A new approach to topological ligaments in structural optimization

Charles Dapogny¹

¹ Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Grenoble, France

13th - 18th June, 2021

Introduction

The treatment of an optimal design problem

$$\min_{\Omega} J(\Omega)$$
 s.t. $C(\Omega) \leq 0$

usually relies on the sensitivity of $J(\Omega)$, $C(\Omega)$ with respect to the shape Ω .

- We present a means to account for the sensitivity with respect to the addition of a bar to Ω .
- This method makes a connection with the topic of small inhomogeneities in asymptotic analysis.
- Three applications are proposed:
 - Combined use with a more "classical" boundary variation algorithm;
 - Erection of an "optimal" scaffold structure in additive manufacturing;
 - "Suitable" initialization of the optimization of a truss structure.

- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

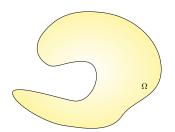
Different sensitivities with respect to the domain (I)

A model shape and topology optimization problem reads:

$$\min_{\Omega} J(\Omega) + \ell C(\Omega),$$

where

- Ω is a shape in \mathbb{R}^d , e.g. an elastic structure.
- $J(\Omega)$ measures the physical performance of Ω .
- $C(\Omega)$ is a constraint functional.
- ℓ is a (fixed) Lagrange multiplier.



- Most numerical algorithms rely on the "derivatives" of $\Omega \mapsto J(\Omega)$ and $\Omega \mapsto C(\Omega)$.
- Multiple notions of derivative with respect to the design are available, relying in turn on different descriptions of "small variations of shapes".

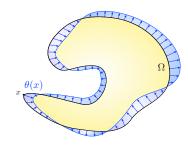
Different sensitivities with respect to the domain (II)

• Hadamard's boundary variation method.

Variations of a shape are considered under the form

$$\Omega_{\theta} := (\mathrm{Id} + \theta)(\Omega),$$

where $\theta : \mathbb{R}^d \to \mathbb{R}^d$ is a "small" vector field [HenPi].



This gives rise to the notion of shape derivative $J'(\Omega)(\theta)$ for a function $\Omega \mapsto J(\Omega)$:

$$J(\Omega_{\theta}) = J(\Omega) + J'(\Omega)(\theta) + o(\theta).$$

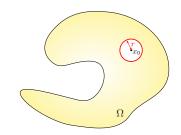
Different sensitivities with respect to the domain (III)

Nucleation of a small hole.

Variations of Ω are considered under the form

$$\Omega_{x_0,r} = \Omega \setminus \overline{B(x_0,r)},$$

where $x_0 \in \Omega$ and $r \ll 1$ [NoSo].



This yields the notion of topological derivative $dJ_{\mathcal{T}}(\Omega)(x_0)$ for a function $\Omega \mapsto J(\Omega)$:

$$J(\Omega_{x_0,r}) = J(\Omega) + r^d dJ_T(\Omega)(x_0) + o(r^d).$$

Different sensitivities with respect to the domain (IV)

3 Graft of a thin ligament.

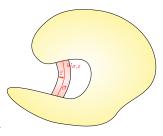
One third means to define "small variations" of Ω is:

$$\Omega_{\sigma,\varepsilon} := \Omega \cup \omega_{\sigma,\varepsilon},$$

where

$$\omega_{\sigma,\varepsilon}:=\left\{x\in\mathbb{R}^d,\ d(x,\sigma)<\varepsilon\right\},$$

is a tube with thickness $\varepsilon \ll 1$ around a curve σ [NaSo].



This type of variations has been seldom considered in the literature. It lends itself to a notion of topological ligament:

$$J(\Omega_{\sigma,\varepsilon}) = J(\Omega) + \underbrace{\varepsilon^{d-1}}_{\approx |\omega_{\sigma,\varepsilon}|} \mathrm{d}J_L(\Omega)(\sigma) + \mathrm{o}(\varepsilon^{d-1}).$$

Purposes of this work

- **1** Account for the sensitivity of the elastic displacement $u_{\Omega} \rightsquigarrow u_{\sigma,\varepsilon}$ when a thin tube $\omega_{\sigma,\varepsilon}$ is added to Ω , as $\varepsilon \to 0$.
- Infer the derivative of the functional

$$J_{\sigma}(\varepsilon) := J(\Omega_{\sigma,\varepsilon}),$$

under a form which allows for a fast evaluation of whether it is beneficial to add $\omega_{\sigma,\varepsilon}$ to $\Omega.$

Use the insight provided by this new type of sensitivity in practical applications.

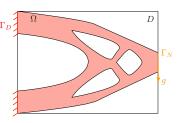
- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion

- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

Shape optimization of elastic structures

Shapes are bounded Lipschitz domains $\Omega\subset D$ in \mathbb{R}^d : $_{\Gamma_D}$

- They are clamped on a fixed subset $\Gamma_D \subset \partial D$.
- Traction loads $g: \mathbb{R}^d \to \mathbb{R}^d$ are applied on $\Gamma_N \subset \partial D$.
- The remaining part $\Gamma = \partial \Omega \setminus (\overline{\Gamma_D} \cup \overline{\Gamma_N})$ is traction-free.



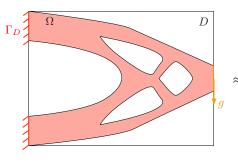
The elastic displacement $u_{\Omega} \in H^1(\Omega)^d$ is the unique solution to

$$\begin{cases} -\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma, \end{cases}$$

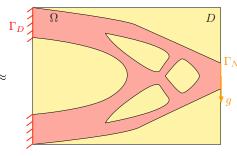
where A is the (homogeneous) Hooke's law of the material.

The ersatz material approximation (I)

We approximate this setting by "filling the void" $D\setminus \overline{\Omega}$ with a soft material $\eta A,\ \eta\ll 1.$



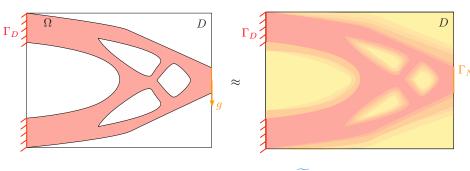
$$\begin{cases} -\mathrm{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma. \end{cases}$$



$$egin{aligned} egin{aligned} egin{aligned} -\mathrm{div}(A_{\eta}\,e(u_{\eta})) &= 0 & ext{in } D, \ u_{\eta} &= 0 & ext{on } \Gamma_{D}, \ A_{\eta}\,e(u_{\eta})\,n &= g & ext{on } \Gamma_{N}, \ A_{\eta}\,e(u_{\eta})\,n &= 0 & ext{on } \partial D \setminus (\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}), \end{aligned}$$
 $egin{aligned} A_{\eta}(x) &= \left\{ egin{aligned} A & ext{if } x \in \Omega, \ \eta A & ext{otherwise}. \end{aligned}
ight.$

The ersatz material approximation (II)

We may as well use a smoothed version $\widetilde{A_{\eta}}$ of A_{η} .



$$\begin{cases} -\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma. \end{cases}$$

$$\begin{cases} -\mathrm{div}(\widetilde{A_{\eta}}e(u_{\eta})) = 0 \ \text{in } D, \\ u_{\eta} = 0 & \text{on } \Gamma_{D}, \\ \widetilde{A_{\eta}}e(u_{\eta})n = g & \text{on } \Gamma_{N}, \\ \widetilde{A_{\eta}}e(u_{\eta})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}), \end{cases}$$

$$\widetilde{A_{\eta}}(x) = \text{(smoothed)} \left\{ \begin{array}{ll} A & \text{if } x \in \Omega, \\ \eta A & \text{otherwise.} \end{array} \right.$$

The ersatz material approximation (III)

• A quantity of interest $J(\Omega)$, depending on Ω via u_{Ω} can be given an approximate counterpart by the same token.

Example: The shape functional

$$J(\Omega) = \int_{\Omega} j(u_{\Omega}) dx$$
 where $j : \mathbb{R}^d \to \mathbb{R}$ is smooth,

can be approximated as

$$J(\Omega) \approx \int_D j(x, u_\eta(x)) dx$$
, up to modifying j .

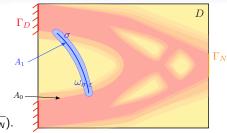
• In the same spirit, we aim to construct an ersatz material approximation

$$J_{\sigma}(\varepsilon) \approx J(\Omega_{\sigma,\varepsilon})$$
, where $\Omega_{\sigma,\varepsilon} := \Omega \cup \omega_{\sigma,\varepsilon}$.

The ersatz material approximation: perturbed setting (I)

- Let $A_0(x)$ be a smooth Hooke's law in D.
- The "background" displacement u_0 is the $H^1(D)^d$ solution to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A_0e(u_0))=0 & \text{in } D, \\ u_0=0 & \text{on } \Gamma_D, & A_0 - I_0 \\ A_0e(u_0)n=g & \text{on } \Gamma_N, \\ A_0e(u_0)n=0 & \text{on } \partial D \setminus (\overline{\Gamma_D} \cup \overline{\Gamma_N}). \end{array} \right.$$



• In a perturbed situation, the properties $A_0(x)$ are traded for $A_1(x)$ in a tube

$$\omega_{\sigma,\varepsilon} := \{ x \in D, \ d(x,\sigma) < \varepsilon \}$$

with "small" thickness $\varepsilon \ll 1$ around a curve σ .

• The perturbed elastic displacement u_{ε} is the solution to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A_{\varepsilon}e(u_{\varepsilon})) = 0 & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \Gamma_D, \\ A_{\varepsilon}e(u_{\varepsilon})n = g & \text{on } \Gamma_N, \\ A_{\varepsilon}e(u_{\varepsilon})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_D} \cup \overline{\Gamma_N}), \end{array} \right. \text{ where } A_{\varepsilon}(x) = \left\{ \begin{array}{ll} A_1(x) & \text{if } x \in \omega_{\sigma,\varepsilon}, \\ A_0(x) & \text{otherwise.} \end{array} \right.$$

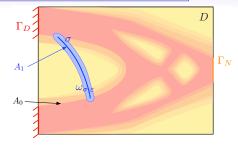
The ersatz material approximation: perturbed setting (II)

The perturbed version of a quantity

$$J_\sigma(0):=\int_D j(u_0)\,\mathrm{d}x$$

reads

$$J_{\sigma}(\varepsilon) = \int_{D} j(u_{\varepsilon}) dx.$$



• Intuitively, the asymptotic expansion of $J'_{\sigma}(0)$,

$$J_{\sigma}(\varepsilon) = J_{\sigma}(0) + \varepsilon^{d-1} J_{\sigma}'(0) + o(\varepsilon^{d-1})$$

measures the sensitivity of J_{σ} with respect to changing material properties from A_0 to A_1 into the thin tube $\omega_{\sigma,\varepsilon}$.

• When A_0 is obtained from $\Omega \subset D$ by the ersatz material approximation, i.e.

$$A_0(x) = \begin{cases} A & \text{if } x \in \Omega, \\ \eta A & \text{if } x \in D \setminus \Omega, \end{cases}$$

 $J'_{\sigma}(0)$ is an approximate sensitivity of $J(\Omega)$ with respect to the addition of $\omega_{\sigma,\varepsilon}$.

- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

The derivative formula in 2d

Proposition 1.

The function $J_{\sigma}(\varepsilon) := \int_{D} j(u_{\varepsilon}) dx$ is differentiable at 0, and its derivative reads:

$$J'_{\sigma}(0) = \int_{\sigma} \mathcal{M}(y)e(p_0) : e(u_0) d\ell(y),$$

where the polarization tensor $\mathcal{M}(y)$ is defined for $y \in \sigma$ by

$$\mathcal{M}(y)e = \alpha_{\mathcal{T}}(y)\mathrm{tr}(e)\mathrm{I} + \beta_{\mathcal{T}}(y)e + \gamma_{\mathcal{T}}(y)(e\tau \cdot \tau)\tau \otimes \tau + \delta_{\mathcal{T}}(y)(en \cdot n)n \otimes n.$$

The coefficients $\alpha_T, \beta_T, \gamma_T$ and δ_T are given by:

$$\alpha_T = 2(\lambda_1 - \lambda_0) \frac{\lambda_0 + 2\mu_0}{\lambda_1 + 2\mu_1}, \ \beta_T = 4(\mu_1 - \mu_0) \frac{\mu_0}{\mu_1},$$

$$\gamma_{\tau} = 4(\mu_{1} - \mu_{0}) \left(\frac{2\lambda_{1} + 2\mu_{1} - \lambda_{0}}{\lambda_{1} + 2\mu_{1}} - \frac{\mu_{0}}{\mu_{1}} \right), \ \delta_{\tau} = 4(\mu_{1} - \mu_{0}) \frac{\mu_{1}\lambda_{0} - \mu_{0}\lambda_{1}}{\mu_{1}(\lambda_{1} + 2\mu_{1})}.$$

and the adjoint state p_0 is the unique solution in $H^1(D)^2$ to the system:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A_0e(p_0)) = -j'(u_0) & \text{in } D, \\ p_0 = 0 & \text{on } \Gamma_D, \\ A_0e(p_0)n = 0 & \text{on } \partial D \setminus \overline{\Gamma_D}. \end{array} \right.$$

The derivative formula

- A rigorous proof of this 2d formula is provided in [BeFran].
- A similar, albeit much more intricate formula holds in 3d, without rigorous proof to the best of our knowledge.
- In [Da2], we propose a heuristic energy method to achieve these calculations, even in 3d.

© C. Dapogny, The topological ligament in shape optimization: a connection with thin tubular inhomogeneities, submitted, (2020).

E. Beretta and E. Francini, An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities, SIAM J. Math. Anal., 38 (2006), pp. 1249–1261.

- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

The general strategy to add a tube to a shape

In order to graft a tube $\omega_{\sigma,\varepsilon}$ to a fixed shape $\Omega \subset D$,

- We convert the elasticity problem on Ω into a two-phase elasticity problem in D thanks to the ersatz material method.
- We calculate the ersatz material approximations u_{η} , p_{η} of u_{Ω} , p_{Ω} .
- $oldsymbol{\circ}$ For "many" curve configurations σ (segments), we calculate the quantity

$$J_{\sigma}'(0) = \int_{\sigma} \mathcal{M}e(u_{\Omega}) : e(p_{\Omega}) d\ell,$$

measuring the sensitivity of adding a tube (a bar) with direction σ to Ω .

① The curve σ realizing the largest negative value of $J'_{\sigma}(0)$ yields the "optimal" tube (bar) to be added to Ω .

- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

Inserting a bar in the course of shape evolution (I)

• We minimize the compliance of a shape Ω under a volume constraint:

$$\min\limits_{\Omega} C(\Omega) ext{ s.t. } \operatorname{Vol}(\Omega) \leq V_{\mathcal{T}},$$

where
$$C(\Omega):=\int_{\Omega}Ae(u_{\Omega}):e(u_{\Omega})\,\mathrm{d}x,$$
 and $\mathrm{Vol}(\Omega)=\int_{\Omega}\mathrm{d}x.$

- We use the level set based mesh evolution method [AdDaFre].
- Like with any boundary variation algorithm, the optimized shape may fall into local minima with trivial topologies.

To remedy this, we periodically interrupt the optimization process to insert bars.

Inserting a bar in the course of shape evolution (II)

The "'benchmark" 2d cantilever test case is considered.

• The compliance of the shape Ω is minimized:

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

- A constraint is imposed on its volume $Vol(\Omega)$.
- Every now and then, a bar is added to Ω at an "optimal location".

Inserting a bar in the course of shape evolution (III)

The optimization of a 3d bridge Ω is considered.

• We minimize the compliance of Ω

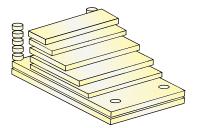
$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

- A volume constraint is enforced.
- Every now and then, a bar is added to Ω at an "optimal location".

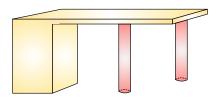
- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

Optimization of supports in additive manufacturing (I)

- Additive manufacturing processes feature a layer by layer assembly of the shape Ω .
- Most of these technologies experience difficulties dealing with overhang regions.
- One remedy is to erect a scaffold structure S with Ω , such that:
 - The compliance of the total structure $\Omega \cup S$ has minimum value.
 - S has minimum volume and... it does not itself present overhangs!
- To achieve this, we propose to
 - **1** Incrementally add vertical pillars to Ω , made of a different material.
 - @ (Optionally) Optimize S further via a more "classical" algorithm.



Layer by layer construction of a structure by additive manufacturing



Optimization of supports in additive manufacturing (II)

The scaffold structure S of a fixed MBB beam Ω is optimized.

• We minimize the compliance of the total structure $\Omega \cup S$

$$C(S) := \int_{\Omega \cup S} Ae(u_{\Omega \cup S}) : e(u_{\Omega \cup S}) dx.$$

• A constraint is imposed on the volume Vol(S) of supports.

7 / 35

Optimization of supports in additive manufacturing (III)

The scaffold structure S of a fixed 3d chair Ω is optimized.

• The compliance of the total structure $\Omega \cup S$ is minimized

$$C(S) = \int_{\Omega \cup S} Ae(u_{\Omega \cup S}) : e(u_{\Omega \cup S}) dx.$$

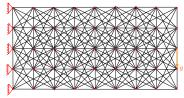
• A constraint on the volume Vol(S) of supports is enforced.

- Foreword
- Methodology
 - From thin tubular inhomogeneities to topological ligaments
 - Thin tubular asymptotic expansion
- Applications
 - Inserting a bar in the course of shape evolution
 - Optimization of the scaffold structure in additive manufacturing
 - A "clever" initialization for truss structures

A "clever" initialization for truss structures (I)

- Truss structures are collections of bars.
- Many truss optimization methods rely on the ground structure approach: an initial, dense network of bars is iteratively decimated.
- We propose instead to start from void and
 - Incrementally add bars to the structure.
 - Optionally) Take on the optimization with a more "classical" boundary-variation algorithm.

Example of a truss structure.



Initialization of a truss algorithm by the ground structure approach.

A "clever" initialization for truss structures (II)

We consider the optimization of the shape of a 2d crane Ω .

• The compliance is minimized

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

A volume constraint is enforced.

1 / 35

A "clever" initialization for truss structures (III)

The shape of a 3d mast Ω is optimized.

• The compliance is minimized

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

• A constraint is imposed on the volume of Ω .

2 / 35

Thank you!

Thank you for your attention!

References I

- [AdDaFre] G. Allaire, C. Dapogny, and P. Frey, *Shape optimization with a level set based mesh evolution method*, Comput Methods Appl Mech Eng, 282 (2014), pp. 22–53.
- [BeFran] E. Beretta and E. Francini, An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities, SIAM journal on mathematical analysis, 38 (2006), pp. 1249–1261.
- [CapVo] Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, ESAIM: Mathematical Modelling and Numerical Analysis, 37(1), (2003), pp. 159–173.
- [Da1] C. Dapogny, A connection between topological ligaments in shape optimization and thin tubular inhomogeneities, Comptes Rendus. Mathématique, 358(2), (2020), pp. 119–127.
- [Da2] C. Dapogny, The topological ligament in shape optimization: a connection with thin tubular inhomogeneities, submitted, (2020), Hal preprint: https://hal.archives-ouvertes.fr/hal-02924929/.

References II

[HenPi] A. Henrot and M. Pierre, *Shape Variation and Optimization*, EMS Tracts in Mathematics Vol. 28, 2018.

[NaSo] S. Nazarov and J. Sokolowski, *The topological derivative of the dirichlet integral due to formation of a thin ligament*, Siberian Mathematical Journal, 45 (2004), pp. 341–355.

[NoSo] A. A. Novotny and J. Sokołowski, *Topological derivatives in shape optimization*, Springer Science & Business Media, 2012.