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1. Introduction

Asymptotic expansions of the voltage potential in terms of the “radius” ε of a diametrically small (or
several diametrically small) material inhomogeneity(ies) are by now quite well known [4, 11]. Let ωε denote
the inhomogeneity and let 0 < aε <∞ denote the conductivity inside the inhomogeneity. The potential uε
converges (in the far field) to a limit “background” potential u0, which is independent of the conductivity aε;
this convergence (and for that matter the approximation rate of any finite number of terms in the asymtotic
expansion) is uniform with respect to aε [21].
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As was shown in [10], the existence of the first two terms of the asymptotic expansion carries over to a
situation much more general than that of a finite collection of diametrically small inhomogeneities, namely
that of an arbitrary set ωε whose Lebesgue measure converges to zero. The convergence statement here is
modulo the extraction of a subsequence, and so it is really a compactness result. Furthermore the convergence
is not generally uniform with respect to the inhomogeneity conductivity aε.

Thin inhomogeneities, whose limit set is a smooth, codimension 1 manifold, are indeed examples of
inhomogeneities for which the convergence to the background potential u0 or the standard expansion cannot
be valid uniformly in aε. Indeed, by taking aε close to 0 or to ∞ one obtains either a nearly homogeneous
Neumann condition or nearly constant Dirichlet condition at the boundary ∂ωε of the inhomogeneity. This
boundary, however, does not shrink to a single point as ε → 0, as is the case when the inhomogeneity is of
small radius, but rather it “converges” to a codimension 1 manifold, σ, which has positive capacity. Neither
the problem with homogeneous Neumann boundary condition nor the one with constant Dirichlet condition
on σ has u0 as its solution; consequently, the convergence of uε towards u0 cannot take place uniformly in
aε.

The purpose of this paper is to find a “simple” replacement for u0, say u0
ε, with the properties that:

(1) u0
ε may be (simply) calculated from the limiting domain Ω \ σ, the boundary data on ∂Ω, and the

right hand side.
(2) u0

ε depends on ε and aε through its boundary conditions on σ,
(3) uε − u0

ε converges to 0 uniformly in aε, as ε tends to 0.

Such a convergence result is useful for theoretical as well as for practical purposes:

• For theoretical purposes, it easily allows one to identify the (ε independent) limit of the potential
uε, when the behavior of aε is more precisely known.

• For numerical purposes, it allows to trade a problem posed on a very thin domain, which may be
difficult to simulate due to the requirements of a very small mesh size, for a problem posed on a
fixed domain with a single additional interphase boundary condition; see the numerical experiments
in [22].

We also briefly discuss the derivation of the next term in a “uniform” asymptotic expansion of uε. From a
practical point of view, knowledge of the first two terms would give a very effective tool for the determination
of ωε from the knowledge of far field data of uε, in a fashion that would work independently of the conductivity
aε; see [3] for the description of such a reconstruction algorithm in the context where the conductivity inside
the inhomogeneity is constant and does not depend on ε: aε = a, where 0 < a <∞.

There are other studies of asymptotic expansions, specifically related to thin inhomogeneities. In [7], the
authors establish a first-order asymptotic expansion of uε when the conductivity coefficient aε is independent
of ε; they consider both the case of a closed, and an open curve σ as far as the limiting set of the inhomogeneity
is concerned. They rely on very sharp regularity estimates for uε near the boundary of the inhomogeneity; this
analysis is carried over to the Helmholtz equation in [6]. In [5], a (closed) thin conductivity inhomogeneity is
considered and analyzed in the case where the coefficient aε degenerates to 0 as ε→ 0, using Γ-convergence
techniques. This situation is also investigated in [1] in the context of the minimization of non linear energy
functionals, and in [9] in a situation where the boundary of the inhomogeneity is oscillating. In [22], the
resistive limit aε/ε → 0 is considered, a case of particular relevance as an approximation to the behavior
of the membrane of a biological cell. In this very particular situation, the authors establish the existence
of a limiting potential. The analysis is very different from the one presented here and relies on matched
asymptotic expansions in all three subdomains: the interior region, the membrane, and the exterior region.
It seems difficult to extend such an analysis to the general case studied here.

The technique we use here to verify the uniform approximation property of u0
ε estimates the norm distance

between uε and u0
ε in terms of the gap between the corresponding energies, using both the primal and dual

formulation. This technique goes back to at least [20]. It has the additional nice feature that it only relies
on uniform regularity estimates for the approximate solution u0

ε, not for uε.

2. Preliminaries and main notations

2.1. Setting of the problem.
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Let Ω ⊂ R2 be a bounded domain with smooth boundary, and σ be a closed C2,α curve, included in Ω and
lying at positive distance from ∂Ω. The closed curve σ divides Ω into two subdomains Ω− and Ω+. Ω− (resp.
Ω+) denotes the subdomain interior (resp. exterior) to the curve σ, and unless otherwise specified, n stands
for the normal vector to σ, pointing outward from Ω−. For any subset V ⊂ Ω we denote V ± := V ∩ Ω±

(remark that, with this notation, ∂V ± 6= ∂(V ±)). If u is any function defined on Ω, we denote by u± its
restriction to Ω±. If u+ and u− have traces u+|σ and u−|σ on σ, we denote by [u] := u+|σ−u−|σ the jump
of u across σ. Moreover, when u is sufficiently regular, we denote by

∂u±

∂n
(x) = lim

t→0
∇u(x± tn(x)) · n(x)

the exterior and interior normal components of ∇u at x ∈ σ. The associated normal jump across σ is
denoted by

[
∂u
∂n

]
.

Except for the thin inhomogeneity the domain Ω is occupied by a conductive material, with conductivity
1. The thin inhomogeneity (with mid-surface σ, and width 2ε; see Figure 1) is

ωε := {x+ tn(x), x ∈ σ, t ∈ (−ε, ε)} ;

and it has conductivity aε. The conductivity γε in the entire domain is therefore given by

(2.1) γε(x) =

{
1 if x ∈ Ω \ ωε,
aε if x ∈ ωε.

We assume that aε ∈ (0,∞) is a scalar constant, but this constant may change with ε. In particular, aε may
go to 0 or ∞ as ε→ 0.

A potential ϕ ∈ H1/2(∂Ω) is applied to ∂Ω, and Ω has a charge distribution f ∈ L2(Ω). The electric
potential uε in Ω is the solution to

(2.2)

{
−div(γε∇uε) = f in Ω ,

uε = ϕ on ∂Ω .

It is well-known that under the above hypotheses, the system (2.2) has a unique solution uε ∈ H1(Ω). The
following notations will prove useful

• For any open subset U ⊂ R2, L2
0(U) denotes the subspace of L2(U) composed of functions u such

that
∫
U
u dx = 0. There is a natural mapping L2(U) 3 u 7→

(
u− 1

|U |
∫
U
u dx

)
∈ L2

0(U). By a small

abuse of notation, for any function u ∈ L2(U), we shall write:

||u||L2
0(U)=

∣∣∣∣∣∣∣∣u− 1

|U |

∫
U

u dx

∣∣∣∣∣∣∣∣
L2(U)

.

• For sufficiently small δ > 0, Fδ denotes the following closed subspace of L2(Ω):

Fδ =

{
f ∈ L2(Ω), supp(f) ⊂ Ω \ ωδ ,

∫
Ω−

f dx = 0

}
.

This Hilbert space may also be identified as Fδ = L2(Ω+ \ ωδ)× L2
0(Ω− \ ωδ).

The goal of this paper is to understand the uniform asymptotic behavior of the potential uε, as the width
2ε of the thin inhomogeneity goes to 0, – uniform, that is, with respect to the conductivity aε inside the
inclusion. More precisely, we will derive an approximate problem posed on the fixed domain Ω \ σ (with
boundary conditions on σ, depending on ε and aε), whose solution u0

ε is uniformly close to uε as ε → 0,
independently of the behavior of the sequence aε.

Remark 1. Let us briefly comment on the hypotheses of the above model and the possible generalizations
of our results.

• We assume that the background conductivity γ0, that is, the conductivity outside the inhomogeneity,
is equal to 1. This is only a matter of convenience, and it would be straightforward to replace it by
a smooth, variable conductivity distribution γ0(x), with 0 < c0 < γ0(x) < c1.

• We have chosen for simplicity to restrict our analysis to the case of two space dimensions, but it
carries over to thin inhomogeneities in higher dimension as well; the curve σ then gets replaced by
a closed, smooth (codimension 1) hypersurface.
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Figure 1. Setting of the thin inhomogeneity problem.

• We also assume that aε is constant inside ωε. As we will show, the limit behavior of uε is completely
different depending on whether aε degenerates to 0 or to ∞ as ε→ 0 (and at what rate). We do not
currently know how to (rigorously) generalize the analysis presented here to the situation where aε
is variable inside ωε and degenerates to 0 on some parts of ωε and to ∞ on other parts.

2.2. Some facts about distances and projections.

In this subsection, we present some material about distances and projections, as well as a version of the
coarea formula that will prove very useful when calculating integrals on a set of the form ωε. The context
is the same as in Section 2.1: σ is a closed curve of class C2,α defining two subdomains Ω−,Ω+ of a larger
(smooth) bounded domain Ω ⊂ R2. For any x ∈ Ω, let d(x, σ) := miny∈σ d(x, y) be the Euclidean distance
from x to σ. The signed distance function dΩ− to the interior subdomain Ω− is defined as:

∀x ∈ Ω, dΩ−(x) =

 −d(x, σ) if x ∈ Ω−

0 if x ∈ σ
d(x, σ) if x ∈ Ω+

.

It is well-known that the projection mapping

pσ : x 7→ the unique y ∈ σ s.t. d(x, y) = d(x, σ)

is well-defined on a sufficiently small tubular neighborhood ωδ of σ; see e.g. [18], prop 5.4.14; the maximum
thickness of such a neighborhood depends on the curvature of σ. In the remainder of this note, we shall
assume that

(2.3) ω1 ⊂ Ω, and pσ is well-defined on ω1 .

This hypothesis is only a matter of scaling, and all the analysis adapts mutatis mutandis to the general case.
Properties (2.3) allow us to define an extension of the normal vector field n : σ → S1 to the whole ω1 as:
n(x) := n(pσ(x)); other quantities which are intrinsically defined on σ can be extended likewise. Thus, for
any point x ∈ ω1, we shall denote by κ(x) the curvature of σ at the point pσ(x).

The derivatives of dΩ− and pσ are (see e.g. [2]):

(2.4)

∇dΩ−(x) = n(x), ∇2(dΩ−)(x) =

(
κ(x)

1+κ(x)dΩ− (x) 0

0 0

)
,

∇pσ(x) =

( 1
1+κ(x)dΩ− (x) 0

0 0

)
,
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where the above matrix identities are expressed in the orthonormal basis (τ(x), n(x)) of R2. Here τ denotes
the 90 degree clockwise rotate of n(x), in other words the extension of a smooth tangent field on σ, and ∇2u
stands for the Hessian matrix of a function u.

These observations, together with the coarea formula [12] yield:

Proposition 1. Let g ∈ L1(Ω). Then,∫
ωε

g dx =

∫
σ

∫
p−1
σ (y)∩ωε

g(z)(1 + κ(y)dΩ−(z)) dµ1(z) ds(y) , ε ≤ 1 ,

where dµ1 is the one-dimensional Hausdorff measure on the pre-images p−1
σ (y)∩ωε, and ds(y) is the Lebesgue

measure on the codimension 1 subset σ.

Remark 2. This formula may seem ill-defined at first glance, since g being only integrable over Ω, it is
a priori not defined on all the one-dimensional sets p−1

σ (y), y ∈ σ. However, it turns out to be defined on
almost every such set (see [15], §3.4.3, Theorem 2), and that is sufficient.

As explained above, the normal vector field n and the tangent vector field τ on σ can be extended as
orthonormal vector fields to a tubular neighborhood of σ. The coordinates (ξ · τ, ξ · n) of a vector ξ in this
basis will be denoted (ξτ , ξn).

It is convenient to express the two-dimensional divergence operator in the local basis (τ, n).

Lemma 2. Let ξ be a vector field of class C1 defined on a tubular neighborhood of σ. Then,

div(ξ) =
∂

∂τ
(ξτ ) +

∂

∂n
(ξn) +

κ

1 + κdΩ−
ξn .

Proof. We calculate
∂
∂τ (ξτ ) = ∇(ξ · τ) · τ

=
(
∇ξT τ +∇τT ξ

)
· τ

= (∇ξ τ) · τ + (∇τ τ) · ξ ,

and similarly, ∂
∂n (ξn) = (∇ξ n) · n. For the latter identity, we relied on the fact that ∇n n = ∇nTn = 0

(which follows, e.g. from (2.4)). Since div(ξ) = tr(∇ξ) can be evaluated in any orthonormal basis,

(2.5)
div(ξ) = (∇ξ τ) · τ + (∇ξ n) · n

= ∂
∂τ (ξ · τ) + ∂

∂n (ξ · n)− (∇τ τ) · ξ .

By differentiation of τ · τ = 1, one obtains (∇τ τ) · τ = (∇τT τ) · τ = 0. Similarly, by differentiation of
n · τ = 0, and use of (2.4), one obtains

(∇τ τ) · n = (∇τT n) · τ = −(∇nT τ) · τ = − κ

1 + κdΩ−
.

The desired result follows from a combination of these two observations with (2.5). �

Remark 3. Arguments similar to those of the last proof reveal that

∂2g

∂τ∂n
=

∂2g

∂n∂τ
+

κ

1 + κdΩ−

∂g

∂τ
,

for any function g of class C2 on a neighborhood of σ. Thus, for any such function, Lemma 2 allows us to
conclude that the vector field − ∂g

∂n τ + ∂g
∂τ n is divergence-free.

3. A general argument to estimate the difference between energy minimizers

In this section we introduce our main tool for assessing the convergence of minimizers of variational
problems, defined on possibly varying domains. We also present the special considerations required to apply
this tool to inhomogeneous Dirichlet problems, which are of most relevance to the present studies.
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3.1. An energy lemma.

The following lemma may be viewed as a generalization of a rather standard fact about the difference
between minimizers of quadratic functionals.

Lemma 3. Let Vε,Wε be two families of Hilbert spaces, and let H be another Hilbert space, which continuosly
contains all the Vε and Wε. Consider also aε : Vε×Vε → R and bε : Wε×Wε → R two families of symmetric
bilinear forms that are continuous and coercive. For any ` ∈ H ′, define the energy functionals Eε and Fε
(whose dependence on ` is omitted) by

∀v ∈ Vε, Eε(v) =
1

2
aε(v, v)− `(v) ,

∀w ∈Wε, Fε(w) =
1

2
bε(w,w)− `(w) .

Eε and Fε admit unique minimizers v`ε ∈ Vε, w
`
ε ∈ Wε, due to the usual Lax-Milgram theory. The gap

between v`ε and w`ε can be controlled in terms of the gap between the corresponding energies as follows

(3.1) sup
||`||H′≤1

||v`ε − w`ε||H ≤ 4 sup
||`||H′≤1

|Eε(v`ε)− Fε(w`ε)| .

Proof. Let ` be an arbitrary linear form in H ′. By the standard Lax-Milgram theory, we know that v`ε and
w`ε are characterized by the fact that

(3.2) ∀v ∈ Vε, aε(v`ε, v) = `(v), ∀w ∈Wε, bε(w
`
ε, w) = `(w) .

This in particular implies that

(3.3) Eε(v
`
ε) = −1

2
`(v`ε), Fε(w

`
ε) = −1

2
`(w`ε) .

Consequently, for any ` ∈ H ′, one has

(3.4) |`(v`ε − w`ε)|= 2|Eε(v`ε)− Fε(w`ε)| .
Now, define the bilinear form q : H ′ ×H ′ → R by

∀`1, `2 ∈ H ′, q(`1, `2) = `1(v`2ε − w`2ε ) .

Using (3.2) we obtain that

q(`1, `2) = aε(v
`1
ε , v

`2
ε )− bε(w`1ε , w`2ε ) ,

from which it is clear that q is symmetric. We are thus in position to use the polarization identity for q:

q(`1, `2) =
1

4
(q(`1 + `2, `1 + `2)− q(`1 − `2, `1 − `2)) ,

to conclude that
sup

||`1||H′≤1,

||`2||H′≤1

|q(`1, `2)| ≤ 2 sup
||`||H′≤1

|q(`, `)| .

In combination with (3.4) this last inequality yields

sup
||`2||H′≤1

sup
||`1||H′≤1

|`1(v`2ε − w`2ε )| ≤ 4 sup
||`||H′≤1

|Eε(v`ε)− Fε(w`ε)| ,

which immediately gives

sup
||`||H′≤1

||v`ε − w`ε||H ≤ 4 sup
||`||H′≤1

|Eε(v`ε)− Fε(w`ε)| .

This completes the proof of the lemma. �

Remark 4. Suppose the spaces Vε and Wε are only “weakly” contained in H, in the sense that there exist
linear continuous mappings Pε : Vε → H, and Qε : Wε → H through which they may be identified with
subspaces of H (we might even allow for the possibility that these mappings are not injective). Change the
quadratic functionals slightly to accommodate for these mappings:

∀v ∈ Vε, Eε(v) =
1

2
aε(v, v)− P ∗ε `(v) ,
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∀w ∈Wε, Fε(w) =
1

2
bε(w,w)−Q∗ε`(w) ,

with P ∗ε and Q∗ε being the adjoints of Pε and Qε, respectively. The equivalent of Lemma 3 now asserts that

(3.5) sup
||`||H′≤1

||Pεv`ε −Qεw`ε||H ≤ 4 sup
||`||H′≤1

|Eε(v`ε)− Fε(w`ε)| .

Remark 5. Some comments are in order about the meaning of Lemma 3, and the way we intend to use
it. Our purpose is to prove an estimate for the difference (vε − wε) between the minimizers vε ∈ Vε, and
wε ∈ Wε of two energy functionals Eε, and Fε. In the applications ahead, vε and wε are solutions to some
elliptic PDEs whose coefficients, or domains of definition, depend on ε. Of course, such an estimate can only
be realized in terms of the norm ||·||H of a “larger” space H, which “contains” all the Vε,Wε. Lemma 3
states that such an estimate can be obtained in terms of the difference between the corresponding minimized
energies - a quantity which should in principle be simpler to compute. To be more precise such an estimate
may be obtained provided we are able to calculate the energy differences in a slightly more general context,
namely in the case when a (common) additional, and rather arbitrary linear term ` ∈ H ′ has been added
to the energies Eε, Fε. Somehow, this additional linear term plays the role of a “sentinel”, and is meant to
“observe” functions in Vε and Wε, or at least the features of these that are expressed in the space H through
which they are “seen”.

3.2. Extension of Lemma 3 to the case of inhomogeneous Dirichlet boundary conditions.

The purpose of this subsection is to describe the adjustments needed to the framework of the previous
lemma when dealing with inhomogeneous Dirichlet boundary conditions.

3.2.1. A short remark about minimization of functionals over sets of functions satisfying an inhomogeneous
Dirichlet boundary condition.

Let Ω ⊂ R2 be a bounded Lipschitz domain, and V be a Hilbert space of functions over Ω, such that the
trace mapping

V 3 u 7→ u|∂Ω∈ H
1
2 (∂Ω)

is well-defined, continuous, and has a continuous right inverse (e.g. V = H1(Ω)). Let V0 = {u ∈ V, v = 0 on ∂Ω}
be the associated homogeneous space. Let a : V ×V → R be a continuous and coercive bilinear form over V ,
and ` : V → R be a continuous linear form over V . We are interested in the following minimization problem:

(3.6) min
v∈V

v=ϕ on ∂Ω

E(v), E(v) :=
1

2
a(v, v)− `(v) ,

the solution, u, of which solves the variational problem

(3.7)

{
a(u, v) = `(v) for all v ∈ V0

u = ϕ on ∂Ω
.

As is well known, (3.7) (and thus the minimization problem (3.6)) has a unique solution u = û + uϕ ∈ V ,
where uϕ ∈ V is a right inverse of ϕ for the trace operator (i.e. uϕ = ϕ on ∂Ω), and û ∈ V0 is defined by:

(3.8) ∀v ∈ V0, a(û, v) = `(v)− a(uϕ, v) .

The existence and uniqueness of û are straightforward consequences of the Lax-Milgram Theorem. From a
slightly different point of view, û can also be regarded as the unique solution to the following minimization
problem:

F (û) = min
v∈V0

F (v), F (v) :=
1

2
a(v, v)− `(v) + a(uϕ, v) .

By using (3.8), we actually have

(3.9) F (û) = −1

2
a(û, û) = −1

2
`(û) +

1

2
a(uϕ, û) .
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We return to (3.6). As a straightforward consequence of the definition of uϕ,

min
v∈V

v=ϕ on ∂Ω

E(v) = min
v∈V0

E0(v), where E0(v) :=
1

2
a(v, v)− `(v) + a(uϕ, v) +

1

2
a(uϕ, uϕ)− `(uϕ).

Note that the quantity E0(v) differs from F (v) by a term which is independent of v. Owing to the previous
considerations, E0 has a unique minimum point v = û, and

min
v∈V

v=ϕ on ∂Ω

E(v) = 1
2a(û, û) + a(uϕ, û)− `(û) + 1

2a(uϕ, uϕ)− `(uϕ)

= 1
2a(u, u)− `(u) ,

or, by use of (3.9),

(3.10)
E(u) = min

v∈V
v=ϕ on ∂Ω

E(v) = − 1
2`(û) + 1

2a(uϕ, û) + 1
2a(uϕ, uϕ)− `(uϕ)

= − 1
2`(u) + 1

2a(uϕ, u)− 1
2`(uϕ) .

This last formula is particularly convenient since it is an affine expression of E(u) in terms of u, depending
on the data ` and ϕ of the problem (3.7). It is the equivalent of (3.3) in the context of variational problems
of the form (3.7), posed on affine function spaces.

3.2.2. The energy lemma, the Dirichlet version.

The following result adapts Lemma 3 to the case when inhomogeneous Dirichlet boundary conditions are
considered.

Lemma 4. Let Ω be a bounded domain in R2, and let Vε,Wε be two families of Hilbert spaces of functions
defined on Ω, such that, for any ε > 0, the trace operator

Vε 3 v 7→ v|∂Ω∈ H
1
2 (∂Ω)

is well-defined, continuous, and has a linear continuous right inverse ϕ 7→ vϕ (similarly for Wε with a
mapping ϕ 7→ wϕ). Let H be another Hilbert space, which continuously contains all the Vε and Wε. Denote
also by aε : Vε×Vε → R and bε : Wε×Wε → R two families of symmetric bilinear forms that are continuous
and coercive. For any ϕ ∈ H 1

2 (∂Ω), ` ∈ H ′, consider the minimization problems:

min
v∈Vε

v=ϕ on ∂Ω

Eε(v), Eε(v) =
1

2
aε(v, v)− `(v),

min
w∈Wε

w=ϕ on ∂Ω

Fε(w), Fε(w) =
1

2
bε(w,w)− `(w),

which admit unique minimizers v`,ϕε ∈ Vε, w
`,ϕ
ε ∈ Wε (again, the dependence of Eε, Fε on ` is omitted).

Then, for any s ≥ 1/2, the following estimate holds

(3.11) sup
||`||

H′≤1

||ϕ||Hs(∂Ω)≤1

||v`,ϕε − w`,ϕε ||H ≤ 4 sup
||`||

H′≤1

||ϕ||Hs(∂Ω)≤1

|Eε(v`,ϕε )− Fε(w`,ϕε )|.

Proof. For any elements ϕ ∈ Hs(∂Ω) and ` ∈ H ′, (3.10) implies that

|Eε(v`,ϕε )− Fε(w`,ϕε )|= 1

2
|−`(v`,ϕε − w`,ϕε ) + aε(vϕ, v

`,ϕ
ε )− bε(wϕ, w`,ϕε )− `(vϕ − wϕ)| .

Consider the space H := H ′ ×Hs(∂Ω) equipped with the norm

|||(`, ϕ)|||= max
(
||`||H′ , ||ϕ||Hs(∂Ω)

)
,

and introduce the bilinear form q : H×H → R, defined for (`1, ϕ1), (`2, ϕ2) ∈ H by the expression:

q((`1, ϕ1), (`2, ϕ2)) = −`1(v`2,ϕ2
ε − w`2,ϕ2

ε ) + aε(vϕ1
, v`2,ϕ2
ε )− bε(wϕ1

, w`2,ϕ2
ε )− `2(vϕ1

− wϕ1
) .
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The form q is symmetric. Indeed, introducing v̂`iε := v`i,ϕiε − vϕi and ŵ`iε := w`i,ϕiε − wϕi , one obtains

q((`1, ϕ1), (`2, ϕ2)) = −`1(v̂`2ε − ŵ`2ε ) + aε(vϕ1 , v
`2,ϕ2
ε )− bε(wϕ1 , w

`2,ϕ2
ε )− `1(vϕ2 − wϕ2)− `2(vϕ1 − wϕ1)

= −aε(v`1,ϕ1
ε , v̂`2ε ) + bε(w

`1,ϕ1
ε , ŵ`2ε ) + aε(vϕ1 , v

`2,ϕ2
ε )− bε(wϕ1 , w

`2,ϕ2
ε )

−`1(vϕ2 − wϕ2)− `2(vϕ1 − wϕ1)

= aε(vϕ1 , vϕ2)− aε(v̂`1ε , v̂`2ε )− bε(wϕ1 , wϕ2) + bε(ŵ
`1
ε , ŵ

`2
ε )

−`1(vϕ2
− wϕ2

)− `2(vϕ1
− wϕ1

) .

The polarization identity now yields

sup
|||(`1,ϕ1)|||≤1,

|||(`2,ϕ2)|||≤1

|q((`1, ϕ1), (`2, ϕ2))| ≤ 2 sup
|||(`,ϕ)|||≤1

|q((`, ϕ), (`, ϕ))| ,

and therefore by the same technique as in the proof of Lemma 3

sup
||`||

H′≤1

||ϕ||Hs(∂Ω)≤1

||v`,ϕε − w`,ϕε ||H = sup
|||(`2,ϕ2)|||≤1

sup
||`1||H′≤1

|q((`1, 0), (`2, ϕ2))|

≤ sup
|||(`1,ϕ1)|||≤1,

|||(`2,ϕ2)|||≤1

|q((`1, ϕ1), (`2, ϕ2))|

≤ 2 sup
|||(`,ϕ)|||≤1

|q((`, ϕ)(`, ϕ))|

= 4 sup
||`||

H′≤1

||ϕ||Hs(∂Ω)≤1

|Eε(v`,ϕε )− Fε(w`,ϕε )| .

This is the desired estimate. �

Remark 6.

(1) For the estimates (3.1) and (3.11) of Lemma 3 and Lemma 4, it is sufficient (on the right hand
side) to envoke the supremum for ` belonging to a dense subset of H ′, due to the continuity of the
mappings ` 7→ v`ε, ` 7→ w`ε.

(2) Lemmas 3 and 4 do not generally hold when the energies Eε and Fε contain additional linear terms
cε ∈ V ′ε and dε ∈W ′ε (i.e. contain linear terms from a larger class than H ′)

Eε(v) =
1

2
aε(v, v)− cε(v)− `(v), Fε(w) =

1

2
bε(w,w)− dε(w)− `(w) .

In this case it may still be possible to control the difference ||v`ε − w`ε|| in terms of the difference
|Eε(v`ε)−Fε(w`ε)| between the corresponding energies; however, this control will in general be ‘weaker’,
and may require assumptions that are not so naturally formulated in an abstract framework.

4. Derivation of the 0th order approximation of uε

In this section we formally construct a uniform 0th-order approximation to the solution uε to (2.2). This
approximation u0

ε is, as explained earlier, the solution to a “simpler” problem with the same data f, ϕ, but
posed on a fixed domain. Some of the coefficients of this “simpler” problem depend on ε and aε, and as we
have explained in the introduction this is inevitable. Later, in Section 6, we shall rigorously prove a uniform
approximation estimate for u0

ε. To be more precise at that point we shall prove that there exists a constant
C which only depends on the data Ω, σ, f and ϕ, and not on ε and aε, such that:

||uε − u0
ε||≤ Cε .

The norm ||.||, and the dependence of C on f and ϕ will be specified later.
To construct the approximation u0

ε, we rely on the fact that uε is the minimizer of an energy functional
Eε, and that the flux (γε∇uε) is the maximizer of a dual energy Ecε . We begin with the construction of an
approximate energy E0

ε to Eε, and then we shall search the desired approximation u0
ε as the minimizer of

E0
ε . We also analyze the dual energy Ecε to obtain additional information about the behavior of the flux

(γε∇uε), which we shall need for the proof of the estimate of (uε − u0
ε).

4.1. Asymptotic expansions of the energy functionals associated with uε.
9



4.1.1. Asymptotic expansion of the primal Dirichlet energy.

As is well-known, the solution uε to (2.2) is the unique solution of the minimization problem

(4.1) min
u∈H1(Ω)
u=ϕ on ∂Ω

Eε(u), Eε(u) =
1

2

∫
Ω

γε|∇u|2 dx−
∫

Ω

fu dx .

First, we transform part of this energy expression by means of the mapping Hε : ω1 → ωε, defined by

(4.2) Hε(x) = pσ(x) + εdΩ−(x)n(x) .

A straightforward calculation based on (2.4) yields

(4.3) ∇Hε =

(
1+εκdΩ−
1+κdΩ−

0

0 ε

)
,

where the above matrix is expressed in the local basis (τ, n) of the plane. For any function u ∈ H1(ωε) we
denote by û := u ◦Hε; a change of variables now leads to∫

ωε

|∇u|2 dx =

∫
ω1

(
(det∇Hε)∇H−1

ε (∇H−1
ε )T

)
∇û · ∇û dx

= ε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂û

∂τ

)2

dx+
1

ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂û

∂n

)2

dx .

Using this change of variables, we may now equivalently restate Problem (4.1) as

(4.4) min
(u,v)∈V 0

ε
u=ϕ on ∂Ω

F 0
ε (u, v) ,

where the set V 0
ε is defined as

V 0
ε =

{
(u, v) ∈ H1(Ω \ ωε)×H1(ω1), ∀x ∈ σ, v(x± n(x)) = u(x± εn(x))

}
,

and the rescaled energy F 0
ε is given by

F 0
ε (u, v) =

1

2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v

∂n

)2

dx−
∫

Ω

fu dx .

Obviously, the equalities featured in the above definition of the space V 0
ε are understood in the sense of

traces. We now proceed to formally simplify this problem. Retaining only the leading order contribution in
the definition of the energy functional F 0

ε (and of the space V 0
ε ) we are led to the approximate problem

(4.5) min
(u,v)∈V 0

u=ϕ on ∂Ω

F 0
ε (u, v) ,

where we have introduced the function space

(4.6) V 0 =
{

(u, v) ∈ H1(Ω \ σ)×H1(ω1), s.t. ∀x ∈ σ, v(x± n(x)) = u±(x)
}
,

and the approximate energy

F 0
ε (u, v) =

1

2

∫
Ω\σ
|∇u|2 dx+

εaε
2

∫
ω1

(1 + κdΩ−)

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1

1 + κdΩ−

(
∂v

∂n

)2

dx−
∫

Ω

fu dx .

This problem can be further simplified, by performing the “inner” minimization in v and expressing the
result in terms of u. The Problem (4.5) can thus be rewritten

(4.7) min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

{
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx+G0
ε(u)

}
,

where

(4.8) G0
ε(u) = min

v∈H1(ω1)

v(x+n(x))=u+(x), x∈σ
v(x−n(x))=u−(x), x∈σ

{
εaε
2

∫
ω1

(1 + κdΩ−)

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1

1 + κdΩ−

(
∂v

∂n

)2

dx

}
.
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This problem can be solved in terms of u which would give rise to an explicit expression for G0
ε(u). Before

doing so, we note that the two terms of the energy are of different orders when ε → 0; one might therefore
naturally expect that the behavior of the minimizer v of the previous expression to leading order should

be dictated by the term aε
2ε

∫
ω1

1
1+κdΩ−

(
∂v
∂n

)2
dx . From the Euler-Lagrange equation associated with this

minimization, it follows that v should satisfy

∀w ∈ H1
0 (ω1),

∫
ω1

1

1 + κdΩ−

∂v

∂n

∂w

∂n
dx = 0 .

If we introduce the coarea formula of Proposition 1, this simplifies to

∀w ∈ H1
0 (ω1),

∫
σ

∫ 1

−1

∂v

∂n
(x+ tn(x))

∂w

∂n
(x+ tn(x)) dt ds(x) = 0 .

Choosing a test function w of the form w(x+tn(x)) = φ(x)ψ(t), with arbitrary φ ∈ C∞(σ) and ψ ∈ C∞c (−1, 1),
we now arrive at ∫

σ

φ(x)

∫ 1

−1

d

dt
(v(x+ tn(x)))ψ′(t) dt ds(x) = 0 ,

from which we conclude that for any x ∈ σ, and any function ψ ∈ C∞c (−1, 1),∫ 1

−1

d

dt
(v(x+ tn(x)))ψ′(t) dt = 0 .

As a consequence, for any x ∈ σ, the function t 7→ v(x+tn(x)) is affine. Introducing the boundary conditions
for v (cf. 4.8), we now arrive at

∀x ∈ σ, t ∈ (−1, 1), v(x+ tn(x)) =
t

2
[u](x) +

1

2
(u+(x) + u−(x)) .

Substituting this expression for the minimizer in (4.8) we obtain

G0
ε(u) ≈ εaε

2

∫
ω1

(1 + dΩ−κ)

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1

1 + dΩ−κ

(
∂v

∂n

)2

dx

=
εaε
2

∫
σ

∫ 1

−1

(1 + tκ)2

(
∂v

∂τ
(x+ tn(x))

)2

dt ds(x) +
aε
2ε

∫
σ

∫ 1

−1

(
∂v

∂n
(x+ tn(x))

)2

dt ds(x)

=
εaε
2

∫
σ

∫ 1

−1

(
∂

∂τ
(v(x+ tn(x)))

)2

dt ds(x) +
aε
4ε

∫
σ

(
u+ − u−

)2
ds

=
εaε
8

∫
σ

∫ 1

−1

(
∂u+

∂τ
(x) +

∂u−

∂τ
(x) + t

(
∂u+

∂τ
(x)− ∂u−

∂τ
(x)

))2

dt ds(x) +
aε
4ε

∫
σ

(
u+ − u−

)2
ds ,

where Proposition 1 was used for the first identity. Finally, after integration in t

(4.9) G0
ε(u) ≈ εaε

3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds+

aε
4ε

∫
σ

(
u+ − u−

)2
ds .

Let us draw some conclusions of these formal calculations: (4.7) and (4.9) suggest to search for an
approximation u0

ε to uε by solving

(4.10) min
u∈Vσ

u=ϕ on ∂Ω

E0
ε (u) ,

where Vσ denotes the space

(4.11) Vσ =
{
v ∈ H1(Ω \ σ), v+|σ, v−|σ∈ H1(σ)

}
,

and the approximate energy E0
ε reads:

(4.12)

E0
ε (u) =

1

2

∫
Ω\σ
|∇u|2 dx+

εaε
3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds+

aε
4ε

∫
σ

(
u+ − u−

)2
ds−

∫
Ω

fu dx .
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We also note that according to these calculations the (rescaled) potential (uε ◦Hε), inside the inhomogeneity
ω1, should be approximated by the function v0

ε ∈ H1(ω1), given by

(4.13) ∀x ∈ σ, t ∈ (−1, 1), v0
ε(x+ tn(x)) =

t

2
[u0
ε](x) +

1

2

(
u0+
ε (x) + u0−

ε (x)
)
.

4.1.2. Asymptotic expansion of the dual energy and its maximizer.

Before turning to a rigorous study of the function u0
ε and its distance to uε, we perform in this section a

formal study of the dual energy Ecε corresponding to Eε in the spirit of [19].
The dual energy principle associated with Eε asserts that

min
u∈H1(Ω)
u=ϕ on ∂Ω

Eε(u) = max
ξ∈L2(Ω)2

−div(ξ)=f

Ecε(ξ) ,

with

(4.14) Ecε(ξ) =

∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω

γ−1
ε |ξ|2 dx .

The last extremal problem admits (γε∇uε) as the unique maximal argument. We shall now apply the same
strategy as in the previous subsection, namely, to split the integral 1

2

∫
Ω
γ−1
ε |ξ|2 dx into two, one over Ω \ωε,

the other over ωε, and rescale the second one by using a change of variables. The following lemma provides
a hint of what is the relevant rescaling when the objects in question are vector fields:

Lemma 5. Let U, V be two smooth subdomains of R2, ψ : U → V be a diffeomorphism of class C1; let
ξ ∈ L2(V )2 be a vector field, and f ∈ L2(V ). Then the (weak) divergence of ξ equals f if and only if the

vector field |det(∇ψ)|(∇ψ)
−1

(ξ ◦ ψ) ∈ L2(U)2 has divergence |det(∇ψ)|f ◦ ψ. In particular, ξ is (weakly)

divergence-free if and only if |det(∇ψ)|(∇ψ)
−1

(ξ ◦ ψ) is.

Proof. We have, successively,

div(ξ) = f ⇔ ∀p ∈ C∞c (V ),

∫
V

ξ · ∇p dx = −
∫
V

fp dx

⇔ ∀p ∈ C∞c (V ),

∫
U

|det(∇ψ)|(ξ ◦ ψ) · (∇p) ◦ ψ dx = −
∫
U

|det(∇ψ)|(f ◦ ψ)(p ◦ ψ) dx

⇔ ∀p ∈ C∞c (V ),

∫
U

|det(∇ψ)|(ξ ◦ ψ) ·
(

(∇ψ)
−1
)T
∇(p ◦ ψ) dx = −

∫
U

|det(∇ψ)|(f ◦ ψ)(p ◦ ψ) dx

⇔ ∀p̂ ∈ C∞c (U),

∫
U

|det(∇ψ)|(∇ψ)
−1

(ξ ◦ ψ) · ∇p̂ dx = −
∫
U

|det(∇ψ)|(f ◦ ψ)p̂ dx

⇔ |det(∇ψ)|(∇ψ)
−1

(ξ ◦ ψ) has divergence |det(∇ψ)|f ◦ ψ ,

which proves the desired result. �

Remark 7. In the same way we established Lemma 5 we may establish that if ξ ∈ Hdiv(V ) with ξ · n = g

on ∂V in a weak sense, then |det(∇ψ)|(∇ψ)
−1

(ξ ◦ ψ) · n = g ◦ ψ| ∂∂τ ψ| on ∂U .

For any ξ ∈ L2(Ω)2 ∫
ωε

|ξ|2 dx =

∫
ω1

det(∇Hε)(ξ ◦Hε) · (ξ ◦Hε) dx

=

∫
ω1

(
1

det(∇Hε)
∇HT

ε ∇Hε

)
ξ̂ · ξ̂ dx ,

where we have denoted ξ̂ = det(∇Hε) (∇Hε)
−1

(ξ ◦Hε). We also calculate that∣∣∣∣ ∂∂τ Hε

∣∣∣∣ = |∇Hετ · τ |=
1 + εκdΩ−

1 + κdΩ−
.
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Performing a change of variables on ωε, and using these two identities in combination with (4.3), Lemma 5
and Remark 7 we are led to rewrite the maximization problem for Ecε in the form

(4.15) max
(ξ,η)∈V c0ε
−div(ξ)=f
−div(η)=0

F c0ε (ξ, η) ,

where

(4.16) V c0ε =

{
(ξ, η) ∈ Hdiv(Ω \ ωε)×Hdiv(ω1), ∀x ∈ σ,

1+κ
1+εκηn(x+ n(x)) = ξn(x+ εn(x))
1−κ
1−εκηn(x− n(x)) = ξn(x− εn(x))

}
,

and the functional F c0ε is given by

F c0ε (ξ, η) =

∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω\ωε

|ξ|2 dx− 1

2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx−

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx .

Here we have used that the support of f is away from ωε (since f ∈ Fδ for some fixed δ > 0).

As before, only the leading order terms in the definitions of V c0ε and F c0ε are now retained in the construction
of the approximate extremal problem

(4.17) max
(ξ,η)∈V 0c

−div(ξ)=f
−div(η)=0

F c0ε (ξ, η) .

The approximate set V c0 is
(4.18)

V c0 =

{
(ξ, η) ∈ Hdiv(Ω \ σ)×Hdiv(ω1),

∫
σ

[ξn] = 0 , and ∀x ∈ σ (1 + κ)ηn(x+ n(x)) = ξ+
n (x)

(1− κ)ηn(x− n(x)) = ξ−n (x)

}
,

and the approximate energy F c0ε is

(4.19) F c0ε (ξ, η) =

∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω\σ
|ξ|2 dx− 1

2εaε

∫
ω1

1

1 + κdΩ−
η2
τ dx−

ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx .

Note that we have included the integral constraint
∫
σ
[ξn] = 0 as part of the description of the set V c0; this

additional constraint is a consequence of the interface conditions imposed on ξ and η, and the constraint
div(η) = 0, and so it leaves the maximization unchanged. To simplify (4.17) further, we remark as in Section
4.1.1 that the extremal problem in η can be solved explicitely (at least approximately) in terms of ξ. Indeed,
we rewrite (4.17) as

max
ξ∈Hdiv(Ω\σ)
−div(ξ)=f∫
σ [ξn]=0

{∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω\σ
|ξ|2 dx−Gc0ε (ξ)

}
,

where

(4.20) Gc0ε (ξ) := min
η∈W0c

−div(η)=0

{
1

2εaε

∫
ω1

1

1 + κdΩ−
η2
τ dx+

ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx

}
.

Here the set W c0 is given by

W c0 =

{
η ∈ Hdiv(ω1), ∀x ∈ σ (1 + κ)ηn(x+ n(x)) = ξ+

n (x)
(1− κ)ηn(x− n(x)) = ξ−n (x)

}
.

We then proceed to calculate explicitely the expression (4.20). Intuitively, the minimizer η should be char-
acterized to leading order by the minimization of the term 1

2εaε

∫
ω1

1
1+κdΩ−

η2
τ dx. The associated Euler-

Lagrange equation reads: ∫
ω1

1

1 + κdΩ−
ητζτ dx = 0 ,

for any ζ ∈ Hdiv(ω1) s.t. − div(ζ) = 0 , and (1 ± κ(x))ζn(x ± n(x)) = 0 . Since for any ψ ∈ C∞c (ω1), the

field (−∂ψ∂n ,
∂ψ
∂τ ), is divergence-free (see Remark 3), and has a vanishing normal component (∂ψ∂τ ) on ∂ω1, we

obtain ∫
ω1

1

1 + κdΩ−
ητ
∂ψ

∂n
dx = 0 ;
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and now using Proposition 1,∫
σ

∫ 1

−1

ητ (x+ tn(x))
∂ψ

∂n
(x+ tn(x)) dt ds(x) = 0 .

Due to the same argument as in Section 4.1.1, we conclude that the quantity ητ (x + tn(x)) is independent
of t ∈ (−1, 1), that is, there exists a function a : σ → R such that

∀x ∈ σ, t ∈ (−1, 1), ητ (x+ tn(x)) = a(x) .

We now rely on the divergence-free property of η to complete the calculation. Using Lemma 2, one has, for
any fixed x ∈ σ and t ∈ (−1, 1),

∂ητ
∂τ

(x+ tn(x)) +
∂ηn
∂n

(x+ tn(x)) +
κ(x)

1 + tκ(x)
ηn(x+ tn(x)) = div(η)(x+ tn(x)) = 0 ,

that is, letting z(t) = ηn(x+ tn(x)),

z′(t) +
κ(x)

1 + tκ(x)
z(t) = − 1

1 + tκ(x)

∂

∂τ
(ητ (x+ tn(x))) = − 1

1 + tκ(x)

∂a

∂τ
(x) ,

which is nothing but an ODE for z. A simple calculation now gives that there exists a function b : σ → R
such that

ηn(x+ tn(x)) = − t

1 + tκ(x)

∂a

∂τ
(x) +

b(x)

1 + tκ(x)
.

Owing to the boundary conditions for ηn in the definition of the set W c0, the functions a and b must satisfy

∀x ∈ σ,
{
−∂a∂τ (x) + b(x) = ξ+

n (x),
∂a
∂τ (x) + b(x) = ξ−n (x) ,

which after straightforward manipulations leads to

(4.21)

∂

∂τ
(ητ (x+ tn(x))) = −1

2
[ξn](x), and

ηn(x+ tn(x)) =
1

2

(
t

1 + tκ(x)
[ξn](x) +

1

1 + tκ(x)
(ξ+
n (x) + ξ−n (x))

)
.

These expressions are unfortunately not as explicit as those obtained in Section 4.1.1, and in particular they
do not lead to a similarly simple variational problem for ξ. However, they do (approximately) connect the

exterior and interior components, ξ and η, of the maximizer of F c0ε , which hopefully is close to that of F c0ε .

5. Study of the approximate function u0
ε: uniform energy and regularity estimates

In this section, we study properties of the solution u0
ε to (4.10), which is our candidate for the 0th order

term of the asymptotic expansion of uε.
We assume the data to be such that f ∈ L2(Ω) with support away from σ, and with

∫
Ω−

f dx = 0 – this
is expressed by requiring that f ∈ Fδ for some fixed δ > 0 (see the definitions in Section 2.1); we also assume
that ϕ ∈ H1/2(∂Ω). After first proving existence and uniqueness of the solution u0

ε, our main purpose is to
establish energy and regularity estimates for u0

ε (and its derivatives) which are uniform with respect to ε
and the sequence aε (see Subsections 5.3 and 5.4).

5.1. Existence, uniqueness, and a classical formulation of (4.10).

Let Vσ,0 be the subspace of Vσ - the latter being defined by (4.11) - composed of functions with vanishing
trace on ∂Ω. We define the following semi-norm and norm on Vσ:

|u|2Vσ=

∫
Ω\σ
|∇u|2 dx+

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2
)
ds+

∫
σ

(u+ − u−)2 ds, ||u||2Vσ= ||u||2L2(Ω)+|u|
2
Vσ .
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We note that due to a standard Poincaré inequality the seminorm |·|Vσ is actually a norm on Vσ,0, equivalent
to ||u||2Vσ . The variational formulation associated to (4.10) is

(5.1) Find u0
ε ∈ Vσ with u0

ε|∂Ω= ϕ, such that

∀v ∈ Vσ,0,
∫

Ω\σ
∇u0

ε · ∇v dx+
2εaε

3

∫
σ

(
∂u0+

ε

∂τ

∂v+

∂τ
+
∂u0−

ε

∂τ

∂v−

∂τ
+

1

2

(
∂u0+

ε

∂τ

∂v−

∂τ
+
∂u0−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(u0+
ε − u0−

ε )(v+ − v−) ds =

∫
Ω

fv dx.

Proposition 6. The minimization problem (4.10), or equivalently the variational problem (5.1), has a
unique solution u0

ε ∈ Vσ.

Proof. The existence and uniqueness of u0
ε follow from the standard Lax-Milgram theory – the only point

which deserves comment is the (non uniform in ε and aε) coercivity of the bilinear form involved in (5.1) on
the space Vσ,0. This coercivity follows from the inequality

(5.2) ∀a, b ∈ R,
1

3
(a2 + b2 + ab) =

1

6
(a2 + b2) +

1

6
(a+ b)2 ≥ 1

6
(a2 + b2) ,

and the fact (noted above) that the seminorm |·|Vσ is a norm on Vσ,0, equivalent to ||·||2Vσ . �

Problem (4.10) can be stated in a “classical” form. Indeed, using smooth test functions v ∈ C∞c (Ω \σ) in
(5.1), we first see that u0

ε satisfies

−∆u0
ε = f in Ω \ σ ,

in the sense of distributions. If f and ϕ are smooth then it is fairly easy to prove that u0
ε is actually C2,α up

to the boundary ∂Ω and up to the curve σ, and it solves the equation −∆u0
ε = f in a classical sense. The

proof of regularity is a very standard elliptic regularity argument, that we leave to the reader, however, in
Sections 5.3 and 5.4 (and the appendix) we shall show exactly what a priori estimates hold uniformly in ε
and aε. Now using again (5.1), and an integration by parts, we obtain that

(5.3)

∫
σ

(
−∂u

0+
ε

∂n
v++

∂u0−
ε

∂n
v−
)
ds+

2εaε
3

∫
σ

(
∂u0+

ε

∂τ

∂v+

∂τ
+
∂u0−

ε

∂τ

∂v−

∂τ
+

1

2

(
∂u0+

ε

∂τ

∂v−

∂τ
+
∂u0−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(u0+
ε − u0−

ε )(v+ − v−) ds = 0 ,

for all functions v ∈ Vσ,0. Using this last equality with test functions v ∈ H1(Ω \ σ) such that v = 0 on ∂Ω,
v+ is smooth on σ, and v− = 0 on σ, we obtain that

∂u0+
ε

∂n
+
εaε
3

(
2
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ .

Symmetrically, by exchanging the roles of v− and v+, one obtains

∂u0−
ε

∂n
− εaε

3

(
∂2u0+

ε

∂τ2
+ 2

∂2u0−
ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ .

In summary, u0
ε is a solution to the following problem on Ω \ σ

(5.4)


−∆u0

ε = f in Ω \ σ
u0
ε = ϕ on ∂Ω

∂u0+
ε

∂n + εaε
3

(
2
∂2u0+

ε

∂τ2 +
∂2u0−

ε

∂τ2

)
− aε

2ε (u0+
ε − u0−

ε ) = 0 on σ

∂u0−
ε

∂n −
εaε
3

(
∂2u0+

ε

∂τ2 + 2
∂2u0−

ε

∂τ2

)
− aε

2ε (u0+
ε − u0−

ε ) = 0 on σ

.

Let us also notice that insertion of v ∈ C∞c (Ω), v ≡ 1 in a neighborhood of σ, into (5.3) yields∫
σ

[
∂u0

ε

∂n

]
ds = 0 .
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This identity, in combination with the fact that
∫

Ω−
f ds = 0, gives

(5.5)

∫
σ

∂u0+
ε

∂n
ds =

∫
σ

∂u0−
ε

∂n
ds = 0 .

5.2. The dual energy maximization problem for u0
ε.

In this paper, it will prove convenient on several occasions to use the dual energy maximization principle
for u0

ε. We remind the reader that the hypotheses for f and ϕ are:

f ∈ Fδ =

{
f ∈ L2(Ω), supp(f) ⊂ Ω \ ωδ ,

∫
Ω−

f dx = 0

}
, and ϕ ∈ H 1

2 (∂Ω) .

We write

E0
ε (u0

ε)

= min
u∈Vσ

u=ϕ on ∂Ω


1

2

∫
Ω\σ
|∇u|2 dx+

εaε
3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
aε
4ε

∫
σ

(
u+ − u−

)2
ds−

∫
Ω

fu dx



= min
u∈Vσ

u=ϕ on ∂Ω

max
ξ∈L2(Ω\σ)2

w+,w−,z∈L2(σ)



∫
Ω\σ

ξ · ∇u dx− 1

2

∫
Ω\σ
|ξ|2 dx

+
2εaε

3

∫
σ

(
∂u+

∂τ
w+ +

∂u−

∂τ
w− +

1

2

(
∂u+

∂τ
w− +

∂u−

∂τ
w+

))
ds

−εaε
3

∫
σ

(
w+2 + w−2 + w+w−

)
ds

+
aε
2ε

∫
σ

(
u+ − u−

)
z ds− aε

4ε

∫
σ

z2 ds−
∫

Ω

fu dx



,

where the maximum in the last expression is achieved uniquely at ξ = ∇u, w+ = ∂u+

∂τ , w− = ∂u−

∂τ and
z = (u+ − u−). We can now exchange the min and max in the above formula (see [14]) to rewrite

E0
ε (u0

ε) = max

{∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω\σ
|ξ|2 dx− εaε

3

∫
σ

(
w+2 + w−2 + w+w−

)
ds− aε

4ε

∫
σ

z2 ds

}
.

In this last expression, the maximum is taken over all functions ξ ∈ L2(Ω \σ)2, w+, w−, z ∈ L2(σ) such that

(5.6)

−div(ξ) = f in Ω+ ∪ Ω−,

ξ+ · n+ εaε
3

(
2∂w

+

∂τ + ∂w−

∂τ

)
− aε

2ε z = 0 on σ ,

ξ− · n− εaε
3

(
∂w+

∂τ + 2∂w
−

∂τ

)
− aε

2ε z = 0 on σ .

We note that, in this particular context, the above exchange of the minimum and maximum can be justified
very simply, since the functionals at stake are quadratic and we know explicitly the associated minimizer
and maximizer.

This last maximum is achieved uniquely at ξ = ∇u0
ε, w

+ =
∂u0+

ε

∂τ , w− =
∂u0−

ε

∂τ and z = (u0+
ε − u0−

ε ). We

thus end up with the following convenient alternative expression for the minimum energy E0
ε (u0

ε)

(5.7) E0
ε (u0

ε) =

∫
∂Ω

∂u0
ε

∂n
ϕ ds− 1

2

∫
Ω\σ
|∇u0

ε|2 dx−
εaε
3

∫
σ

((
∂u0+

ε

∂τ

)2

+

(
∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds

− aε
4ε

∫
σ

(
u0+
ε − u0−

ε

)2
ds .
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5.3. Uniform energy estimates for u0
ε.

The following lemma provides preliminary energy estimates for the function u0
ε.

Lemma 7. Let Ω ⊂ R2 be a bounded Lipschitz domain, and σ be a closed C2,α curve in Ω, lying at positive
distance from ∂Ω. Let ϕ ∈ H 1

2 (∂Ω) and f ∈ Fδ, for some δ > 0. Then,

(1) There exists a constant C > 0, independent of ε and aε (but dependent on Ω and σ) such that

||∇u0
ε||L2(Ω\σ)+(εaε)

1
2

(∣∣∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂u0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

)
+
(aε
ε

) 1
2 ∣∣∣∣u0+

ε − u0−
ε

∣∣∣∣
L2(σ)

≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

(2) There exists a constant C > 0 independent of ε and aε (but dependent on Ω and σ) such that

||u0
ε||L2(Ω+)≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
, and ||u0

ε||L2
0(Ω−)≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

Proof. (1): By definition of ϕ ∈ H1/2(∂Ω), there exists uϕ ∈ H1(Ω) which we may assume to have compact
support in Ω+ \ωδ for some δ > 0, such that uϕ = ϕ on ∂Ω and ||uϕ||H1(Ω)≤ C||ϕ||H1/2(∂Ω). The variational

formulation of problem (4.10) may be expressed in terms of wε := u0
ε − uϕ

(5.8) ∀v ∈ Vσ,0,
∫

Ω\σ
∇wε · ∇v dx+

2εaε
3

∫
σ

(
∂w+

ε

∂τ

∂v+

∂τ
+
∂w−ε
∂τ

∂v−

∂τ
+

1

2

(
∂w+

ε

∂τ

∂v−

∂τ
+
∂w−ε
∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(w+
ε − w−ε )(v+ − v−) ds =

∫
Ω

fv dx−
∫

Ω\σ
∇uϕ · ∇v dx .

Inserting v = wε as a test function, and relying on the inequality (5.2), we immediately obtain

(5.9) ||∇wε||2L2(Ω\σ)+εaε

(∣∣∣∣∣∣∣∣∂w+
ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ)

+

∣∣∣∣∣∣∣∣∂w−ε∂τ
∣∣∣∣∣∣∣∣2
L2(σ)

)
+
aε
ε

∣∣∣∣w+
ε − w−ε

∣∣∣∣2
L2(σ)

≤

C
(
||ϕ||H1/2(∂Ω)+||f ||L2(Ω+)

)
||wε||H1(Ω+)+||f ||L2(Ω−)||wε −m||L2(Ω−) ,

for any value m ∈ R (since
∫

Ω−
f = 0). Due to the Poincaré inequality for functions on Ω+ which vanish on

∂Ω, we have

||wε||H1(Ω+)≤ C||∇wε||L2(Ω+) ,

and from the Poincaré-Wirtinger inequality on Ω−∣∣∣∣∣∣∣∣wε − 1

|Ω−|

∫
Ω−

wε

∣∣∣∣∣∣∣∣
L2(Ω−)

≤ C||∇wε||L2(Ω−) .

It follows from a combination of these estimates and (5.9) that

||∇wε||L2(Ω\σ)+(εaε)
1
2

(∣∣∣∣∣∣∣∣∂w+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂w−ε∂τ
∣∣∣∣∣∣∣∣
L2(σ)

)
+
(aε
ε

) 1
2 ∣∣∣∣w+

ε − w−ε
∣∣∣∣
L2(σ)

≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.(5.10)

The desired result follows from this estimate and the facts that u0
ε = wε + uϕ, ||uϕ||H1(Ω)≤ C||ϕ||H1/2(∂Ω),

and uϕ vanishes on σ.

(2): The first inequality is a consequence of (5.10) and the decomposition u0
ε = wε + uϕ, combined with the

Poincaré inequality for functions on Ω+ which vanish on ∂Ω. The second inequality similarly follows from
(5.10) and the Poincaré-Wirtinger inequality on the domain Ω−. �
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5.4. Uniform regularity estimates for u0
ε.

We now proceed to state the uniform regularity estimates for the function u0
ε, which we shall require for

our later analysis. The results needed are stated in the following Theorem, whose proof is postponed to
Appendix A.

Theorem 8. Assume that Ω and σ are of class C2,α, that the source term f belongs to Fδ for some δ > 0,
and that ϕ ∈ H 3

2 (∂Ω). Then the unique solution u0
ε to the problem (4.10) belongs to H2(Ω \σ)∩H2(σ), and

the following estimates hold

(5.11) |u0
ε|H2(Ω\σ)≤ C(||f ||L2(Ω)+||ϕ||H3/2(∂Ω)) ,

(εaε)
1
2

(∣∣∣∣∣∣∣∣∂2u0+
ε

∂τ2

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂2u0−
ε

∂τ2

∣∣∣∣∣∣∣∣
L2(σ)

)
+

(aε
ε

) 1
2

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ
− ∂u0−

ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

(5.12)

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) ,

where |u|H2(V ):=

(∑
β∈N2

|β|=2

∣∣∣∣∣∣∂|β|u∂xβ

∣∣∣∣∣∣2
L2(V )

)1/2

stands for the H2 semi norm of a function u ∈ H2(V ), and the

constant C depends only on Ω and σ (and not on ε and aε).

Remark 8.

(1) The proof of Theorem 8 can be iterated, if one assumes higher regularity of Ω, σ, f and ϕ. More

precisely, if Ω and σ are of class Cm,α, f ∈ Fδ ∩Hm−2(Ω) and ϕ ∈ Hm− 1
2 (∂Ω) for some m ≥ 2, then∣∣∣∣∣∣∣∣∂|β|u0

ε

∂xβ

∣∣∣∣∣∣∣∣
L2(Ω\σ)

≤ C(||f ||Hm−2(Ω)+||ϕ||Hm− 1
2 (∂Ω)

) ,

for any multi-index β of length ≤ m. Note also that these results are local. Thus, even if f only
belongs to Fδ, for some δ > 0, but σ is a Cm,α curve, then u0

ε is of class Cm on any open set V such
that V b ωδ, and ∣∣∣∣∣∣∣∣∂|β|u0

ε

∂xβ

∣∣∣∣∣∣∣∣
L2(V )

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) ,

for any multi-index β of length ≤ m.
(2) The two estimates (5.11) and (5.12) are of a quite different nature; they are complementary in the

sense that, depending on the behavior of the sequence aε, one may prove more precise than the
other. Estimate (5.11) expresses the fact that all the derivatives of u0

ε are uniformly bounded with
respect to ε and aε, provided that the data of the problem have enough regularity. On the other
hand, the estimate (5.12) is analogous to the preliminary estimates of Lemma 7: it does not carry
much information in the low conductivity regime (i.e., aε � ε), but it is in some sense much stronger
than (5.11) in the high conductivity regime (i.e., aε � ε).

(3) Recall that, due to Lemma 7, u0
ε|Ω+ (and not just its derivatives) also turns out to be uniformly

bounded with respect to ε and aε. However, in general, this is not the case of u0
ε|Ω− , which is only

uniformly bounded up to a constant.

6. Proof of the asymptotic exactness of u0
ε

We are now in position to verify the asymptotic exactness of u0
ε, in other words to show that the gap

||uε − u0
ε|| tends to zero as ε tends to zero. The precise estimate we establish is the following

Theorem 9. Assume the “center” curve σ is of class C∞, and that ϕ ∈ H
1
2 (∂Ω). Let δ > 0 be a fixed

positive real number, and suppose f ∈ Fδ. Let uε ∈ H1(Ω) (resp. u0
ε ∈ Vσ) be the unique solution to the

minimization problem (4.1) (resp. (4.10)). Then the following estimates hold, for ε > 0 sufficiently small

||uε − u0
ε||L2(Ω+\ωδ)≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε,

||uε − u0
ε||L2

0(Ω−\ωδ)≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε,

where the constant C is independent of ε, and of aε.
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Proof. The technique used here is very close to that used in [21] – a main idea of which is already found in
[20] – it relies on two key ingredients:

• The uniform energy and regularity estimates for u0
ε and ∇u0

ε presented in Section 5.3 and Section 5.4.
Interestingly enough, neither energy nor regularity estimates for the exact solution uε are required.

• The general argument of Lemma 4, which controls the discrepancy between uε and u0
ε in terms of

the discrepancy between the minimum values of the corresponding energies Eε and E0
ε .

Using the notation of Lemma 4, we choose Vε = H1(Ω), Wε = Vσ, and H = Fδ (and we identify H ′ with
Fδ). The natural mapping Pε : Vε → H is

H1(Ω) 3 u 7→ Pεu =


u|Ω+\ωδ in Ω+ \ ωδ

0 in ωδ
u|Ω−\ωδ−

1
|Ω−\ωδ|

∫
Ω−\ωδ u dx in Ω− \ ωδ

∈ Fδ .

The operator Pε (which, like Vε and Wε, in this case actually does not depend on ε) also naturally maps Wε

into H. According to Lemma 4 (and Remark 6) the following estimates hold

(6.1) ||uε − u0
ε||L2(Ω+\ωδ)≤ C

 sup
f∈Fδ, ϕ∈H

1/2(∂Ω)
f,ϕ smooth

|Eε(uε)− E0
ε (u0

ε)|(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)2
(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
,

(6.2) ||uε − u0
ε||L2

0(Ω−\ωδ)≤ C

 sup
f∈Fδ, ϕ∈H

1/2(∂Ω)
f,ϕ smooth

|Eε(uε)− E0
ε (u0

ε)|(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)2
(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

The idea is then to estimate the discrepancy (Eε(uε) − E0
ε (u0

ε)) between the minimum values of the
energies by using particular ‘test functions’ in place of uε (or its gradient) which make Eε (or its dual) mimic
the behavior of the functional E0

ε near the limiting curve σ. The existence of such test functions is made
possible by the regularity estimates for u0

ε stated the Section 5.3. Sections 6.1 and 6.2 below are devoted to
establishing the desired control over this energy discrepancy.

�

In the following, for the sake of brevity, we denote by C a constant, possibly changing from one instance
to the other, which only depends on Ω and σ, but is independent of ε, aε, f and ϕ. We also use the shorthand

C(f, ϕ) ≡ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

6.1. Proof of the upper bound Eε(uε)− E0
ε (u0

ε) ≤ C(f, ϕ)2ε.

As a straightforward consequence of the definition (4.1), one has, for any function u ∈ H1(Ω) such that
u = ϕ on ∂Ω,

Eε(uε)− E0
ε (u0

ε) ≤ Eε(u)− E0
ε (u0

ε) .

We proceed to construct a “test function” u which makes the right hand side of the above inequality small. To
this end, a natural idea is to exploit the equivalent form (4.4) of the problem, and use the pair (u0

ε, v
0
ε ◦H−1

ε )
as a test function, where u0

ε is the unique solution to (4.10), and v0
ε is given by (4.13). This is unfortunately

not possible as is, since the pair (u0
ε, v

0
ε) does not belong to the space V 0

ε ; indeed, it does not satisfy the
boundary conditions

∀x ∈ σ
{
v(x+ n(x)) = u(x+ εn(x))
v(x− n(x)) = u(x− εn(x))

,

but satisfies instead

∀x ∈ σ
{
v(x+ n(x)) = u+(x)
v(x− n(x)) = u−(x)

.

To remedy this, let us define zε ∈ H1(Ω \ ωε) as the unique solution to
−∆zε = 0 in Ω \ ωε
zε = 0 on ∂Ω

zε = u0+
ε ◦ pσ − u0

ε on ∂ω+
ε

zε = u0−
ε ◦ pσ − u0

ε on ∂ω−ε

.
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By construction, the pair (u0
ε + zε, v

0
ε) belongs to V 0

ε . Let us now work toward estimating the function zε;
as an easy consequence of definitions,

||zε|∂ωε ||C1(∂ωε) ≤ Cε
(
||u0

ε||C2(V +)+||u0
ε −m||C2(V −)

)
,

≤ Cε
(
||u0

ε||H4(V +)+||u0
ε −m||H4(V −)

)
.

Here V is a neighboorhood contained in ωδ, for a fixed δ with f ∈ Fδ and m = 1
|Ω−|

∫
Ω−

u0
ε. According to

Theorem 8 (and Remark 8), it follows that

||zε|∂ωε ||C1(∂ωε)≤ C(f, ϕ)ε .

By a very simple construction we may extend the trace zε|∂ωε to a function Zε defined on the whole domain
Ω \ ωε with Zε = 0 on ∂Ω and

||Zε||C1(Ω\ωε)≤ C||zε||C1(∂ωε)≤ C(f, ϕ)ε .

A simple calculation gives that ∫
Ω\ωε

∇(zε − Zε)∇zε dx = 0 ;

in other words ∫
Ω\ωε

|∇zε|2 dx =

∫
Ω\ωε

∇Zε∇zε dx ,

and so

(6.3) ||∇zε||L2(Ω\ωε) ≤ ||∇Zε||L2(Ω\ωε) ≤ C||Zε||C1(Ω\ωε) ≤ C(f, ϕ)ε .

Now, using the pair (u0
ε + zε, v

0
ε) as a “test function” in (4.4), we calculate:

F 0
ε (u0

ε + zε, v
0
ε) =

1

2

∫
Ω\ωε

|∇u0
ε +∇zε|2 dx−

∫
Ω

f(u0
ε + zε) dx

+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v0

ε

∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v0

ε

∂n

)2

dx .

Here ∫
Ω\ωε

|∇u0
ε +∇zε|2 dx =

∫
Ω\ωε

|∇u0
ε|2 dx+ 2

∫
Ω\ωε

∇u0
ε · ∇zε dx+

∫
Ω\ωε

|∇zε|2 dx

≤
∫

Ω\ωε
|∇u0

ε|2 dx+ C(f, ϕ)2ε ,

where we used (6.3) and the uniform energy estimate of Lemma 7. Similarly, one has∣∣∣∣∫
Ω

fzε dx

∣∣∣∣ ≤ C(f, ϕ)2ε ,

because of our assumptions about f , and the estimate (6.3), in combination with the fact that zε vanishes
on ∂Ω. Concerning the terms on ω1,

εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v0

ε

∂τ

)2

dx ≤ εaε
2

∫
ω1

(1 + κdΩ−)

(
∂v0

ε

∂τ

)2

dx+ C(f, ϕ)2ε

=
εaε
3

∫
σ

((
∂u0+

ε

∂τ

)2

+

(
∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds+ C(f, ϕ)2ε ,

where the first line is a consequence of the uniform energy estimates of Lemma 7, and the second line follows
by the exact same calculation that we performed in Section 4.1.1. Similarly, we obtain

aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v0

ε

∂n

)2

dx ≤ aε
4ε

∫
σ

(
u0+
ε − u0−

ε

)2
ds+ C(f, ϕ)2ε .

To conclude, let u ∈ H1(Ω) denote the function

u =

{
u0
ε + zε , in Ω \ ωε ,
v0
ε ◦H−1

ε , in ωε .
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Combining all these estimates, we finally get

Eε(uε)− E0
ε (u0

ε) ≤ Eε(u)− E0
ε (u0

ε) = F 0
ε (u0

ε + zε, v
0
ε)− E0

ε (u0
ε) ≤ C(f, ϕ)2ε .

6.2. Proof of the lower bound: E0
ε (u0

ε)− Eε(uε) ≤ C(f, ϕ)2ε, and end of proof of Theorem 9.

In order to prove the lower bound, we rely on the use of the dual energies associated to Eε and E0
ε . More

precisely, based on the equivalent, rescaled form (4.15) of the dual problem to Eε,

E0
ε (u0

ε)− Eε(uε) ≤ E0
ε (u0

ε)− F c0ε (ξ, η),

for every vector couple (ξ, η) in the space V c0ε defined by (4.16), and satisfying −div(ξ) = f , −div(η) = 0.

Using the definition of F c0ε and the alternative expression (5.7) for E0
ε (u0

ε), we may rewrite this as

(6.4) E0
ε (u0

ε)− Eε(uε) ≤
1

2

∫
Ω\ωε

|ξ|2 dx+
1

2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx+

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx

−
∫
∂Ω

ξ · nϕ ds+

∫
∂Ω

∂u0
ε

∂n
ϕ ds− 1

2

∫
Ω\σ
|∇u0

ε|2 dx

− εaε
3

∫
σ

((
∂u0+

ε

∂τ

)2

+

(
∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds− aε

4ε

∫
σ

(
u0+
ε − u0−

ε

)2
ds .

In light of the discussions in Section 4.1.2 and 5.2, and particularly due to the formulas (4.21), it is tempting
to define a test flux ξ ∈ Hdiv(Ω \ σ) by ξ = ∇u0

ε, and η ∈ Hdiv(ω1) in such a way that, for x ∈ σ, t ∈ (−1, 1)

∂

∂τ
(ητ (x+ tn(x))) = −1

2

[
∂u0

ε

∂n

]
(x), and

ηn(x+ tn(x)) =
1

2

(
t

1 + tκ(x)

[
∂u0

ε

∂n

]
(x) +

1

1 + tκ(x)

(
∂u0+

ε

∂n
(x) +

∂u0−
ε

∂n
(x)

))
,

and insert (ξ, η) into (6.4). Using the pointwise expression (5.4) for the boundary conditions for u0
ε, we are

led to

(
ητ (x+ tn(x))
ηn(x+ tn(x))

)
=

 εaε
2

(
∂u0+

ε

∂τ +
∂u0−

ε

∂τ

)
1
2

1
1+tκ

(
−tεaε

(
∂2u0+

ε

∂τ2 +
∂2u0−

ε

∂τ2

)
− εaε

3

(
∂2u0+

ε

∂τ2 − ∂2u0−
ε

∂τ2

)
+ aε

ε (u0+
ε − u0−

ε )
)  .

Unfortunately, such a choice of “test couple” is not admissible, since it does not belong to the space V c0ε .
Nevertheless, it “almost” belongs to this space, and we may use a “small” additive correction to remedy that
situation. We define zε ∈ H1(Ω \ ωε) as the unique solution (up to a constant) to the problem

−∆zε = 0 in Ω \ ωε ,
∂zε
∂n = 0 on ∂Ω ,
∂zε
∂n = g+

ε on ∂ω+
ε ,

∂zε
∂n = g−ε on ∂ω−ε .

Recall that in the last two boundary conditions, n stands for the normal vector to ∂ω±ε , oriented in the
direction from Ω− to Ω+. The function g+

ε is defined by

∀x ∈ σ, g+
ε (x+ εn(x)) = 1+κ(x)

1+εκ(x)ηn(x+ n(x))− ξn(x+ εn(x))

= (1 + κ(x))
(

1
1+εκ(x) − 1

)
ηn(x+ n(x))

+(1 + κ(x))ηn(x+ n(x))− ξ+
n (x) + ξ+

n (x)− ξn(x+ εn(x))

= (1 + κ(x))
(

1
1+εκ(x) − 1

)
ηn(x+ n(x)) + ξ+

n (x)− ξn(x+ εn(x)) ,
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and g−ε is defined by the similar formula

∀x ∈ σ, g−ε (x− εn(x)) = 1−κ(x)
1−εκ(x)ηn(x− n(x))− ξn(x− εn(x))

= (1− κ(x))
(

1
1−εκ(x) − 1

)
ηn(x− n(x))

+(1− κ(x))ηn(x− n(x))− ξ−n (x) + ξ−n (x)− ξn(x− εn(x))

= (1− κ(x))
(

1
1−εκ(x) − 1

)
ηn(x− n(x)) + ξ−n (x)− ξn(x− εn(x)) ,

so that the couple (ξ + ∇zε, η) belongs to V c0ε . The requirement that
∫
∂ω+

ε
g+
ε ds =

∫
∂ω−ε

g−ε ds = 0 is

guaranteed by the identity (5.5) and the fact that f vanishes in ωε, so that
∫
∂ω±ε

∂u0
ε

∂n ds = 0 as well. Using

the uniform regularity estimates of Theorem 8 (and Remark 8), we obtain that

||g±ε ||C1,α(∂ω±ε )≤ C(f, ϕ)ε,

and a standard regularity argument (as for the Dirichlet problem in the previous section) now gives

||∇zε||L2(Ω\ωε) ≤ C
(
||g+
ε ||C1,α(∂ω+

ε )+||g
−
ε ||C1,α(∂ω−ε )

)
≤ C(f, ϕ)ε .

It is now possible to use (ξ +∇zε, η) as a test couple in (6.4). Doing so, we obtain first

(6.5)

1
2

∫
Ω\ωε

|ξ +∇zε|2 dx =
1

2

∫
Ω\ωε

|∇u0
ε|2 dx+

∫
Ω\ωε

∇u0
ε · ∇zε dx+

1

2

∫
Ω\ωε

|∇zε|2 dx

≤ 1

2

∫
Ω\ωε

|∇u0
ε|2 dx+ C(f, ϕ)2ε ,

and

(6.6)

∫
∂Ω

(ξ +∇zε) · nϕ ds =

∫
∂Ω

∂u0
ε

∂n
ϕ ds .

Besides,

1

2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx ≤ (1 + Cε)

1

2εaε

∫
ω1

1

1 + κdΩ−
η2
τ dx

= (1 + Cε)
1

2εaε

∫
σ

∫ 1

−1

η2
τ (x+ tn(x)) dt ds

= (1 + Cε)
εaε
4

∫
σ

(
∂u0+

ε

∂τ
+
∂u0−

ε

∂τ

)2

ds

≤ (1 + Cε)
εaε
3

∫
σ

((
∂u0+

ε

∂τ

)2

+

(
∂u0−

ε

∂τ

)2

+

(
∂u0+

ε

∂τ

)(
∂u0−

ε

∂τ

))
ds ,

where for the last estimate we used the algebraic inequality

∀a, b ∈ R,
1

4
(a+ b)2 =

1

3
(a2 + b2 + ab)− 1

12
(a− b)2 ≤ 1

3
(a2 + b2 + ab) .

Using the uniform energy estimates of Lemma 7, we conclude

(6.7)
1

2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx ≤

εaε
3

∫
σ

((
∂u0+

ε

∂τ

)2

+

(
∂u0−

ε

∂τ

)2

+

(
∂u0+

ε

∂τ

)(
∂u0−

ε

∂τ

))
ds+ C(f, ϕ)2ε .
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On the other hand,

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx

≤ (1 + Cε)
ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx

= (1 + Cε)
ε

2aε

∫
σ

∫ 1

−1

(1 + tκ(x))2η2
n(x+ tn(x)) dt ds

= (1 + Cε)
ε

8aε

∫
σ

∫ 1

−1

(
−tεaε

(
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− εaε

3

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)
+
aε
ε

(u0+
ε − u0−

ε )

)2

dt ds

= (1 + Cε)
ε3aε
12

∫
σ

(
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)2

ds+ (1 + Cε)
ε

4aε

∫
σ

(
−εaε

3

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)
+
aε
ε

(u0+
ε − u0−

ε )

)2

ds

= (1 + Cε)
ε3aε
12

∫
σ

(
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)2

ds+ (1 + Cε)
ε3aε
36

∫
σ

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)2

ds

−(1 + Cε)
εaε
6

∫
σ

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)
(u0+
ε − u0−

ε ) ds+ (1 + Cε)
aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds .

Due to the uniform energy estimates of Theorem 8, the first two integrals in the last expression are easily
controlled by C(f, ϕ)2ε2. When it comes to the third integral, one has∣∣∣∣εaε6

∫
σ

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)
(u0+
ε − u0−

ε ) ds

∣∣∣∣ ≤ εaε
6

(∫
σ

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)2

ds

) 1
2(∫

σ

(u0+
ε − u0−

ε )2 ds

) 1
2

≤ ε

6

(
εaε

∫
σ

(
∂2u0+

ε

∂τ2
− ∂2u0−

ε

∂τ2

)2

ds

) 1
2(

aε
ε

∫
σ

(u0+
ε − u0−

ε )2 ds

) 1
2

≤ C(f, ϕ)2ε ,

since the integral terms in the product are each bounded by C(f, ϕ). We thus obtain the estimate

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx ≤ (1 + Cε)

aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds+ C(f, ϕ)2ε(6.8)

≤ aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds+ C(f, ϕ)2ε ,

where we have again made use of the uniform energy estimate in Lemma 7. Application of the auxiliary
estimates (6.5)-(6.8) to (6.4) with the test couple (ξ +∇zε, η) finally yields

E0
ε (u0

ε)− Eε(uε) ≤ C(f, ϕ)2ε ,

which is the desired lower bound on Eε(uε)− E0
ε (u0

ε).

End of proof of Theorem 9. By a combination of the upper bound of the previous subsection and the lower
bound of this subsection we obtain

−C(f, ϕ)2ε ≤ Eε(uε)− E0
ε (u0

ε) ≤ C(f, ϕ)2ε ,

or ∣∣Eε(uε)− E0
ε (u0

ε)
∣∣ ≤ C (||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)2
ε .

Insertion of this estimate into (6.1) and (6.2) now finally gives

||uε − u0
ε||L2(Ω+\ωδ)≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε ,

||uε − u0
ε||L2

0(Ω−\ωδ)≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε ,

and this completes the proof of Theorem 9. �

Remark 9. The 0th order uniform approximation to uε is only unique modulo a function that is of the
order O(ε), uniformly in ε and aε. As a reflection of this, the energetic expression E0

ε (of (4.12) is not unique
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either; a proof very similar to the one presented above (together with corresponding uniform regularity and
energy estimates) would reveal that the unique minimizer to

Ẽ0
ε (v) :=

1

2

∫
Ω\σ
|∇v|2 dx+

εaε
2

∫
σ

((
∂v+

∂τ

)2

+

(
∂v−

∂τ

)2
)
ds+

aε
4ε

∫
σ

(v+ − v−)2 ds−
∫

Ω

fv dx

is also a uniform 0th order approximation of uε.

7. Limit behavior of u0
ε

So far, we have only discussed the approximation of uε in terms of the solution u0
ε to another, simpler

minimization problem, which, however, still depends on ε and aε. When the behavior of the sequence aε is
known more precisely as ε → 0, then explicit, ε and aε independent limit behaviors of u0

ε (and thus of uε)
can be derived.

7.1. The general case.

Let us assume that εaε and aε
ε both have a limit as ε→ 0, including possible limits of 0 and ∞. Remark

that, in the general case, there always exists a subsequence εn → 0 such that this is achieved. Since εaε � aε
ε

the limiting pair
(
limε→0 εaε, limε→0

aε
ε

)
has one of the five possible forms (∞,∞), (a0,∞), (0,∞), (0, b0),

and (0, 0), where 0 < a0 < ∞ and 0 < b0 < ∞ are arbitrary constants. The following result describes the
precise limiting behaviour of u0

ε (and thus of uε) in each of these five cases.

Proposition 10. Let aε be any sequence of positive real numbers, and u0
ε ∈ Vσ be the unique solution to

the minimization problem (4.10). Suppose f ∈ Fδ, for some δ > 0, and ϕ ∈ H 1
2 (∂Ω), and suppose εaε and

aε
ε both have a limit as ε → 0, including possible limits of 0 and ∞. The following five cases describe the

associated limiting behaviour of u0
ε.

Case 1: εaε → ∞ (thus aε
ε → ∞). The limit of u0

ε is u∞∞ ∈ H1
c,σ(Ω) :=

{
u ∈ H1(Ω), u = cst on σ

}
, the

unique solution to the minimization problem

(7.1) min
u∈H1

c,σ(Ω)

u=ϕ on ∂Ω

E∞∞(u), E∞∞(u) :=
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx ,

and there exists a constant C independent of ε and aε such that

||u0
ε − u∞∞||L2(Ω)≤

C

εaε

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

Case 2: εaε → a0 for a certain real value 0 < a0 <∞ (thus aε
ε →∞). The limit of u0

ε is u∞a0
∈ H1(Ω)∩Vσ ={

u ∈ H1(Ω), u|σ ∈ H1(σ)
}

, the unique solution to the minimization problem

(7.2) min
u∈H1(Ω)∩Vσ
u=ϕ on ∂Ω

E∞a0
(u), E∞a0

(u) :=
1

2

∫
Ω

|∇u|2 dx+ a0

∫
σ

(
∂u

∂τ

)2

ds−
∫

Ω

fu dx ,

and there exists a constant C independent of ε and aε such that

||u0
ε − u∞a0

||L2(Ω)≤ C
(∣∣∣∣εaεa0

− 1

∣∣∣∣+

∣∣∣∣ a0

εaε
− 1

∣∣∣∣+
ε

aε

)(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

Case 3: εaε → 0 and aε
ε → ∞. The limit of u0

ε is u∞0 ∈ H1(Ω), the unique solution to the minimization
problem

(7.3) min
u∈H1(Ω)
u=ϕ on ∂Ω

E∞0 (u), E∞0 (u) :=
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx ,

and there exists a constant C independent of ε and aε such that

||u0
ε − u∞0 ||L2(Ω)≤ C

(
εaε +

ε

aε

)(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.
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Case 4: aε
ε → b0 for a certain real value 0 < b0 < ∞ (thus εaε → 0). The limit of u0

ε is ub00 ∈ H1(Ω \ σ),
the unique solution to the minimization problem

(7.4) min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

Eb00 (u), Eb00 (u) :=
1

2

∫
Ω\σ
|∇u|2 dx+

b0
4

∫
σ

(u+ − u−)2 ds−
∫

Ω

fu dx ,

and there exists a constant C independent of ε and aε such that

||u0
ε − u

b0
0 ||L2(Ω+)+||u0

ε − u
b0
0 ||L2

0(Ω−)≤ C
(
εaε +

∣∣∣∣ aεεb0 − 1

∣∣∣∣+

∣∣∣∣εb0aε − 1

∣∣∣∣) (||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

Case 5: aε
ε → 0 (thus εaε → 0). The limit of u0

ε is u0
0 ∈ H1(Ω \ σ), a solution to the minimization problem

(7.5) min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

E0
0(u), E0

0(u) :=
1

2

∫
Ω\σ
|∇u|2 dx−

∫
Ω

fu dx .

This solution is unique up to an additive constant on Ω−. There exists a constant C independent
of ε and aε such that

||u0
ε − u0

0||L2(Ω+)+||u0
ε − u0

0||L2
0(Ω−)≤ C

(
εaε +

aε
ε

) (
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

The proof of this proposition again relies on Lemma 4. It is in many ways very similar to the proof
of Theorem 9, but simpler, so we only provide a sketch. A complete proof would notably involve uniform
estimates for the limit problems in the spirit of Theorem 8. Before we proceed to the sketch of the proof,
some remarks are in order

• The functional spaces involved in the minimization problems (7.1),(7.2), and (7.3) feature functions
that belong (at least) to H1(Ω), and thus do not jump across σ. As a consequence, the derivation of
uniform energy estimates in the spirit of Lemma 7 does not require any assumption about f other
than f ∈ L2(Ω). The natural choice for the space H in the application of Lemma 4 is then L2(Ω),
and so we obtain L2(Ω) estimates of the discrepancy between u0

ε and its limits. The assumption∫
Ω−

f = 0 is not necessary in order to establish the results of Proposition 10 in cases 1 through 3 .

• In case 4, the assumption
∫

Ω−
f = 0 is not required to ensure that the minimization problem (7.4)

has a unique solution. It is needed in order to insure that one may obtain energy estimates for u0
b0

that are uniform with respect to b0 (see the proof of Lemma 7). Lemma 4 then provides a uniform
estimate for (u0

ε − u0
b0

) on Ω+, and a uniform estimate for the same difference on Ω−, modulo a
constant .

• In case 5, the assumption
∫

Ω−
f = 0 is required to ensure that the minimization problem (7.5) has a

unique solution, which is defined up to a constant in Ω−. Note that the convergence result expressed
in this case is independent of this constant.

Proof. (1): We use Lemma 4 with Vε = Vσ, Wε = H1
c,σ(Ω) and H = L2(Ω), and proceed to estimate the

difference |E0
ε (u0

ε)− E∞∞(u∞∞)|. Since H1
c,σ(Ω) ⊂ Vσ, we have

E0
ε (u0

ε)− E∞∞(u∞∞) ≤ E0
ε (u∞∞)− E∞∞(u∞∞)

=
1

2

∫
Ω\σ
|∇u∞∞|2 dx+

εaε
3
.0 +

aε
4ε
.0−

∫
Ω

fu∞∞ dx− 1

2

∫
Ω

|∇u∞∞|2 dx+

∫
Ω

fu∞∞ dx

= 0

.

To obtain an upper bound for
(
E∞∞(u∞∞)− E0

ε (u0
ε)
)
, we first rewrite E∞∞(u∞∞) as

E∞∞(u∞∞) =
1

2

∫
Ω

|∇u∞∞|2 dx−
∫

Ω

fu∞∞ dx

=

∫
∂Ω

∂u∞∞
∂n

ϕ ds− 1

2

∫
Ω

|∇u∞∞|2 dx−
∫
σ

[
∂u∞∞
∂n

]
u∞∞ ds .
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Since u∞∞ amounts to a constant on σ, and since
∫
σ

[
∂u∞∞
∂n

]
ds = 0 (which is easily derived from the fact that

u∞∞ is the minimizer to (7.1)), we conclude that

E∞∞(u∞∞) =

∫
∂Ω

∂u∞∞
∂n

ϕ ds− 1

2

∫
Ω

|∇u∞∞|2 dx .

Now, introducing the dual energy principle for u0
ε established in Section 5.2, we obtain

E∞∞(u∞∞)− E0
ε (u0

ε) ≤
∫
∂Ω

∂u∞
∂n

ϕ ds− 1

2

∫
Ω

|∇u∞|2 −
∫
∂Ω

ξ · nϕ ds+
1

2

∫
Ω\σ
|ξ|2 dx

+
εaε
3

∫
σ

(
w+2 + w−2 + w+w−

)
ds+

aε
4ε

∫
σ

z2 ds,

for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying the relations (5.6). Insertion of ξ = ∇u∞∞, z = 0,
and

w+ = − 1

εaε

(
2

∫
∂u∞+
∞
∂n

ds+

∫
∂u∞−∞
∂n

ds

)
,

w− =
1

εaε

(
2

∫
∂u∞−∞
∂n

ds+

∫
∂u∞+
∞
∂n

ds

)
in the above relation yields

E∞∞(u∞∞)− E0
ε (u0

ε) ≤
1

εaε

∫
σ

((∫
∂u∞+
∞
∂n

ds

)2

+

(∫
∂u∞−∞
∂n

ds

)2

+

(∫
∂u∞+
∞
∂n

ds

)(∫
∂u∞−∞
∂n

ds

))
ds .

The result follows by using energy estimates for u∞∞.

(2): We rely again on Lemma 4 with Vε = Vσ, Wε = H1(Ω) ∩ Vσ and H = L2(Ω). As H1(Ω) ∩ Vσ ⊂ Vσ, we
have on the one hand

E0
ε (u0

ε)− E∞a0
(u∞a0

) ≤ E0
ε (u∞a0

)− E∞a0
(u∞a0

)

=
1

2

∫
Ω\σ
|∇u∞a0

|2 dx+ εaε

∫
σ

(
∂u∞a0

∂τ

)2

ds− 1

2

∫
Ω

|∇u∞a0
|2 dx− a0

∫
σ

(
∂u∞a0

∂τ

)2

ds

≤
∣∣∣∣εaεa0

− 1

∣∣∣∣ a0

∫
σ

(
∂u∞a0

∂τ

)2

ds .

The factor a0

∫
σ

(
∂u∞a0

∂τ

)2

ds is bounded by C(||f ||L2(Ω) + ||ϕ||H1/2(∂Ω))
2, uniformly with respect to a0 (as

follows easily from standard energy estimates for the problem (7.2)).
On the other hand, the dual energy maximization principle for E∞a0

(u∞a0
) reads

Ea0
(u∞a0

) = max

(∫
∂Ω

ξ · nϕ ds− 1

2

∫
Ω

|ξ|2 − 1

a0

∫
σ

w2 ds

)
,

where the maximum is taken over the set of functions ξ ∈ L2(Ω)2, w ∈ L2(σ) such that

(7.6) -div(ξ) = f in Ω+ and in Ω− , and [ξn] + 2
∂w

∂τ
= 0 on σ .

The maximum is uniquely attained at ξ = ∇u∞a0
and w = a0

∂u∞a0

∂τ . We thus obtain

E∞a0
(u∞a0

)− E0
ε (u0

ε) ≤
∫
∂Ω

∂u∞a0

∂n
ϕ ds− 1

2

∫
Ω

|∇u∞a0
|2 − a0

∫
σ

(
∂u∞a0

∂τ

)2

ds−
∫
∂Ω

ξ · nϕ ds

+
1

2

∫
Ω\σ
|ξ|2 dx+

εaε
3

∫
σ

(
w+2 + w−2 + w+w−

)
ds+

aε
4ε

∫
σ

z2 ds ,

for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying (5.6). We now insert ξ = ∇u∞a0
, together with

w+ = w− =
a0

εaε

∂u∞a0

∂τ
,
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and z given by

aε
2ε
z =

∂u∞+
a0

∂n
+ a0

∂2u∞a0

∂τ2
=
∂u∞−a0

∂n
− a0

∂2u∞a0

∂τ2
.

The last identity holds true because of (7.6), and it insures that this choice of ξ, w±, z satisfies (5.6). As a
result

E∞a0
(u∞a0

)− E0
ε (u0

ε) ≤ εaε

∫
σ

w+2 ds+
aε
4ε

∫
σ

z2 ds− a0

∫
σ

(
∂u∞a0

∂τ

)2

ds

≤
∣∣∣∣ a0

εaε
− 1

∣∣∣∣ a0

∫
σ

(
∂u∞a0

∂τ

)2

ds+
ε

aε

∫
σ

(
∂u∞+

a0

∂n
+ a0

∂2u∞a0

∂τ2

)2

ds .

These upper and lower bounds for E0
ε (u0

ε)−E∞a0
(u∞a0

), in combination with the appropriate apriori estimate
for u∞a0

, lead to the desired conclusion.

(3) is in every aspect simpler to handle than the other cases, and is left to the reader.

(4): Here we take Vε = Vσ, Wε = H1(Ω \ σ) and

H =

{
f ∈ L2(Ω),

∫
Ω−

f = 0

}
.

We obtain an upper bound for (E0
ε (u0

ε)−E
b0
0 (ub00 )) by using v = ub00 as a “test function” in the minimization

of E0
ε :

E0
ε (u0

ε)− E
b0
0 (ub00 ) ≤ E0

ε (ub00 )− Eb00 (ub00 )

≤ 1

2

∫
Ω\σ
|∇ub00 |2 dx+

εaε
2

∫
σ

(∂ub0+
0

∂τ

)2

+

(
∂ub0−0

∂τ

)2
 ds+

aε
4ε

∫
σ

(ub0+
0 − ub0−0 )2 ds

−1

2

∫
Ω\σ
|∇ub00 |2 dx−

b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds

≤ C
(
εaε +

∣∣∣ aεεb0 − 1
∣∣∣) (||ϕ||H1/2(∂Ω)+||f ||L2(Ω)

)2
,

,

for a constant C, which does not depend on b0, and ε, aε . Here we used the fact that

1

3
(a2 + b2 + ab) =

1

2
(a2 + b2)− 1

6
(a− b)2 ≤ 1

2
(a2 + b2) ,

and an appropriate apriori estimate for ub00 . In order to establish a satisfactory lower bound on E0
ε (u0

ε) −
Eb00 (ub00 )), we first observe that, as an immediate consequence of the variational problem satisfied by ub00 ,
one has

(7.7)
∂ub0+

0

∂n
=
∂ub0−0

∂n
=
b0
2

(ub0+
0 − ub0−0 ) on σ .

Now, using the dual energy maximization principle for E0
ε (see Section 5.2), and the fact that

1

2

∫
Ω\σ
|∇ub00 |2 dx+

b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds−

∫
Ω

fub00 dx

=

∫
∂Ω

∂ub00

∂n
ϕ ds− 1

2

∫
Ω\σ
|∇ub00 |2 dx−

b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds ,(7.8)

we obtain

Eb00 (ub00 )− E0
ε (u0

ε) ≤
∫
∂Ω

∂ub00

∂n
ϕ ds− 1

2

∫
Ω\σ
|∇ub00 |2 dx−

b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds−

∫
∂Ω

ξ · nϕ ds

+
1

2

∫
Ω\σ
|ξ|2 dx+

εaε
2

∫
σ

(
w+2 + w−2

)
ds+

aε
4ε

∫
σ

z2 ds ,

27



for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying (5.6). Due to (7.7), we may choose ξ = ∇ub00 ,

w+ = w− = 0 and z = εb0
aε

(ub0+
0 −ub0−0 ) for insertion into the last line of the previous inequality. This yields

Eb00 (ub00 )− E0
ε (u0

ε) ≤ aε
4ε

∫
σ

z2 ds− b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds

≤
(
εb0
aε
− 1
)
b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds

≤ C
(
εb0
aε
− 1
) (
||ϕ||H1/2(∂Ω)+||f ||L2(Ω)

)2
,

for some constant C which is independent of b0, and ε, aε. Here we used the same algebraic inequality as
before, and an appropriate apriori estimate for ub00 . In summary we have proved

|E0
ε (u0

ε)− E
b0
0 (ub00 )|≤ C

(
εaε +

∣∣∣∣ aεεb0 − 1

∣∣∣∣+

∣∣∣∣εb0aε − 1

∣∣∣∣) (||ϕ||H1/2(∂Ω)+||f ||L2(Ω)

)2
,

and by Lemma 4 this yields the desired estimate for ||u0
ε − u

b0
0 ||L2(Ω+)+||u0

ε − u
b0
0 ||L2

0(Ω−).

(5): In this last case, we take Vε = Vσ, Wε =
{
v ∈ H1(Ω \ σ),

∫
Ω−

v dx = 0
}

(a set over which the mini-
mization problem (7.5) has a unique solution), and

H =

{
f ∈ L2(Ω),

∫
Ω−

f = 0

}
.

The proof proceeds along the same lines as in the previous case(s), and is left to the reader. �

7.2. A closer look at the case aε = a, independently of ε.

In this section we make some observations pertaining to the case when the coefficient aε is independent
of ε, in other words when

aε = a, where a > 0 is a fixed real number.

Following the discussions in Sections 6 and 7.1, two 0th-order approximations of the solution uε to (2.2) are
available in this case, namely

(7.9) uε = u0
ε +O(ε) ,

which we shall refer to as the 0th order uniform expansion of uε, and

(7.10) uε = u∞0 +O(aε+
ε

a
) ,

which we shall refer to as the 0th order “natural asymptotic” expansion of uε. The latter is just the one term
Taylor expansion of uε with respect to ε (at zero). u∞0 is the unique solution to

−∆u∞0 = f in Ω , u∞0 = ϕ on ∂Ω .

The particular form of the remainder term in (7.10) follows from (7.9) and case 3 of Proposition 10. We
recall that u0

ε ∈ Vσ is the unique solutions to (4.10) (or (5.4)).
From Proposition 10 we know that

u0
ε = u∞0 +O(aε+

ε

a
) ,

and so a Taylor expansion of u0
ε with respect to ε also starts with the term u∞0 . We would like to understand

a little better the answer to the following question “in the process of correcting u∞0 to make it into a uniform
approximation to uε in terms of the conductivity coefficient a, will it suffice to add just a finite number of
terms in the Taylor series (of u0

ε) ?”. For that purpose we now derive the specific form of the first-order
Taylor expansion

u0
ε = u∞0 + εu1 +Oa(ε2) .

To this end, we follow the strategy employed before: as a first step, we define the (ε-dependent) function
u1 ∈ Vσ by the relation u0

ε = u∞0 + εu1, and write a minimization problem satisfied by u1. We then approx-
imate this problem using heuristic arguments, and define u1 as the solution to this simplified problem. In
spite of the heuristic nature of our derivation it is possible to prove that u1 = u1 +O(ε) – we shall, however,
omit the proof here.
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1st step: Derivation of a minimization problem for u1. Due to the definition of u0
ε, u1 arises as the unique

minimizer in Vσ,0 of the following energy

J1
ε (u) =

1

ε

(
E0
ε (u∞0 + εu)− E0

ε (u∞0 )
)
.

A simple calculation gives
(7.11)

J1
ε (u) = ε

(
1

2

∫
Ω\σ
|∇u|2 dx+

εa

3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds+

a

4ε

∫
σ

(
u+ − u−

)2
ds

)
+

∫
Ω\σ
∇u∞0 · ∇u dx+ εa

∫
σ

∂u∞0
∂τ

(
∂u+

∂τ
+
∂u−

∂τ

)
ds−

∫
Ω

fu dx

= ε

(
1

2

∫
Ω\σ
|∇u|2 dx+

εa

3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds− a

∫
σ

∂2u∞0
∂τ2

(u+ + u−) ds

)
+
a

4

∫
σ

(
u+ − u−

)2
ds−

∫
σ

∂u∞0
∂n

(u+ − u−) ds .

2nd step: Simplification of the minimization problem of J1
ε (u). It seems reasonable to assume that the

minimization process of J1
ε (u) will principally seek to minimize the terms of order 0 as ε → 0, that is, the

two terms
a

4

∫
σ

(u+ − u−)2 ds−
∫
σ

∂u∞0
∂n

(u+ − u−) ds .

The minimum of this last expression is achieved when (u+−u−) = 2
a
∂u∞0
∂n on σ. Subject to this relation, the

minimization process should then concentrate on the first order terms

ε

(
1

2

∫
Ω\σ
|∇u|2 dx− a

∫
σ

∂2u∞0
∂τ2

(u+ + u−) ds

)
.

Using the corresponding Euler-Lagrange equations, we are led to a candidate u1 ∈ Vσ,0 (for the 0th-order
approximation to u1) that is characterized as the solution to the following problem

(7.12)


−∆u1 = 0 in Ω \ σ ,
u1 = 0 on ∂Ω ,

[u1] = 2
a
∂u∞0
∂n on σ ,[

∂u1

∂n

]
= −2a

∂2u∞0
∂τ2 on σ .

It is indeed possible to prove

Proposition 11. Let u1 ∈ H1(Ω \ σ) be the unique solution to (7.12). There exists a constant C, which
only depends on Ω, σ and a, such that

||∇(u0
ε − u∞0 − εu1)||L2(Ω\σ)2≤ Cε2

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
.

The proof of this is fairly straightforward, and follows by carefully considering the boundary value problem
satisfied by u0

ε−u∞0 −εu1 = ε(u1−u1) . We leave the details to the reader. The fact that u1 degenerates like
a and 1/a when a tends to ∞ and 0 respectively, strongly indicates that the estimate u0

ε − u∞0 = O(aε+ ε
a )

is the best possible. Higher order terms in the Taylor series of u0
ε could be calculated, and they too would

degenerate when a tends to ∞ and 0. This would strongly indicate that no finite Taylor expansion of u0
ε (at

zero) would achieve a uniform approximation to u0
ε – uniform with respect to a that is.

It is interesting to compare the above calculation of the first two terms in the Taylor Series of u0
ε to the

calculation carried out in [7]. In that paper, the authors consider the Neumann version of Problem (2.2)
in the case that aε = a, and they calculate the first two terms in the ε → 0 asymptotic expansion of the
solution to the problem {

−div(γε∇uε) = f in Ω ,

γε
∂uε
∂n = ψ on ∂Ω ,
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which we shall also call uε, since the difference in the type of boundary conditions on ∂Ω plays no role for
the discussion here. γε is as before defined by (2.1). The result in [7] is

(7.13) ∀y ∈ ∂Ω, uε(y) = u∞0 (y) + εũ1(y) + o(ε) .

In this formula, the function ũ1 is defined in terms of the Neumann function N(x, y) of Ω, a polarization
tensor M(x), and the harmonic function u∞0 :

ũ1(y) = 2

∫
σ

(a− 1)M(x)∇u∞0 (x) · ∇xN(x, y) ds(x); y /∈ σ.

The polarization tensor M(x) is for x ∈ σ given by M(x) =

(
1 0
0 1

a

)
in the local basis (τ(x), n(x)), and

the Neumann function is the solution to:{
∆xN(x, y) = δy in Ω,
∂
∂nx

N(x, y) = 1
|∂Ω| on ∂Ω,

where δy is the Dirac distribution centred at x = y. Equivalently, due to the jump relations for single and
double layer potentials (see e.g. [16], Chap. 3), ũ1 ∈ H1(Ω \ σ) is the unique solution (modulo a constant)
to the following problem: 

−∆ũ1 = 0 in Ω \ σ ,
∂ũ1

∂n = 0 on ∂Ω ,

[ũ1] = −2
(
1− 1

a

) ∂u∞0
∂n on σ ,[

∂ũ1

∂n

]
= −2 (a− 1)

∂2u∞0
∂τ2 on σ .

We immediately notice that the boundary value problems satisfied by u1 and ũ1 imply that the difference
u1 − ũ1 is uniformly bounded with respect to a. If the same thing were to happen for higher terms in the
Taylor Series, then it would be very consistent with the fact that the difference uε−u0

ε is uniformly bounded
with respect to a; it would also strongly suggest that no finite Taylor expansion of uε would lead to a uniform
approximation (uniform in a, that is).

8. Derivation of the 1st order approximation of uε

In the previous sections, we have derived a uniform 0th-order approximation (u0
ε, v

0
ε) ∈ Vσ × H1(ω1) to

the couple (uε|Ω\ωε , uε ◦Hε) ∈ H1(Ω\ωε)×H1(ω1). Properly speaking, we only proved that u0
ε is a uniform

approximation of uε|Ω\ωε “far away from the curve σ”, that is, on subsets of Ω of the form Ω \ ωδ, for some

fixed δ > 0. However, the proof of this fact made use of the heuristic approximate guess v0
ε for the potential

(uε ◦Hε) inside the rescaled inhomogeneity.
Relying on the same strategy, we now briefly outline the derivation of a uniform first-order approximation

result for the solution uε of (2.2). We note that the 0th- and first-order analyses turn out to share a lot of
common features; we shall thus for the sake of brevity omit some of the very tedious calculations related to
the latter.

We start from the rescaled form of problem (4.1) as established in Section 4.1.1: the couple (uε|Ω\ωε , uε ◦
Hε) is the unique minimizer of the energy

F 0
ε (u, v) =

1

2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v

∂n

)2

dx−
∫

Ω

fu dx,

among the elements of the space

V 0
ε =

{
(u, v), u ∈ H1(Ω \ ωε), v ∈ H1(ω1), ∀x ∈ σ v(x+ n(x)) = u(x+ εn(x))

v(x− n(x)) = u(x− εn(x))

}
,

that additionnally satisfy u = ϕ on ∂Ω. We have seen that a uniform 0th-order approximation of this couple
(in the sense described above) is (u0

ε, v
0
ε) ∈ V 0, where V 0 is defined in (4.6), u0

ε is defined as the solution to
the minimization problem (4.10), and v0

ε is given by (4.13). For technical convenience, we define the couple
(uε, vε) ∈ H1(Ω \ ωε)×H1(ω1) by the identity

(8.1) (uε|Ω\ωε , uε ◦Hε) = (u0
ε + ε(yε + uε), v

0
ε + ε(wε + vε)) ,
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where yε ∈ H1(Ω \ ωε) denotes the unique solution to the problem
−∆yε = 0 in Ω \ ωε ,
yε = 0 on ∂Ω ,

yε(x+ εn(x)) =
∂u0+

ε

∂n (x)− 1
ε

(
u0
ε(x+ εn(x))− u0+

ε (x)
)

x ∈ σ ,
yε(x− εn(x)) = −∂u

0−
ε

∂n (x)− 1
ε

(
u0
ε(x− εn(x))− u0−

ε (x)
)

x ∈ σ ,

and wε ∈ H1(ω1) is given by the formula

(8.2) ∀x ∈ σ, ∀t ∈ (−1, 1), wε(x+ tn(x)) =
t

2

(
∂u0+

ε

∂n
(x) +

∂u0−
ε

∂n
(x)

)
+

1

2

(
∂u0+

ε

∂n
(x)− ∂u0−

ε

∂n
(x)

)
.

We note that (x± εn(x)) describes ∂ω±ε as x runs through σ. Due to the introduction of these two auxiliary

functions yε and wε, the “unknown” couple (uε, vε) has no “jump” from ∂ωε to ∂ω1, i.e., (uε, vε) lies in V 0
ε .

Note that, using the uniform regularity estimates of Theorem 8 and arguing as we did for the study of the
function zε in Section 6.1, we may easily prove that

(8.3) ||∇yε||L2(Ω)≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε .

From its definition, (uε, vε) is the unique minimizer of the functional

F 1
ε (u, v) :=

1

ε

(
F 0
ε (u0

ε + ε(yε + u), v0
ε + ε(wε + v))− F 0

ε (u0
ε + εyε, v

0
ε + εwε)

)
,

among the couples (u, v) ∈ V 0
ε such that u = 0 on ∂Ω. To find a uniform 0th-order approximation to (uε, vε)

we expand the functional F 1
ε (u, v) as follows:

(8.4) F 1
ε (u, v) =

(
1

2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v

∂n

)2

dx

+

∫
Ω\ωε

∇yε · ∇u dx+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂wε
∂τ

∂v

∂τ
dx+

aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂wε
∂n

∂v

∂n
dx

)
ε

+

∫
Ω\ωε

∇u0
ε · ∇u dx+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂v0
ε

∂τ

∂v

∂τ
dx+

aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂v0
ε

∂n

∂v

∂n
dx−

∫
Ω

fu dx .

We observe that the quadratic part of this energy is the same as that of the 0th-order energy F 0
ε (modulo a

factor of ε). The linear part has two components, correponding to the second line and the third line of (8.4)
respectively. Following this splitting of the linear part we decompose (uε, vε) as

(8.5) (uε, vε) = (u1,ε, v1,ε) + (u2,ε, v2,ε) ,

where (u1,ε, v1,ε) and (u2,ε, v2,ε) ∈ V 0
ε are the unique minimizers of the respective energies F 1,1

ε (u, v) and

F 1,2
ε (u, v), defined by:

(8.6) F 1,1
ε (u, v) =

1

2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂wε
∂τ

+
∂v

∂τ

)2

dx

+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂wε
∂n

+
∂v

∂n

)2

dx+

∫
Ω\ωε

∇yε · ∇u dx ,

and

(8.7) F 1,2
ε (u, v) =

(
1

2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(
∂v

∂n

)2

dx

)
ε

+

∫
Ω\ωε

∇u0
ε · ∇u dx+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂v0
ε

∂τ

∂v

∂τ
dx+

aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂v0
ε

∂n

∂v

∂n
dx−

∫
Ω

fu dx .

Note that the definition of F 1,1
ε slightly differs from the sum of the first two lines of (8.4) by an additive

term that only depends on u0
ε (and a factor of ε), which has no effect on the solution to the corresponding
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minimization problem.

8.1. 0th-order approximation of the couple (u1,ε, v1,ε).

To obtain a 0th-order approximation (u1,ε, v1,ε) of (u1,ε, v1,ε), we follow the same strategy as in Section
4. We use a heuristic argument to build an approximate two-scale minimization problem

(8.8) min
(u,v)∈V 0

u=0 on ∂Ω

F 1,1
ε (u, v).

This problem can now (heuristically) be solved for v in terms of u, leading to a minimization problem featuring
only u. This process yields a candidate (u1,ε, v1,ε) for a uniform 0th-order approximation of (u1,ε, v1,ε). Then
we can rigorously prove a uniform approximation estimate, using arguments similar to those of Section 6.
This estimate would assert that

||u1,ε − u1,ε||L2(Ω+\ωδ) + ||u1,ε − u1,ε||L2
0(Ω−\ωδ) ≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)√
ε ,

with C independent of ε and aε. For brevity we shall not present the proof of this estimate here, instead we
limit ourselves to describing the heuristic derivation of the approximate energy F 1,1

ε .

Arguing as in Section 4, and relying on the estimate (8.3), we approximate the quantity F 1,1
ε (u, v) by

(8.9) F 1,1
ε (u, v) :=

1

2

∫
Ω\σ
|∇u|2 dx+

εaε
2

∫
ω1

(1 + κdΩ−)

(
∂wε
∂τ

+
∂v

∂τ

)2

dx

+
aε
2ε

∫
ω1

1

1 + κdΩ−

(
∂wε
∂n

+
∂v

∂n

)2

dx .

Problem (8.8) can now be rewritten

min
u∈Vσ

u=0 on ∂Ω

{
1

2

∫
Ω\σ
|∇u|2 dx+G1

ε(u)

}
,

where we have defined

(8.10) G1
ε(u):= min

v∈H1(ω1)

v(x+n(x))=u+(x), x∈σ
v(x−n(x))=u−(x), x∈σ

{
εaε
2

∫
ω1

(1 + κdΩ−)

(
∂wε
∂τ

+
∂v

∂τ

)2

dx+
aε
2ε

∫
ω1

1

1 + κdΩ−

(
∂wε
∂n

+
∂v

∂n

)2

dx

}
.

We (heuristically) solve this minimization problem to get an explicit approximate expression for G1
ε(u)

in terms of u. To this end, we notice that G1
ε(u) features two terms with different behavior as ε → 0.

Intuitively, the minimizer vu of this composite energy will to lowest order be determined by the term∫
ω1

1
1+κdΩ−

(
∂wε
∂n + ∂v

∂n

)2
dx. The corresponding Euler-Lagrange equation asserts that vu must satisfy

∀w ∈ H1
0 (ω1),

∫
ω1

1

1 + κdΩ−

(
∂vu
∂n

+
∂wε
∂n

)
∂w

∂n
dx = 0 .

Arguing as in Section 4.1.1 (that is, taking w(x + tn(x)) = φ(x)ψ(t) with arbitrary φ ∈ C∞(σ) and ψ ∈
C∞c (−1, 1), and using Proposition 1) we conclude that the function t 7→ vu(x+ tn(x)) is affine for any fixed
x ∈ σ. The boundary conditions of problem (8.10) now give

∀x ∈ σ, t ∈ (−1, 1), vu(x+ tn(x)) =
t

2
[u](x) +

1

2
(u+(x) + u−(x)) .

Inserting this expression into (8.10), and using (8.2) as well as Proposition 1, we arrive at the minimization
problem

(8.11) min
u∈Vσ

u=0 on ∂Ω

E1
ε (u),
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where E1
ε (u) := F 1,1

ε (u, vu) has the following expression

E1
ε (u) :=

1

2

∫
Ω\σ
|∇u|2 dx+

aε
4ε

∫
σ

(
u+ +

∂u0+
ε

∂n
−
(
u− − ∂u0−

ε

∂n

))2

ds

+
εaε
3

∫
σ

(
∂

∂τ

(
u+ +

∂u0+
ε

∂n

))2

+

(
∂

∂τ

(
u− − ∂u0−

ε

∂n

))2

+

(
∂

∂τ

(
u+ +

∂u0+
ε

∂n

))(
∂

∂τ

(
u− − ∂u0−

ε

∂n

))
ds .

The solution u1,ε to this minimization problem is our candidate for a uniform approximation to u1,ε. The
function v1,ε ∈ H1(ω1) defined in the rescaled inhomogeneity by

∀x ∈ σ, t ∈ (−1, 1), v1,ε(x+ tn(x)) =
t

2
[u1,ε](x) +

1

2
(u+

1,ε(x) + u−1,ε(x))

is our candidate for an approximation to v1,ε.

8.2. 0th-order approximation of the couple (u2,ε, v2,ε) and the uniform first order approximation
result.

Let us now turn our attention to the uniform approximation of the solution (u2,ε, v2,ε) to the problem

(8.12) min
(u,v)∈V 0

ε
u=0 on ∂Ω

F 1,2
ε (u, v) ,

where the energy F 1,2
ε (u, v) is given by (8.7). Performing calculations somewhat more complicated than

those in the previous section it is possible heuristically to arrive at a candidate (u2,ε, v2,ε) for a uniform
approximation. We shall not present these calculations here, but only state the result:

The function u2,ε is the solution to the problem

(8.13) min
u∈Vσ

u=0 on ∂Ω

E2
ε (u) ,

where the functional E2
ε is given by

(8.14) E2
ε (u) =

1

2

∫
Ω\σ
|∇u|2 dx+

εaε
3

∫
σ

((
∂u+

∂τ

)2

+

(
∂u−

∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds+

aε
4ε

∫
σ

(u+ − u−)2 ds

+

∫
σ

∂2u0+
ε

∂τ2
u+ ds+

∫
σ

∂2u0−
ε

∂τ2
u− ds+

1

4

∫
σ

κ

[
∂u0

ε

∂n

]
(u+ − u−) ds .

The function v2,ε ∈ H1(ω1) is defined as

(8.15) ∀x ∈ σ, ∀t ∈ (−1, 1), v2,ε(x+ tn(x)) =
t

2
[u2,ε] (x) +

1

2

(
u+

2,ε(x) + u−2,ε(x)
)

+ w2,ε ,

the function w2,ε ∈ H1(ω1) being given by

(8.16) ∀x ∈ σ,
{

w2,ε(x+ tn(x)) = t2a+(x) + tb(x) + c(x), ∀t ∈ (0, 1), x ∈ σ ,
w2,ε(x+ tn(x)) = t2a−(x) + tb(x) + c(x), ∀t ∈ (−1, 0), x ∈ σ ,

with

a±(x) = −εκ(x)

2aε

∂u0±
ε

∂n
(x) +

ε

4

(
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
(x), b(x) =

εκ(x)

4aε

[
∂u0

ε

∂n

]
(x),

c(x) =
εκ(x)

4aε

(
∂u0+

ε

∂n
(x) +

∂u0−
ε

∂n
(x)

)
− ε

4

(
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
(x) .

It is then possible to prove that

||u2,ε − u2,ε||L2(Ω+\ωδ) + ||u2,ε − u2,ε||L2
0(Ω−\ωδ) ≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)√
ε ,

with C independent of ε and aε. Combining the decompositions (8.1) and (8.5) with (8.3) and the above
estimates for u1,ε − u1,ε and u2,ε − u2,ε we would now arrive at the following theorem
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Theorem 12. In the situation described in Section 2.1, let δ > 0 be a fixed positive real number, f ∈ Fδ,
and ϕ ∈ H 1

2 (∂Ω). Let uε ∈ H1(Ω), be the unique solution of the minimization problem (4.1), let u0
ε be the

unique solution to (4.10)), and u1,ε, u2,ε be the unique solutions of (8.11) and (8.13). Then the following
estimates hold for ε > 0 sufficiently small

||uε − u0
ε − ε(u1,ε + u2,ε)||L2(Ω+\ωδ)≤ C

(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε3/2 ,

||uε − u0
ε − ε(u1,ε + u2,ε)||L2

0(Ω−\ωδ)≤ C
(
||f ||L2(Ω)+||ϕ||H1/2(∂Ω)

)
ε3/2 ,

where the constant C depends only on Ω and σ, and is independent of f , ϕ, ε and the sequence aε.

Appendix A. Proof of the uniform regularity estimates for u0
ε

This appendix is devoted to the proof of Theorem 8. For the reader’s convenience, let us first recall
a useful characterization of W 1,p spaces. Let Ω ⊂ R2 be an open set, and suppose 1 < p ≤ ∞; define
1 ≤ p′ <∞ by the relation 1

p + 1
p′ = 1. For any function u ∈ Lp(Ω), any open subset V b Ω and any vector

h ∈ R2 with |h|< dist(V, ∂Ω), we define the difference quotient Dhu ∈ Lp(V ) by

∀x ∈ V, Dhu(x) =
u(x+ h)− u(x)

|h|
.

If Ω and V are both convex, then it is fairly simple to prove that

||Dhu||Lp(V )≤ ||∇u||Lp(Ω) ,

for any vector h ∈ R2 with |h|< dist(V, ∂Ω). The related complete characterization of W 1,p spaces we have
in mind is the following (see [8], Prop. 9.3)

Proposition 13. Let u ∈ Lp(Ω). Then the following assertions are equivalent

(i) u belongs to W 1,p(Ω) ,
(ii) there exists a constant C > 0 such that∣∣∣∣∫

Ω

u
∂v

∂xi
dx

∣∣∣∣ ≤ C||v||Lp′ (Ω), for any v ∈ C∞c (Ω), ∀i = 1, 2 ,

(iii) there exists a constant C > 0 such that, for any open subset V b Ω,

lim sup
h→0

||Dhu||Lp(V )≤ C .

Furthermore, the smallest constant C satisfying (ii) or (iii) is C = ||∇u||Lp(Ω).

We are now in position to prove the desired result.

Proof of Theorem 8. The proof of this result is an adaptation of that of Theorem 9.25 in [8], and relies on
the method of translations. First we observe that, by a standard argument of partition of unity, it is enough
to prove that u0

ε belongs to H2(V \ σ) and that the estimate (5.11) holds with V \ σ instead of Ω \ σ, where
V is a sufficiently small (convex) neighborhood in Ω of an arbitrary point x0 ∈ Ω. Three cases must be
distinguished:

(i) x0 belongs to Ω \ σ ,
(ii) x0 lies on ∂Ω ,

(iii) x0 lies on σ .

The uniform estimate (5.12) arises as a consequence of the treatment of case (iii).

• Case (i): Let V and W be open convex subsets of Ω+ (or Ω−) with V b W b Ω+ (or Ω−). Let
χ ∈ C∞c (Ω \ σ) be a smooth cutoff function with

0 ≤ χ ≤ 1, χ ≡ 1 on V, and χ ≡ 0 on Ω \W .
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Then, for any test function v ∈ H1(Ω \ σ),

(A.1)

∫
W

∇
(
χu0

ε

)
· ∇v dx =

∫
W

χ∇u0
ε · ∇v dx+

∫
W

u0
ε∇χ · ∇v dx

=

∫
W

∇u0
ε · ∇ (χv) dx−

∫
W

v∇u0
ε · ∇χ dx+

∫
W

u0
ε∇χ · ∇v dx

=

∫
W

fχv dx−
∫
W

v∇u0
ε · ∇χ dx+

∫
W

u0
ε∇χ · ∇v dx ,

,

where we used the variational formulation (5.1) with a test function whose support is compact in Ω \ σ.
Let us now define wε := χu0

ε. Our goal is to use the method of translations to show that ∇wε belongs to
H1(Ω \ σ). Let h ∈ R2 be any vector of sufficiently small length, and let us insert D−hDhwε ∈ H1(Ω \ σ) as
a test function in (A.1). The result is

(A.2)

∫
Ω\σ
|∇Dhwε|2 dx =

∫
Ω\σ

Dh(χf)Dhwε dx−
∫

Ω\σ
(D−hDhwε)∇u0

ε · ∇χ dx

+

∫
Ω\σ

Dhu
0
ε∇χ(x+ h) · ∇Dhwε dx+

∫
Ω\σ

u0
ε∇Dhχ · ∇Dhwε dx .

Here we have used the following formula for the difference quotient of a product

Dh(uv)(x) = Dhu(x)v(x+ h) + u(x)Dhv(x) ,

as well as “discrete integration by parts” for the difference quotients (which is nothing but change of variables
in the corresponding integrals). We recall that for h sufficiently small (less than 1

2dist(W,∂(Ω \ σ)) ), Dhwε

has compact support in some convex W̃ , with W b W̃ b Ω+ (or Ω−). From (A.2) we now obtain

(A.3)

lim sup
h→0

||∇Dhwε||2L2(W̃ )
≤ C lim sup

h→0
||Dh(χf)||

H−1(W̃ )
lim sup
h→0

||Dhwε||H1(W̃ )

+ C lim sup
h→0

||D−hDhwε||L2(W̃ )
||∇u0

ε||L2(W̃ )

+ C (lim sup
h→0

||Dhu
0
ε||L2(W̃ )

+||u0
ε||L2(W̃ )

) lim sup
h→0

||∇Dhwε||L2(W̃ )

≤ C(||u0
ε||L2(W̃ )

+||∇u0
ε||L2(W̃ )

) lim sup
h→0

||∇Dhwε||L2(W̃ )

+ C||f ||L2(Ω) lim sup
h→0

||Dhwε||H1(W̃ )
.

Using the Poincaré inequality for H1(W̃ ) functions vanishing on ∂W̃ , we have that there exists a constant

C which only depends on W̃ such that

||Dhwε||H1(W̃ )
≤ C||∇Dhwε||L2(W̃ )

.

From (A.3) we conclude that

(A.4) lim sup
h→0

||∇Dhwε||2L2(W̃ )
≤ C(||f ||L2(Ω)+||u0

ε||L2(W̃ )
+||∇u0

ε||L2(W̃ )
) lim sup

h→0
||∇Dhwε||L2(W̃ )

.

If W̃ b Ω+ then, due to Lemma 7,

||u0
ε||L2(W̃ )

+||∇u0
ε||L2(W̃ )

≤ ||u0
ε||L2(Ω+)+||∇u0

ε||L2(Ω+)

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) .

On the other hand, if W̃ is a subset of Ω−, then we have a priori no bound on ||u0
ε||L2(Ω−). To circumvent

this we note that from the very beginning, we could re-write the entire argument by replacing u0
ε in the

various integral inequalities by u0
ε −m, where m is an arbitrary constant; this includes the very definition of

wε which now becomes wε = χ(u0
ε −m). We select m = 1

|Ω−|
∫

Ω−
u0
ε dx, and from the “revised” version of

(A.4) we now obtain

lim sup
h→0

||∇Dhwε||L2(W̃ )
≤ C(||f ||L2(Ω)+||u0

ε −m||L2(Ω−)+||∇u0
ε||L2(Ω−))

≤ C(||f ||L2(Ω)+||∇u0
ε||L2(Ω−))

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) ,
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owing to the Poincaré-Wirtinger inequality and Lemma 7. Whether W̃ is a subset of Ω+ or Ω−, Proposition
13 now allows us to conclude that all the entries of the Hessian matrix ∇2wε belong to L2(W ), and that the
following inequality holds

|u0
ε|H2(V )≤ |wε|H2(W )≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) .

(ii) The proof in this case is similar to that of (i), modulo the usual changes of the method of translation
due to the presence of the boundary (again, see [8], Theorem 9.25). We omit the details and concentrate
instead on those of case (iii).

(iii) Let V b Ω be a sufficiently small convex neighborhood of the point x0 ∈ σ. Let W be another
convex open subset of Ω such that V bW b Ω, and let χ ∈ C∞c (Ω) be a smooth cutoff function such that

0 ≤ χ ≤ 1, χ ≡ 1 on V, χ ≡ 0 on Ω \W .

To simplify notations, we assume that σ ∩ W is flat (the general case being no more difficult, but more
involved as far as notations are concerned): the tangent vector τ to σ is the coordinate vector ex, and the
normal vector n, pointing outward from Ω−, is ey. Following the steps of the proof of (i), let wε = χ(u0

ε−m),
for some constant m to be specified later. A simple calculation reveals that wε satisfies

(A.5)

∫
Ω\σ
∇wε · ∇v dx+

2εaε
3

∫
σ

(
∂w+

ε

∂τ

∂v+

∂τ
+
∂w−ε
∂τ

∂v−

∂τ
+

1

2

(
∂w+

ε

∂τ

∂v−

∂τ
+
∂w−ε
∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(w+
ε − w−ε )(v+ − v−) ds =∫

Ω\σ
gεv dx+

∫
Ω\σ

hε · ∇v dx−
2εaε

3

∫
σ

∂χ

∂τ

(
v+ ∂u

0+
ε

∂τ
+ v−

∂u0−
ε

∂τ
+

1

2

(
v+ ∂u

0−
ε

∂τ
+ v−

∂u0+
ε

∂τ

))
ds

+
2εaε

3

∫
σ

∂χ

∂τ

(
(u0+
ε −m)

∂v+

∂τ
+ (u0−

ε −m)
∂v−

∂τ
+

1

2

(
(u0+
ε −m)

∂v−

∂τ
+ (u0−

ε −m)
∂v+

∂τ

))
ds ,

for all v ∈ Vσ,0. Here gε = fχ−∇u0
ε · ∇χ and hε = (u0

ε −m)∇χ.
Let us introduce m0 = 1

|σ|
∫
σ
u0−
ε ds and m1 = 1

|σ|
∫
σ
u0+
ε ds, and let wiε be defined as wiε = χ(u0

ε −mi),

i = 0, 1. We now use the method of translations to show that the tangential derivatives
∂w0

ε

∂τ and
∂w1

ε

∂τ belong

to H1(W−) and H1(W+), respectively. To this end, let h = tτ = tex, for t > 0 sufficiently small, and choose
v = D−hDhw

0
ε in W− and v = 0 in W+, and then v = 0 in W− and v = D−hDhw

1
ε in W+ as test functions

in (A.5). This yields

(A.6)

∫
Ω−
|∇Dhw

0
ε |2 dx+

2εaε
3

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+
1

2

∂Dhw
0+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
0+
ε −Dhw

0−
ε )(−Dhw

0−
ε ) ds = −2εaε

3

∫
σ

∂χ

∂τ
(x+ h)Dhw

0−
ε

(
∂Dhu

0−
ε

∂τ
+

1

2

∂Dhu
0+
ε

∂τ

)
ds

− 2εaε
3

∫
σ

∂Dhχ

∂τ
Dhw

0−
ε

(
∂u0−

ε

∂τ
+

1

2

∂u0+
ε

∂τ

)
ds+

2εaε
3

∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
0−
ε

∂τ

(
Dhu

0−
ε +

1

2
Dhu

0+
ε

)
ds

+
2εaε

3

∫
σ

∂Dhχ

∂τ

∂Dhw
0−
ε

∂τ

(
(u0−
ε −m0) +

1

2
(u0+
ε −m0)

)
ds+

∫
Ω−

DhgεDhw
0
ε dx+

∫
Ω−

Dhh
0
ε · ∇Dhw

0
ε dx ,
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where h0
ε = (u0

ε −m0)∇χ, and

(A.7)

∫
Ω+

|∇Dhw
1
ε |2 dx+

2εaε
3

∫
σ

((
∂Dhw

1+
ε

∂τ

)2

+
1

2

∂Dhw
1+
ε

∂τ

∂Dhw
1−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )Dhw

1+
ε ds = −2εaε

3

∫
σ

∂χ

∂τ
(x+ h)Dhw

1+
ε

(
∂Dhu

0+
ε

∂τ
+

1

2

∂Dhu
0−
ε

∂τ

)
ds

− 2εaε
3

∫
σ

∂Dhχ

∂τ
Dhw

1+
ε

(
∂u0+

ε

∂τ
+

1

2

∂u0−
ε

∂τ

)
ds+

2εaε
3

∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
1+
ε

∂τ

(
Dhu

0+
ε +

1

2
Dhu

0−
ε

)
ds

+
2εaε

3

∫
σ

∂Dhχ

∂τ

∂Dhw
1+
ε

∂τ

(
(u0+
ε −m1) +

1

2
(u0−
ε −m1)

)
ds+

∫
Ω+

DhgεDhw
1
ε dx+

∫
Ω+

Dhh
1
ε · ∇Dhw

1
ε dx ,

where h1
ε = (u0

ε − m1)∇χ. Note that, by performing an integration by parts on the first integral in the
right-hand side of (A.6), we can rewrite

(A.8)∫
σ

∂χ

∂τ
(x+ h)Dhw

0−
ε

(
∂Dhu

0−
ε

∂τ
+

1

2

∂Dhu
0+
ε

∂τ

)
ds = −

∫
σ

∂2χ

∂τ2
(x+ h)Dhw

0−
ε

(
Dhu

0−
ε +

1

2
Dhu

0+
ε

)
ds

−
∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
0−
ε

∂τ

(
Dhu

0−
ε +

1

2
Dhu

0+
ε

)
ds ;

a similar identity holds for the first integral in the right-hand side of (A.7). Combining (A.6), (A.7) and
(A.8), we obtain

(A.9)

∫
Ω−
|∇Dhw

0
ε |2 dx+

2εaε
3

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+
1

2

∂Dhw
0+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
0+
ε −Dhw

0−
ε )(−Dhw

0−
ε ) ds ≤

Cεaε||Dhw
0−
ε ||L2(σ)

(∣∣∣∣Dhu
0−
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣Dhu

0+
ε

∣∣∣∣
L2(σ∩W )

+

∣∣∣∣∣∣∣∣∂u0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

)

+ Cεaε

∣∣∣∣∣∣∣∣∂Dhw
0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

(∣∣∣∣Dhu
0−
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣Dhu

0+
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣u0−

ε −m0

∣∣∣∣
L2(σ)

+
∣∣∣∣u0+

ε −m0

∣∣∣∣
L2(σ)

)
+ ||Dhgε||H−1(W−)||Dhw

0
ε ||H1(W−)+||Dhh

0
ε||L2(W−)||∇Dhw

0
ε ||L2(W−) ,

and

(A.10)

∫
Ω+

|∇Dhw
1
ε |2 dx+

2εaε
3

∫
σ

((
∂Dhw

1+
ε

∂τ

)2

+
1

2

∂Dhw
1+
ε

∂τ

∂Dhw
1−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )Dhw

1+
ε ds ≤

Cεaε||Dhw
1+
ε ||L2(σ)

(∣∣∣∣Dhu
0−
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣Dhu

0+
ε

∣∣∣∣
L2(σ∩W )

+

∣∣∣∣∣∣∣∣∂u0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

)

+ Cεaε

∣∣∣∣∣∣∣∣∂Dhw
1+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

(∣∣∣∣Dhu
0−
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣Dhu

0+
ε

∣∣∣∣
L2(σ∩W )

+
∣∣∣∣u0−

ε −m1

∣∣∣∣
L2(σ)

+
∣∣∣∣u0+

ε −m1

∣∣∣∣
L2(σ)

)
+ ||Dhgε||H−1(W+)||Dhw

1
ε ||H1(W+)+||Dhh

1
ε||L2(W+)||∇Dhw

1
ε ||L2(W+).

Some of the terms in the right hand sides of the above inequalities can be estimated further. Owing to
Poincaré’s inequality, there exists a constant C (which only depends on W and σ) such that for any function
u ∈ H1(W \ σ) with u = 0 on ∂W ,

(A.11) ||u||H1(W±)≤ C||∇u||L2(W±) .
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Similarly, there exists a constant C (still depending only on W and σ) such that for any function u ∈ H1(σ)
with u = 0 on ∂W ∩ σ,

(A.12) ||u||L2(W∩σ)≤ C
∣∣∣∣∣∣∣∣∂u∂τ

∣∣∣∣∣∣∣∣
L2(W∩σ)

.

From Proposition 13 (and the equivalent for σ) we conclude that

∀u ∈ H1(σ), lim sup
h=tex
t→0

||Dhu||L2(σ∩W )≤
∣∣∣∣∣∣∣∣∂u∂τ

∣∣∣∣∣∣∣∣
L2(σ)

,(A.13)

∀u ∈ H1(Ω \ σ), lim sup
h=tex
t→0

||Dhu||L2(W\σ)≤ ||∇u||L2(Ω\σ) .

In particular we deduce from (A.13) that

(A.14) lim sup
h=tex
t→0

||Dhu
0±
ε ||L2(σ∩W )≤

∣∣∣∣∣∣∣∣∂u0±
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

.

Using (A.11), we obtain that there exists a constant C, independent of ε and aε, such that

(A.15) ||Dhw
0
ε ||H1(W−)≤ C||∇Dhw

0
ε ||L2(W̃−)

, and ||Dhw
1
ε ||H1(W+)≤ C||∇Dhw

1
ε ||L2(W̃+)

.

From the a priori estimates of Lemma 7 it also follows that

(A.16) lim sup
h=tex
t→0

[
||Dhgε||H−1(W\σ)+||Dhh

0
ε||L2(W−)+||Dhh

1
ε||L2(W+)

]
≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω)) .

From the Poincaré-Wirtinger inequality on σ, we have

(A.17) ||u0−
ε −m0||L2(σ)≤ C

∣∣∣∣∣∣∣∣∂u0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

, and ||u0+
ε −m1||L2(σ)≤ C

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

.

We now sum (A.9) and (A.10), noticing that (Dhw
1+
ε − Dhw

1−
ε ) = (Dhw

0+
ε − Dhw

0−
ε ) on σ. Taking into

account (A.15), (A.16), (A.17) and (A.14), we arrive at

(A.18) lim sup
h=tex
t→0

[∫
Ω−
|∇Dhw

0
ε |2 dx+

∫
Ω+

|∇Dhw
1
ε |2 dx+

aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds

+
2εaε

3

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+

(
∂Dhw

1+
ε

∂τ

)2

+
1

2

(
∂Dhw

0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds

]
≤

Cεaε lim sup
h=tex
t→0

(∣∣∣∣∣∣∣∣∂Dhw
0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂Dhw
1+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

)

×

(∣∣∣∣∣∣∣∣∂u0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+ ||u0+
ε −m0||L2(σ)+||u0−

ε −m1||L2(σ)

)
+ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) lim sup

h=tex
t→0

(
||∇Dhw

0
ε ||L2(W̃−)

+||∇Dhw
1
ε ||L2(W̃+)

)
.

Some terms in this last expression still need to be rewritten. We observe that

(A.19)
(aεε )

1
2 |m1 −m0| ≤ C(aεε )

1
2 ||u0+

ε − u0−
ε ||L2(σ)

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)) ,

where we used the uniform a priori estimates of Lemma 7. This inequality, in combination with the fact that

Dhw
0+
ε −Dhw

1+
ε = (m1 −m0)Dhχ, and Dhw

1−
ε −Dhw

0−
ε = (m0 −m1)Dhχ ,
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allows us to rewrite the last integral in the left-hand side of (A.18) as follows

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+

(
∂Dhw

1+
ε

∂τ

)2

+
1

2

(
∂Dhw

0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds =

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+

(
∂Dhw

1+
ε

∂τ

)2

+
∂Dhw

1+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds+

1

2
(m1−m0)

∫
σ

∂Dhχ

∂τ

(
∂Dhw

0−
ε

∂τ
− ∂Dhw

1+
ε

∂τ

)
ds .

It follows, using the algebraic identity (5.2) and (A.19), that there exist two positive constants C1 and C2,
which do not depend on ε or aε, such that

(A.20) εaε

∫
σ

((
∂Dhw

0−
ε

∂τ

)2

+

(
∂Dhw

1+
ε

∂τ

)2

+
1

2

(
∂Dhw

0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds ≥

C1εaε

(∣∣∣∣∣∣∣∣∂Dhw
0−
ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ)

+

∣∣∣∣∣∣∣∣∂Dhw
1+
ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ)

)

− C2(ε3aε)
1
2 (||f ||L2(Ω)+||ϕ||H1/2(∂Ω))

(∣∣∣∣∣∣∣∣∂Dhw
0−
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

+

∣∣∣∣∣∣∣∣∂Dhw
1+
ε

∂τ

∣∣∣∣∣∣∣∣
L2(σ)

)
.

We now estimate the next to last integral in the left-hand side of (A.18). It may be rewritten

aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds =

aε
2ε
||Dhw

1+
ε −Dhw

1−
ε ||2L2(σ)+

aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1−
ε −Dhw

0−
ε ) ds ,

with ∣∣∣∣aε2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1−
ε −Dhw

0−
ε ) ds

∣∣∣∣
=
aε
2ε
|m1 −m0|

∣∣∣∣∫
σ

(Dhw
1+
ε −Dhw

1−
ε )Dhχ ds

∣∣∣∣
≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω))(

aε
ε

)
1
2 ||Dhw

1+
ε −Dhw

1−
ε ||L2(σ) ,

and so

(A.21)
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds ≥ aε

2ε
||Dhw

1+
ε −Dhw

1−
ε ||2L2(σ)

− C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω))(
aε
ε

)
1
2 ||Dhw

1+
ε −Dhw

1−
ε ||L2(σ) .

Turning to the right-hand side of (A.18), we have

(A.22)

(εaε)
1
2

(
||u0+

ε −m0||L2(σ)+||u0−
ε −m1||L2(σ)

)
≤ C(εaε)

1
2

(
||u0+

ε −m1||L2(σ)+||u0−
ε −m0||L2(σ)+|m1 −m0|

)
≤ C(εaε)

1
2

(∣∣∣∣∣∣∂u0+
ε

∂τ

∣∣∣∣∣∣
L2(σ)

+
∣∣∣∣∣∣∂u0−

ε

∂τ

∣∣∣∣∣∣
L2(σ)

)
+ C(aεε )

1
2 |m1 −m0|

≤ C(||f ||L2(Ω)+||ϕ||H1/2(∂Ω)),
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due to (A.19) and the uniform a priori estimates of Lemma 7. Here we have also used that εaε ≤ aε
ε .

Combining (A.18), (A.20), (A.21), (A.22), and using Lemma 7 we finally get

(A.23) lim sup
h=tex , t→0



||∇Dhw
0
ε ||2L2(Ω−)2+||∇Dhw

1
ε ||2L2(Ω+)2

+εaε

(∣∣∣∣∣∣∣∣∂Dhw
1+
ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ)

+

∣∣∣∣∣∣∣∣∂Dhw
0−
ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ)

)

+
aε
2ε
||Dhw

1+
ε −Dhw

1−
ε ||2L2(σ)



1
2

≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω)) .

In particular

lim sup
h=tex , t→0

(
||∇Dhw

0
ε ||L2(Ω−)+||∇Dhw

1
ε ||L2(Ω+)

)
≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω)),

from which Proposition 13 allows us to conclude that
∂w0

ε

∂x =
∂w0

ε

∂τ ∈ H
1(W−) and

∂w1
ε

∂x =
∂w1

ε

∂τ ∈ H
1(W+),

with the estimate∣∣∣∣∣∣∣∣∂u0
ε

∂x

∣∣∣∣∣∣∣∣
H1(V \σ)

≤
∣∣∣∣∣∣∣∣∂w0

ε

∂x

∣∣∣∣∣∣∣∣
H1(W−)

+

∣∣∣∣∣∣∣∣∂w1
ε

∂x

∣∣∣∣∣∣∣∣
H1(W+)

≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω)) ,

the constant C being independent of ε and aε.

We have to obtain the corresponding estimate for
∂u0

ε

∂y . First∣∣∣∣∣∣∣∣ ∂2u0
ε

∂x∂y

∣∣∣∣∣∣∣∣
L2(V \σ)2

≤
∣∣∣∣∣∣∣∣∂u0

ε

∂x

∣∣∣∣∣∣∣∣
H1(V \σ)2

≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω)) .

To get control of
∂2u0

ε

∂y2 , we go back to the original equation (5.4) satisfied by u0
ε

∂2u0
ε

∂y2
= −f − ∂2u0

ε

∂x2
in the sense of distributions on V \ σ .

These two observations lead to a uniform H1(V \ σ) estimate for
∂u0

ε

∂y , and thus to the desired uniform

H2(V \ σ) seminorm estimate for u0
ε. From (A.23) it also follows that

εaε

(∣∣∣∣∣∣∣∣∂2u0+
ε

∂τ2

∣∣∣∣∣∣∣∣2
L2(σ∩V )

+

∣∣∣∣∣∣∣∣∂2u0−
ε

∂τ2

∣∣∣∣∣∣∣∣2
L2(σ∩V )

)
+
aε
ε

∣∣∣∣∣∣∣∣∂u0+
ε

∂τ
− ∂u0−

ε

∂τ

∣∣∣∣∣∣∣∣2
L2(σ∩V )

≤ C(||ϕ||H1/2(∂Ω)+||f ||L2(Ω))
2 ,

and this completes the proof of Theorem 8. �

Remark 10. In this proof, we relied in a crucial way on the ordering εaε ≤ aε
ε between the coefficients

appearing in the approximate energy (4.12). We do not know whether the similar uniform regularity estimate
holds in other regimes of coefficients.

Acknowledgements.
CD was partially supported by NSF grant DMS-12-11330 while being a postdoctoral visitor at Rutgers

University. The work of MV was supported by the NSF IR/D program while serving at the National Science
Foundation. Any opinion, findings, and conclusions or recommendations expressed in this paper are those
of the authors, and do not necessarily reflect the views of the National Science Foundation.

References

[1] E. Acerbi and G. Buttazzo, Reinforcement problems in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non
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