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[Foreword]

Shape optimization aims at finding the "best” design
of a physical device Q with respect to a measure of
performance J(2).

This discipline has raised a tremendous enthusiasm
in the academic and industrial communities.

Most numerical algorithms rely on a notion of
“derivative” for the mapping Q — J(Q)...

which, in turn, calls for a definition of “small
variations” of a given shape €.

We introduce a method to appraise the sensitivity
of J(2) with respect to the graft of a thin bar to Q.

This task relies on a connection with the mathemat-
ical field of small inhomogeneities.

Optimization of a landing gear
(courtesy of Ansys).

“Optimized” addition of thin bars to a

shape with poor topology.
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Different sensitivities with respect to the domain (1)

A typical shape and topology optimization prob-
lem reads:

mfin J(Q) st. C(Q) <0,

where
e Q is a shape, e.g. an elastic structure.
e J(2) measures the physical performance of Q.

e ((Q) is a constraint functional.

e Most numerical algorithms rely on the “derivatives” of Q — J(Q2) and Q — C(Q).

e Multiple notions of derivative with respect to the design exist, which are based on
as many descriptions of “small variations of shapes”.
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Hadamard's boundary variation method.

Variations of a shape are considered under the form
Qp = (Id + 6)(Q2),

where 6 : RY — R is a “small” vector field

This gives rise to the notion of shape derivative J'(2)(9) for a function Q — J(Q):

J(Q0) = J(Q) + J(Q2)(6) + o(6).

A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts in
Mathematics Vol. 28, 2018.
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Nucleation of a tiny hole.

Variations of Q are considered under the form

Qyo,r := 2\ B(xo, r),

where xo € Qand r<« 1

This yields the notion of topological derivative dJ7(2)(xo0) for a function Q — J(Q):

J(Q.r) = J(Q) + r?dIr(Q)(x0) + o(r?).

A. A. Novotny and J. Sokotowski, Topological derivatives in shape optimization,
Springer Science & Business Media, 2012.
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Graft of a thin ligament.

One third means to define “small” variations of Q is:

Qo =QUuwoe,
where 3
Wo,e i= {x eR? d(x,0) < 6}

is a tube with thickness ¢ < 1 around a curve o

Such variations pave the way to a notion of topological ligament derivative:
Q) =J(Q) + €971 dU(Q)(o) +o(e77H).
~|we,el
This topic has been seldom investigated in the literature. Unfortunately,

e The mathematical derivation of such asymptotic formulas is very difficult.
e The resulting formulas are difficult to use in practice.

S. Nazarov and J. Sokolowski, The topological derivative of the dirichlet integral due to
formation of a thin ligament, Siberian Mathematical Journal, 45 (2004), pp: 341-355.
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We approximate the considered “one-phase and void” shape optimization problems
by two-phase problems, featuring an “ersatz”, nearly degenerate phase.

This allows to approximate rigorous topological ligament asymptotic expansions by
formulas pertaining to the field of small inhomogeneities.

We present a formal energy method to obtain such expansions with a minimum
amount of technicality.

We use the derived formulas to add bars to a shape in an optimal way, in several
practical contexts.
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© From topological ligaments to thin tubular inhomogeneities
@ The ersatz material approximation
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Shapes are bounded Lipschitz domains Q ¢ D in RY. 1,

e They are clamped on a fixed subset I'p C 9D. %

e Traction loads g : Ty — R? are applied on 'y C 9D. QQ

e The remaining part I = 0Q \ (Tp U Ty) is traction- /
free.

The elastic displacement ug € H*(Q)¢ is the unique solution to

—div(Ae(ug)) =0 in Q,
ug =20 on [p,
Ae(ug)n=g on Iy,

Ae(ug)n =0 onT,

where A is the Hooke's law of the material.
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We approximate this setting by “filling the void” D \ Q with a soft material 74, n < 1.

I'p

Q

N
QO

D

—div(Ae(ug)) =0 in Q,
ug =0 on [p,
Ae(ug)n=g on Iy,
Ae(ug)n=0 on T.

Q

I'p

Q

N
pO

D

—div(A,e(uq)) =0 in Q,

ug =0

Ane(ug)n =g
Ane(ug)n =0

.

A
nA

onp,
on r/\/,
on 9D\ (Tp UTy),

if x € Q,
otherwise.
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We may as well use a smoothed version A, of A,.

Q
I'p

Yo

-

D

—div(Ae(un)) =0

ug =0
Ae(ug)n=g
Ae(ug)n=0

in Q,
on [p,
on FN,
on T.

Q

I'p

—div(A,e(uq)) =0 in Q,

ug =0
A\{ze(uﬁ)” =8
Ane(ug)n=0
Ap = (

on FD,
on FN,
on 9D\ (TpUTy),

){ A ifxeQ,

nA otherwise.
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e A quantity of interest J(2), depending on Q via uq can be given an approximate
counterpart by the same token.

Example: The shape functional
J(Q) = /j(x7 ua(x)) dx where j : RS x RS — R is smooth
Q
can be approximated as

J(Q) = /j(x, uy(x))dx,  up to modifying j.
D

e In the same spirit, we aim to construct an ersatz material approximation

Jo () = J(Qs,c), where Q,c = QU wo .
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e Let Ao(x) be a smooth Hooke's law in D. r
D

e The “background displacement wo is the
HY(D)? solution to: A
Ay

—div(Aoe(wo)) =0 in D,

u =20 on I'D, Ay -
Ave(uo)n=g on Iy,

Aoe(ug)n=0 on 9D\ (Tp UTw).

e In a perturbed situation, the properties Ao(x) are traded for A1(x) in a tube
Wee :={x €D, d(x,0) <e}
with “small” thickness ¢ < 1 around a curve o.
e The perturbed elastic displacement u. is the solution to:
—div(A-e(u:)) =0 in D,
to =0 on I, where A.(x) = {

Ace(uo)n=g on Iy, -
Age(uo)n =0 on 0D \ (FD U r/\/)7

Ai(x) if x € woe,
Ao(x) otherwise.
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The ersatz material approximation: perturbed setting (I1)

The perturbed version of a quantity T'p
J-(0) :== /j(uo) dx "
D

reads M@
Ao |

Jo(e) = /Dj(us) dx.

o Intuitively, the asymptotic expansion of J;(0),
Jr(€) = Jo(0) + £ 71 S5 (0) + (")
measures the sensitivity of J, with respect to changing material properties from
Ao to Az in the thin tube wo, ..

e When Aj is obtained from Q C D by the ersatz material approximation, i.e.

A ifxeqQ,

Ao(x):{ DA if xeD\Q, where 7 < 1,

J,(0) is an approximate sensitivity of J(Q) with respect to the addition of w, ..

16 /63



© From topological ligaments to thin tubular inhomogeneities

@ A glimpse of “small” inhomogeneities
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To set ideas, let us consider a model problem in the conductivity setting.

e D C R?is a smooth bounded domain, filled by a material with smooth
conductivity o € C*°(D).

A smooth current g is applied on 9D such that fOD gds=0.

e The “background” potential up is the unique H*(D) solution such that
fD up dx = 0 to the boundary-value problem

—div(yoVu) =0 in D,
'yo% =g on OD.

In a perturbed situation, D contains inhomogeneities with conductivity
71 € C*=(RY), occupying a “small” subset w. € D.

The perturbed potential u. € H*(D) satisfies [, u- dx =0 and

—div(y.Vu:) =0 in D, f mx) if x € we,
{ 70% =g on 9D, where ¢ (x) := ~Yo(x) otherwise.

18/63



e A general representation formula for u. in the low-volume limit |w:| — 0 was
derived in : for x € 9D and a subsequence of the ¢,

ue(x) = wo(x) + [we| /D(vl = 70)(Y)M(y)Vuo(y) - VyN(x, y) du(y) + of|we]),

where

- The probability measure p describes the “limiting position” of the subsets w..

- The polarization tensor M(y) accounts for the “limiting behavior” of a
rescaled version of the field wu. inside w..

- N(x,y) is the Neumann function of the background problem.

e The relevant quantity to measure the “smallness” of w. is the volume |we|.

e This formula can be refined when particular geometries are assumed for w..

Y. Capdeboscq and M. S. Vogelius, A general representation formula for boundary
voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,
ESAIM: M2AN, 37 (2003), pp. 159-173.
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“Small” inhomogeneities: examples (1)

()

©® Diametrically small inhomogeneities read o)

We = Xo + Ew,
where w € RY is a given bounded subset.

Then, A 2d diametrically small inhomogeneity

e 4 is a multiple of &,

e M involves the solution to an exterior prob-
lem, posed on w and RY \ @.

e References:

A 3d diametrically small inhomogeneity
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“Small” inhomogeneities: examples (Il)

@ Thin inhomogeneities have small thickness about
a codimension 1 entity:

Wo,e = {X eRY, d(x,0) < 5} if d=2,
and
ws,e = {x eR?, d(x,S) < 5} ifd =3

where o € D and S € D are (open or closed) curve
and hypersurface in R?, R3, respectively.

e  is an integration measure on o or S,

e M is diagonal in a local basis (71,...,7d—1,n)
attached to o or S.

o References:

Z

A 2d thin inhomogeneity

A 3d thin inhomogeneity
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“Small” inhomogeneities: examples (llI)

Z

® Tubular inhomogeneities are of the form

Woe = x€R?, d(x,0)<e
e={xer’ dx,0) <<},

where o € D is an (open or closed) curve in RY. In 2d, tubular inhomogeneities coincide

with thin inhomogeneities

e (i is an integration measure on o,

e M is diagonal in a local basis (7, n1,...,n4—1)
attached to o.

e References:

A 3d tubular inhomogeneity
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e These questions have been considered in various more challenging physical
settings, such as

- that of the linearized elasticity equations

- that of the Maxwell system

e These asymptotic formulas pave the way to multiple numerical methods for the
detection or the reconstruction of small inhomogeneities

e They also allow for the optimization of the placement and shape of
inhomogeneities:

- Topological derivatives in shape optimization

- Optimization of the placement of tubular inhomogeneities
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© Asymptotic expansions in the context of thin tubular inhomogeneities
@ The model case of the 2d conductivity equation
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The model context of the conductivity equation

e For simplicity, we consider the model setting of the conductivity equation.

e The functions up and u. € H'(D) are the solutions to the respective equations:

—div(yoVuw) = f in D, —div(y.Vu:) =f in D,
u =20 on FD7 d u-=0 on FD,
'yo% =g on Ny, an Yo 6”5 =g on Iy,
'}/Oﬁ =0 on 8D\(FDUFN), ’Yoﬁ =0 on 8D\(I’DUFN),

B ’Yl(X) if x € Wo e
where 7. (x) = { Yo(x) otherwise.

The base curve o may be open (left) or closed (right).
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The main result (1)

The following expansion holds at any point x € D\ o:
Here,

ue(x) = wo(x) + eur(x) + o(e), where u1(x) := / M(y)Vuo(y) - VyN(x,y) de(y).

e N(x,y) is the Green's function of the background operator;

e For any point y € o, the polarization tensor M(y) is a symmetric 2 X 2 matrix,
whose expression reads, in the local orthonormal frame (7(y), n(y)):

2(n(y) = 0(y)) 0
M(y) = ( 0 2%0(y) (1 - 2) ) '

DA
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This result is proved in by using different techniques.

The conclusion holds regardless of o being closed or open.

- When o is closed, u1 can be characterized by a variational equation.

"

- When o is open, the interpretation of u; as the solution to a “classical PDE
is more difficult.

This indicates that “the endpoints” of o contribute only at higher order to the
expansion of u.. This phenomenon is observed in all known investigations about
thin or tubular inhomogeneities.

In the following, we present a formal energy argument, which allows to “easily”
derive the correct formula (in the case of closed o).
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Sketch of the proof:

We consider the error
re = l(us — uo)
€

which is the unique solution in the space
Ht, (D) := {u € H'(D), u=0on Tp}.

to the following variational problem:

1
Vv € HrlD(D), / YeVre - Vvdx = —g/ (71 —v0)Vuo - Vv dx.
D w

o,e

Equivalently, r. is the unique solution to the minimization problem

1 1
min  E.(u), where E.(u) := f/ Ye|Vul? dx + f/ (71 —70)Vuo - Vudx.
ueHt (D) 2 /p €

Wo, e
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Step 1: We derive a representation formula for the values r.(x) at x € D\ o in terms
of the values of r.(x) inside wg.c.

This task relies on the Green's function N(x,y) of the background operator:

For all x € Q, y — N(x,y) satisfies
divy (o(y)VyN(x,y)) = 6y=x in D, -
10(y) 5, (x,y) =0 for y € 9D\ To,
N(x,y)=0 fory € I'p,

N(x,y) can be constructed from (and behaves like) the modified fundamental solution
to Laplace operator in free space:

G(x,y) = )loglx—yl-

1
27y0(x

20/63



Using the definition of the Green's function N(x, y), we obtain:

(%) / divy (10(y) ¥y N(x, ) 7=(y) dy,

_/D%(y)vre(y) - VyN(x,y)dy,

- / e ()VE(y) - VyN(x,y) dy + / (11— 10)(¥)Vre(y) - ¥y N(x, y) dy.

Wo, e

Now “using y +— N(x,y) as test function” in the variational formulation for r., we get:

[0V VM) dy = =2 [ (1= 0)(0) V() - T NCey) d.

T,

and so:

(=1 [ (n =)V unly) - V,Nixy) dy

o,e

+ / (1 — 1) () V() - Yy N(x, y) dy.
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The main result: sketch of proof (IV)

We rescale the thin tube w, . into that ws,1 with unit size, thanks to the mapping
Me : Wo1 — Woe,

me(x) := po(x) + eds (x)n(po (x))-

Wo,1



A change of variables now yields immediately:

0= [ T () o m (T o me) - NG m(y) dy

Os: ON 1+ edy i 9s. ON
+ \/WU’:l (’Yl - ’70) o me (5 or 677_)/()(7 me(y)) + m on TW(X7 ms(y))) d_y7

where
e k:0 — R is the curvature of o,

e s.=r.om, € Hl(wml) is the profile of r. inside the rescaled inclusion we 1.
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Step 2: We get information about the behavior of the rescaled error s, inside we. 1.
The couple (r, s:) is the solution to the two-scale minimization problem:

in F
Wi, <(u,v),

where the space V. is defined by:

VE:{(u,v)eHgD(D)le(%,l), W, { Yt =t ent) }

and the two-scale energy F.(u, v) reads:

1

2 2

Fo(u,v) = 1 /D Yo|Vul?® dx+ / (71 0 m2)|detVm.|(VmZ'VmZ T)Vv - Vv dx
wo,1

Wo, e

+ é / (71 = 70) 0 me)|detVm.|(Vuo) o m. - (VmZ TVv) dx.

o,1
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An elementary calculation yields:

1 1 14+ edok av\?
Fe(u,v) = 5 /D\ Yo |Vul® dx + 2—6/ (71 0 me) (m) (%) dx
Woe We,1 T

14+ dok ov\? Ouo ov
‘/w (")/1 [} mE) (m) (E) dX+[J (("Yl — "yo) o mg) (E (e} mg> E dX

o,1 o,1

G
2

1 1+ edsk Oug ov
+ g/w ((v1 —v0) o me) (71 T don ) (m o mg) n dx.

o,1

Idea: The behavior of s. should be dictated by the minimization of the highest-order
terms in this energy:

s &~ arg min F(v), where
vEHY (wo,1)

For=5 [ nor) (17z) (%) ox

1 ou ov
+/ ((v1 —0) © ps) (m) (67: o Pa) B dx.
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Writing down the corresponding Euler-Lagrange equations, we obtain that the
minimizer v € H'(w,,1) of F(v) satisfies:

8v 1 8Uo

= t =—-—— - - (p); € o,

5, (P + tn(p)) ) (11(p) =70(P)) 5 (P). PEOC

which is all that we need for the following.
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Step 3: We pass to the limit in the representation formula.

i 1
!Tors(x) = /wd1 m(('h 7'70)Opg)((VU0)opJ).vyN(X’pa(y))d
1 1 OvoN
+/w=1 (11 —7)o 1+d x 9 On, —(x, ps(y)) dy,

We now employ the coarea formula (as a curvilinear version of the Fubini theorem) to
rewrite integrals over w1 as nested integrals over o x (—1,1).

For any function ¢ € L*(w,.1), it holds:

/wm () dx = /U (/_11 (1 + tr(p))f(p + tn(p)) dt) dé(p).
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Eventually, a simple calculation yields

imr.(x) = 2 / (1 — 0)(p)Vuo(p) - ¥y N(x, p) dl(p)

h + [ en=0le) ( [ St mlo) at) S ) ()

2 / (1 = 20)(P) 22 (p) I o (x.p) de(p)

) 2 / o(p) (1= 2488) S o) T2 () (o),

which is the desired expression.

37/63



Derivative of an observable (1)

The previous result allows to calculate the derivative of the observable

Jo(e) = /D i) dx.

Proposition 3.
The function J,(€) is differentiable at ¢ = 0, with derivative:

J,(0) = / MV ug - Vpo de,

where M is the polarization tensor, and the adjoint state po € H}D(D) is the unique
solution to the equation:

—div(v0Vpo) = —j’(uo)

in D,
po=20 onlp,
’)’0%;’,?=0 on D\ Tp.
[m] = =

DA
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Sketch of proof: At first, the dominated convergence theorem implies that

J5(0) = lim o(2) = J5(0) = lim / de = /j'(uo)ul dx.
e—0 € e=0 Jp € D

Then, using the integral formula for u; with Fubini's theorem, we get

J7(0)

/ / 1) (X)M(y)Vuo(y) - ¥, N(x, y) de(y) dx
[ MITw)- 9, ([ 7)) ax ) i)

Finally, the definition of the adjoint state and the properties of N(x,y) entail

poly) = / (o) ()N (x, y) dx,

and the desired result follows.
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A similar (albeit more technical) result holds in the context of 2d elasticity.

For an arbitrary point x € D \ o, the following asymptotic expansion holds:
Us(x) = uo(x) + eur(x) + o(e), where ui(x) = /M(y)e(uo) t e, (N(x,y)) dé(y).
The polarization tensor M(y) reads, for any symmetric 2 X 2 matrix e € S2(R):

M(y)e = ar(y)tr(e)l + Br(y)e +y7(y)(eT - T)T ® T+ d7(y)(en- n)n @ n,

where the coefficients at, B1,~y1 and 51 are given by:

Ao + 20 Mo
—2(A\1 — Ao) 22T g A — o),
ar =2(M 0))\1 2 Br = 4(pa MO)M1
and
2M\1 + 211 — do /Lo) 1o — oAl
— A1 — o) (XTI T A0 B0 s gy — ) PAAO T HoAL
1 = 4(p1 — po) ( Nt 2 i T =41 MO)MI()\1 o)
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Diametrically small inhomogeneities

e The previous formal energy argument allows to deal with diametrically small
inhomogeneities
wWe = X0 + ew, where w € RY.
e The “classical” formulas are recovered:
d d
us(x) = wo(x) + eur(x) 4+ o(e?), where u1(x) := MVuo(x0) - V, N(x, x0),
and the polarization tensor M involves the solution to an exterior problem, posed
on the rescaled configuration w U (R9 \ @).
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3d tubular inhomogeneities (1)

In the 3d conductivity case, a similar expansion holds
ue(x) = wo(x)4e°u1(x)+o(e?), where ui(x) == / M(y)Vuo(y) - VyN(x,y) dé(y).

For y € o, the polarization tensor M(y) € R3*3 is defined by:

_( (1 —)(y) 0
M) = < 0 Mun(y) ) ’

as expressed in a basis made from 7(y) and the normal plane to 7(y).

Munn(y) is the polarization tensor for a 2d disk-shaped small inclusion.
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3d tubular inhomogeneities (I1)

e The derivative of the quantity of interest

Jo(e) = /j(us) dx
D
can be calculated as in the 2d case:

Jo(€) = Jo(0) + £2J5(0) + o(c?)

e Finally, similar (but much more complicated) expressions hold in the context of 3d
linear elasticity.
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In order to graft a tube w,,c to a given shape Q C D,

We convert the elasticity problem in Q into a two-phase elasticity problem in D
thanks to the ersatz material method.

We calculate the ersatz material approximations uy, p, of uq, pa.

For “many"” curve configurations o , we calculate the quantity
J4(0) = / Me(ua) : e(pa) df,

measuring the sensitivity of adding a tube with direction o to Q.

The curve o realizing the largest negative value of J,(0) yields the “optimal”
tube to be added to Q.
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O Applications
@ Insertion of a bar in the course of a shape evolution process
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e We minimize the compliance of a shape Q under a volume constraint:
inn C(Q) s.t. Vol () < V7,
where C(Q) := / Ae(uq) : e(uq) dx, and Vol(Q2) = / dx.
Q Q

e We rely on the level set based mesh evolution method from

e Like with any boundary variation algorithm, the optimized shape is prone to falling
into local minima with trivial topologies.

e To remedy this, we periodically interrupt the optimization process to insert bars.
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The “benchmark” 2d cantilever test case is considered.

e The shape Q is optimized with a boundary variation algorithm.

e Every now and then, the process in interrupted and a bar is added to  at an
“optimal location”.
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The optimization of a 3d bridge Q is considered.

iy I
R NARINY
kAN
"évﬁ”ﬂ} s
T

G

e We minimize the compliance of Q
C(Q):/Ae(UQ) . e(ug) dx.
Q

e A volume constraint is enforced.

e Every now and then, a bar is added to Q at an “optimal location".
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O Applications

@ Optimization of the scaffold structure in additive manufacturing
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Additive manufacturing processes feature a layer by layer assembly of the shape Q.
Most of these technologies experience difficulties dealing with overhang regions.
One remedy is to erect a scaffold structure S with Q, such that:

- The compliance of the total structure Q U S has minimum value.

- S has minimum volume and... it does not itself present overhangs!
To achieve this, we propose to

Incrementally add vertical pillars to Q, made of a different material.
Optimize S further via a more “classical” algorithm.

Layer by Layer construction of a structure by
additive manufacturing 52/63

Supporting pillars' for an overhang feature



Optimization of supports in additive manufacturing (I1)

The scaffold structure S of a fixed MBB beam Q is optimized.

e We minimize the compliance of the total structure QU S

Ae(ugus) . e(ugus) dx.
QuS

c(S)

e A constraint is imposed on the volume Vol(S) of supports.
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Optimization of supports in additive manufacturing (III)

The scaffold structure S of a 3d chair
Q is optimized.

NNARAAAE RN

KDALY SOANA 4
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AN

i e The compliance of the total
structure QU S is minimized:
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e A constraint on the volume
Vol(S) of supports is enforced.
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O Applications

o A “clever” initialization for truss structures optimization
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A “clever” initialization for truss structures (1)

e Truss structures are collections of bars.

e Many truss optimization methods rely on the
ground structure approach: an initial, dense
network of bars is iteratively decimated.

e We propose instead to start from void and

(1)
(2]

Incrementally add bars to the structure.

Take on the optimiza-
tion with a more “classical” boundary-
variation algorithm.

7 l\\oﬂl\\vﬂl\\'ﬂl\\oﬂl\\oﬂl\%

R S ARSI RT LIRS
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Initialization of a truss optimization

algorithm by the ground structure approach
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A “clever” initialization for truss structures (I1)

We consider the optimization
of the shape of a 2d crane Q.

e The compliance
c(Q) = / Ae(uq) : e(ug) dx
Q

is minimized.

e A volume constraint is
enforced.
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The shape of a 3d mast Q is
optimized.

e The compliance
Q) ::/Ae(UQ) - e(ug) dx
Q

of € is minimized.

e A constraint is imposed
on the volume of Q.
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