,

O

Ql
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e The displacement
ugo € H}D(D)d ={ue HY(D)?, u=0on Mo}
of the total structure D satisfies:

—div(Aqee(u))=f inD
u=0 onlp
Are(uyn=g only

° Minimize a functional of the mixture of the form:

J(Q%) = /Dj(x, uqe) dx +/ k(x, ugo) ds,

My

under constraints (e.g. on the volume of one of the phases).

° The compliance of the total structure D:

C(QO):/DAQoe(qu):e(qu)dX:/Df~qu dX+/r g - Ugo ds.

N
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The material properties are different from either side of ' = some
quantities are discontinuous across .

0

If o is a discontinuous quantity, with values a®, a® in Q0, QI respectively,

[a] := a — a® is the jump of « across T.

If M is a tensor-valued function, denote as:

Vxerl, M= ( ﬁiﬁii A/\iltTEjg )

its representation in a local basis (7, n) of RY.
Difficulty: The strain tensor e = e(ugo) has continuous components e, .,
but discontinuous components €;,,, €,-, €,,. The stress tensor

0 = o(ugqe) has continuous components o, 0., and o,,, but o, is
discontinuous.
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Shape derivative in the sharp-interface context (I)

Theorem 1 ([AlJouVG])

The functional J(Q°) is shape differentiable, and its derivative reads:

Vo € Wh(RY,RY), J'(Q°)(0) = /D X, Ugo, pao) 0 - n ds,

where the integrand factor D(x, u, p) is defined as:

D(x,u,p) = —(p)an : [e(t)nn] — 20(t)nr : [(P)nr] + [0(t)rr] : €(P)rrs
and pao € HE (D)? is an adjoint state, defined as the solution to:
—div (AQo e(p)) = —jI(X, UQO) in D,
p = 0 onlp,
(Are(p))n = —K(x,ug) only,
=] F = = E 9DHAE
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This formula is difficult to use in numerical practice, since it involves the jumps
of discontinuous quantities across TI.

Potential remedies:

e Discrete approach:
Consider the shape derivative of the discretization Ju(Q°) of J(Q2°) on
the actual mesh, which features the numerical solution vy, (resp. pp) of
the state (resp. adjoint) elasticity system.

e Body-fitted approach:

The interface I is explicitely dis-
cretized at each step of the pro-
cess.

15 /59



@ Introduction and definitions
@ Foreword

@ A short reminder of ‘classical’ shape optimization in linear elasticity

© The (exact) sharp-interface multi-phase problem
© The smoothed-interface approach

@ Setting of the smoothed-interface approach
@ A digression around the signed distance function

@ Shape derivatives in the smoothed-interface setting
O Numerical study

@ Presentation of the numerical algorithm
@ Numerical examples

«O>» «Fr o«

it
v
it
v

DA
16 /59



© The smoothed-interface approach
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. —d(x,00)
Vx € R,

The signed distance function
Definition 2.
The signed distance function dg to a bounded domain Q C R? is defined as:

ifx € Q
0 ifxeoQ |
d(x,00) ifxeQ
where d(-,00) stands for the usual Euclidean distance function to 0.

Graph of the signed distance function to a union of two-disks (in black) =

1PN G4
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The smoothed-interface setting (I)

e The discontinuous tensor Aqo is approximated by:

Vx € D, Ago .(x) := Ao + he(dao(x))(A1 — Ao),

where h. is a smooth approximation of the Heaviside function:

0 if t <—¢
hg(t):{%(l+£+%sin(”—t)) if —e<t<e
1 ift>e¢
This accounts for a smooth
interpolation of the material FE
properties between the two :

phases over a tubular neigh-
borhood of I of fixed width 2.
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e The smoothed-interface problem is then that of minimizing:
1.(Q%) = /j(x7 ugo ) dx + / k(x, ugo o) ds
D Y
(under constraints), where ugo . arises as the solution to:
—div(Aqe ce(u))=f inD
u=0 onlp
Aje(uyn=g onTly

e It is worth considering for at least two reasons:

e It is an approximation of the sharp-interface problem, and is easier to
handle numerically.

e It has some interest on its own, especially when it comes to modelling
interfaces: interfaces may involve complex and ill-understood processes,
which are better described e.g. by non monotone transition regions.
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Signed distance function and geometry (1)

Definition 3.
Let Q C RY be a Lipschitz, bounded open set;

o Let x € RY; the set of projections Maq(x) of x onto O is:

Moa(x) = {y € 09, d(x,00) = |x—y|}.
o When this set is a singleton, paq(x) is the projection of x onto OS2
o The skeleton ¥ of 0X2 is:

Y = {x € RY, dj is not differentiable at x }

o For x € 9%, the ray emerging from x is:

rayaqa(x) == ppg(x)-

DA
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Signed distance function and geometry (Il)

x has a unique projection over OS2, whereas x' has two such points y1, y>.
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Let Q C RY be a Lipschitz, bounded open set;

e A point x € RY has a unique projection point papq(x) iff x ¢ ¥. In such a
case, dq is differentiable at x, and its gradient reads:

Va(x) = “ LA,

In particular, |Vdq(x)|=1 wherever it makes sense.

o IfQ is of class Ct, this last quantity equals Vdq(x) = n(paa(x)).

e IfQ is of class CX, k > 2, then dq is also of class C* on a neighborhood
of ON).
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Signed distance function and geometry (IV)

Some level sets of dq are depicted in color; dq is as smooth as the boundary 02 on
the shaded area (at least).
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Shape differentiability of the signed distance function (1)

Let Q C R? be a C* bounded domain, and x ¢ ¥. The function 0 +— dq,(x),
from W1>(RY R9) into R is Gateaux-differentiable at 6 = 0, with derivative

dg(0)(x) = —0(paa(x)) - n(paa(x)).

~ o, (T)

1PN G4
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Shape differentiability of the signed distance function (I1)

A more general formula holds, which encompasses the case x € X:

If x € Q, dy(0)(x)=— inf 6(y)-n(y),
y€Maq(x)

If x € °Q, dy(0)(x)=— sup O(y)- n(y).
y€Maa(x)
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° Taking the shape derivative in
[Vda(x)|*=1

yields:
Vds(0)(x) - Vda(x) = 0.

= The shape derivative of dq is constant along the rays.

¢ | Rigorous proof: ‘ Use of the definition:

d2 _ : _ yl2
a(x) = min [x = |

in combination to a theorem for differentiating a minimum value with
respect to a parameter.
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Let Q be a C' bounded domain, enclosed in a large computational domain D,

and j: R, x Ry — R be of class C*; define the functional:
Am:/ﬂ&wu»w
D

Then 6 — J(Qp) is Gateaux-differentiable at 6 = 0 with derivative:
9j

J(Q)(0) = 5 (%, da(x)) B(paa(x)) - n(paa(x)) dx.

B D@s

This formula is awkward insofar it is not easily put under the form:

Jﬁm@:[van@

and does not lend itself to the inference of a ‘natural’ descent direction for J.
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Let Q C D be a bounded domain of class C2, and let p € L*(D). Then,

d—1
| etas= [ ( Loy oo ?@ L0 dsz(z)ni(y))dz) dy.

i=1

where z denotes a point in the ray emerging from y € 02 and dz is the line
integration along that ray.

Hint of proof:

Apply the coarea formula to the mapping:
Poq - D \ Y — 00

to recast the integration over D = D\ X as
an integration over 02 composed with an
integration over the pre-images pyg(x) =
raygq(x), x € 0.




© The smoothed-interface approach
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Shape derivative of the smoothed-interface functional (1)

The objective function

JE(QO) = / J(x, ugo o) dx +/ k(x, ugo .) ds,
D

Y
is s.t. 01— J-(Q9) admits a Gateaux-derivative at § = 0, which is

Vo € Wh°(D,RY), J(Q°)(0) = —/rj(x) 0(x) - n(x)ds(x).

Here, n is the outer unit normal to Q° and j is the scalar function defined by

d—1
J(x) = / h. (dao (2)) (A1 — Ao)e(u)(2) : e(p)(2) T (1 + dao(2)i(x))dz,
ray.(x)nb

i=1
where u = uqo . and the adjoint state p

= pqo . Is the solution to:

—div (AQO76 e(p)) = —jI(X7 UQO7E) in D,
p 0 onTp,
(Are(p))n —k'(x,uqo ) on Ty,
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Sketch of (formal) proof: For functions v, q € H! (D)9, define the Lagrangian
functional £(Q°, v, q) as:

L(Q%v,q) = /Dj(x7 v) dx + /FN k(x,v) ds

+/E)A9075(x)e(v);e(q) dx—/Df-qu—/rNg-qu.

Vg e HE (D), J(Q°) = £(Q°, uge ., q).

By definition,

Let us search for the critical points (u, p) of £(Q°,-,").
e Expressing 5 oL (QO u,p) =0 yields v = ugqo ..

e Expressing %(QO, u,p) =0 yields p = pgo ..
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Shape derivative of the smoothed-interface functional (I11)

Thus, for any q € H}D(D)d, assuming that wuqo . is differentiable with respect
to the domain,

oL

oL
J(@)0) = 2@, uao -.0) + 9 (2, ugo -, 4)(vho..(0))
Now choosing g = pgo ., and using %(QO, u, p) = 0 yield:

oL
J/(QO)( ) 89(9 UQ°,€7PQ°,5)a

which can be calculated thanks to Lemma 4.
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The formula of Theorem 6 can be given consistent and convenient
approximations in two important limits in applications:

e Jacobian-free formula: If the interface I' is approximately plane, that is
daor; ~ 0, we obtain:

1(2°)(60) = — / J(x) 0(x) - n(x)ds(x).

r

with

j(x) ~ / K. (doo(2)) (A1 — Ao)e(u)(2) : e(p)(2)dkz.
ray (x)nD

e Thin-interface formula: If the transition layer is very thin, i.e. ¢ is very
small,

JHQ)(0) ~ — /r (A1 — Ao)e(u)(x) : e(p)(x) O(x) - n(x)ds(x).
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Consistency of the smoothed-interface approach

Theorem 7.
Assume that QO is of class C2. Then the smoothed-interface problem
converges to its sharp-interface counterpart in the sense that:

Jo(2°) =2 (%),
and, for any deformation field § € W1>°(R9 RY),

JL(Q0)(6) 3 J(Q°)(6)

1PN G4
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| The Level Set Method |

A paradigm: the motion of an evolving domain is best described in an
implicit way.

A bounded domain Q C R? is equivalently defined by a function ¢ : R — R
such that:

p(x)<0 ifxeQ ; o(x)=0 fxcdQ ; ¢(x)>0 ifxecQ

A bounded domain Q C R? (left); graph of an associated level set function (right).
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The motion of an evolving domain Q(t) ¢ R
along a velocity field v(t,x) € RY translates
in terms of an associated ‘level set function’
¢(t,.) into the level set advection equation:

Vt, Vx € RY, %(Lx) + v(t,x).Vo(t,x) =0

In many applications, the velocity v(t,x)
is normal to the boundary 0€(t):

Vo(t, x)
IVo(t,x)|

Then the evolution equation rewrites as a
Hamilton-Jacobi equation:

v(t,x) = V(t,x)

99

t RY
Vt, Vx € ' Bt

(t,x) + V(t,x)[Ve(t, x)| = 0

Q(t+dt) = [p(t + dt,.) < 0]
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e The shapes Q" under evolution are
embedded in a working domain D equipped
with a fixed mesh.

e The successive shapes Q" are accounted for
in the level set framework, i.e. via a function
¢" : D — R which implicitly defines them.

e This approach is very versatile and does not
require a mesh of the shapes at each
iteration.

Shape accounted for with a level
set description
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2

Optimization of the repartition of two materials with the same Poisson
ratio g = v; = 0.3, but different Young's moduli Eg = 0.5, E; = 1.

The thickness parameter ¢ is set to 2A,.
The compliance of the total structure D is minimized.

A constraint is imposed on the volume of the stronger phase:
V1 = 0.7|D|, owing to an augmented Lagrangian algorithm.
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TR

Loss

Initial shape, optimized shape using the ‘true’ formula, optimized shape using the

‘Jacobian-free’ formula, optimized shape using the ‘thin-interface’ formula.
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Compliance

Two-phase long cantilever (I11)

Volume of material 1

‘Approximate” formula

1
50 100 0

Tterations

Convergence histories in the three

50

Tterations

cases of interest.
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Use of a larger thickness parameter ¢ = 8/Ax for the transition zone.

95 0.5
o

65 .65
. o6
X 0.0
. o8
o5 o5

Initial shape, optimized shape using the ‘true’ formula, optimized shape using the
‘Jacobian-free’ formula, optimized shape using the ‘thin-interface’ formula.
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Extension to more than 2 (e.g. 3,4) phases

<o O3

Two subdomains ©°, O C D, and the 4 phases derived by combining them.

e One subdomain @y C D accounts for two phases Q° = ©°, Q = <0,
e Combining 2 subdomains ©° O! C D, one can represent up to 4 phases:
Q=0"Nn0Y QL =°0N0OL, Q% =..

e The previous framework can be easily extended to deal with multiple
phases:

= Using m different level set functions allows to account for up to 2™
distinct phases.
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e Two phases and void:

The Young's moduli of the different 4 4

phases are: 7

E, =05, E =1, y

7/

7/

7/

Volume constraint: 2| 4
Vo = 0.2/D|, Vo = 0.1|D|. y |

7/

e Three phases and void: y

7/

The Young's moduli are: :

Eoy =05, E; =0.25, £, =1, . I
Volume constraint: DR

Vo= Vi =V, =01/D|.
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Two-phase short cantilever

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o

Short cantilever using two phases and void; (left) initialization, (right) optimal shape.

49 /59



Three-phase short cantilever

1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
o o

Short cantilever with three phases and void; (left) initialization, (right) optimal shape.
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Phase 0 has Young's modulus 4
Eo=1.

Phases 1 and 3 mimick void
(E1 =E = 16_3).

Phase 2 has different Young's
moduli depending on the
considered example.

A constraint on the volumes

AN W W W W WA N

of phases 0 and 2 is imposed:
Vv = V2 =0.25/D|.

0.6

A

0.6
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Two-phase L-Beam

1 1

0.90001 0.90001
0.80002 0.80002
070003 0.70003

0.60004

0.60004

0.50005 0.50005

0.40006 0.40008
0.30007 0.30007
0.20008 0.20008

0.10009 L 0.10009

Lo

Optimal designs for the two-phase L-Beam problem with (from left to right)
E» = 0.2,0.5,0.8.

0.90001

0.80002

0.70003

0.60004

0.50005

0.40006

0.30007

0.20008

0.10009

0.0001
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D

Vo
Work carried out by G. Allaire, Y. Bréchet, R. Estevez, G. Michailidis, G.
Parry and N. Vermaak

Optimization of the repartition of two materials with the same Poisson
ratio g = v; = 0.3, but different Young's moduli Eg = 0.1, E; = 1.

The compliance of the total structure D is minimized, under a constraint
V+ = 0.5|D| on the volume of the stronger phase.

The properties of the material inside the transition layer are non
monotone.
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An example using non monotone interfaces
Monotonic LR
1.0
2
g
£
0.
£ 0 £

Interface Zone, dg,

155 B D4

(Top-left) Profile of the Young's modulus in the transition layer, (top-right) final
design, (bottom) iterations 1,10, 25,40.
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An example using non monotone interfaces

Non-monotonic
W,
mval =2P,

Property value, P
5

-+ 0
Interface Zone, dg,

(Top-left) Profile of the Young's modulus in the transition layer, (top-right) final
design, (bottom) iterations 1,50, 75, 90.
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An example using non monotone interfaces

Non-monotonic Wr-1
mval = 5P,

Property value, P

€ 0
Interface Zone, dg

(Top-left) Profile of the Young's modulus in the transition layer, (top-right) final
design, (bottom) iterations 1,5, 50, 110.
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| !an! you |

Thank you for your attention!
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