SHAPE OPTIMIZATION USING A LEVEL SET BASED MESH EVOLUTION

METHOD: AN OVERVIEW AND TUTORIAL

C. DAPOGNY!, F. FEPPON?

I Univ. Grenoble Alpes, CNRS, Grenoble INP', LJK, 38000 Grenoble, France

2 Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

ABSTRACT. This article revolves around a recent numerical framework for shape and topology optimization,
which features an exact mesh of the shape at each iteration of the process, while still leaving the room for
an arbitrary evolution of the latter (including changes in its topology). In a nutshell, two complementary
representations of the shape are combined: on the one hand, it is meshed exactly, which allows for precise
mechanical calculations based on the finite element method; on the other hand, it is described implicitly,
using the level set method, which makes it possible to track its evolution in a robust way. In the first part
of this work, we overview the main aspects of this numerical strategy. After a brief presentation of some
necessary background material — related to shape optimization and meshing, among others — we describe the
numerical schemes involved, notably when it comes to the practice of the level set method, the remeshing
algorithms, and the considered optimization solver. This strategy is illustrated with 2d and 3d numerical
examples in various physical contexts. In the second part of this article, we propose a simple albeit efficient
python-based implementation of this framework. The code is described with a fair amount of details, and it
is expected that the reader can easily elaborate upon the presented examples to tackle his own problems.

CONTENTS

1. Introduction
2. Presentation of the shape optimization framework
2.1. A model shape optimization problem in the context of structural mechanics
2.2. The boundary variation method of Hadamard
2.3. An abstract shape optimization algorithm
3. Meshing aspects of shape optimization
3.1. Basic notions about meshes
3.2, “Geometric” shape optimization
3.3. Level set methods for shape and topology optimization
4. The level-set based mesh evolution method for shape and topology optimization
4.1. General description of the method
4.2. Calculation of the signed distance function
4.3. Advection of the level set function
4.4. Using remeshing to pass from a level set to a meshed representation of a shape
4.5. Extension - regularization of shape derivatives via the Hilbertian method
4.6. A null space algorithm for constrained optimization
5. Numerical illustrations
5.1. Optimization of the shape of a two-dimensional crane
5.2. Minimum compliance problem in thermoelasticity
5.3. Lift-drag topology optimization for three-dimensional aerodynamic design
5.4. Optimal design of a three-dimensional fluid heating device
6. Conclusion and perspectives
Appendix A. Manual of the companion code
A.1. Description of the 2d cantilever test-case

Unstitute of Engineering Univ. Grenoble Alpes

© 00~ ~J U Wi

—
o

13
13
14
14
16
19
21
23
23
23
26
28
31
33
33

A.2. Getting started: download and installation of the files 34

A.3. Global architecture of the program 35
A.4. Overview of the global strategy: description of the file main.py 35
A.5. Description of the two files dedicated to the specification of the global variables and paths
to executables 41
A.6. Creation of the initial geometry and specification of the test case 43
A.7. External calls to the libraries mshdist, advection and mmg 44
A.8. Mechanical calculations 45
A.9. Calculation of a descent direction 47
A.10. Elaborations upon this code 49
References o7

1. INTRODUCTION

The scarcity and the cost of resources such as raw materials and energy make it ever more necessary to
tailor the design of physical devices from the early stages of design, so that they achieve their purpose
with the minimum amount of constituent material and input power. For this reason, shape and topology
optimization has aroused a tremendous enthusiasm in both academic and industrial communities, as a set of
fully automated algorithms for predicting optimized designs with respect to physical requirements, see e.g.
[13, 15, 23, 53, 80].

From the mathematical point of view, shape and topology optimization problems show up under the
generic form
G(Q) =0,
H(Q) <0,
where the objective and the equality and inequality constraint functionals J(Q2), G(€2) and H () depend on
the optimized shape €2 in a possibly very intricate way: in concrete applications, they involve a taste of the
physical behavior of €2 through the solution to a partial differential equation posed on 2. For instance,

e When © accounts for a mechanical structure subjected to prescribed loads, J(€2), G(©2) and H(Q)
bring into play the elastic displacement, characterized as the solution to the linear elasticity system
posed on £;

e When 2 represents a fluid duct, J(2), G(Q) and H(Q2) depend on the velocity of the fluid, which is
governed by the Stokes or the Navier-Stokes equations on €.

min J(Q) s.. {

Leaving aside theoretical issues, regarding for instance the existence of an optimal solution (a purpose for
which we refer to e.g. [29, 67]), the numerical treatment of such problems is classically plagued by the need to
reconcile two antagonistic needs. On the one hand, the evaluation of the objective and constraint functionals
J(Q), G(Q), H(Q) and the calculation of their sensitivities with respect to “small” variations of the design
require to solve one or several partial differential equations posed on 2. This task is typically accomplished
by using the finite element method, which in turn relies on a high-quality mesh 7 of . On the other hand,
the update of the shape 2 between successive stages of the optimization process, which is typically realized
by deforming 2 according to a velocity field 6 : R — R, is a difficult operation to translate in terms of a
mesh of €2, since the latter very likely becomes degenerate or even invalid in the course of such process.

This difficulty of finding a numerical representation of the shape which is amenable to all the operations of
a shape and topology optimization workflow has been acknowledged as a genuine bottleneck since the early
days of shape optimization. It is also encountered in multiple disciplines such as inverse problems, image
processing, etc., see for instance Chap. 23 in [60] about this point. Various paradigms have been thought of
to overcome this issue; let us notably mention two of them:

e Relaxation methods replace the parametrization of the shape and topology optimization problem by
classical “black-and-white” designs) — or equivalently their characteristic function, taking the values
0 and 1 outside and inside €2 respectively — by “grayscale” density functions h : D — [0, 1] defined on
a large “hold-all” domain D (and possibly a microstructure tensor, describing the local microscopic
structure of the shape). This change of perspectives can be rigorously justified by the mathematical

2

theory of homogenization [4, 3, 74], which has inspired simplified, heuristic variants of “classical”
shape optimization problems such as the popular SIMP framework in mechanical engineering, see
[22, 23],
e Eulerian methods, such as the level set method [11, 87, 94, | or the phase-field method [24, 27,
, 99] bring into play a fixed mesh of a large “hold-all” domain D. The sought shape €2 is defined
implicitly, in terms of quantities defined on the whole domain D. For instance, the level set method
features shapes defined as negative subdomains {z € D, ¢(z) < 0} of functions ¢ : D — R, see
Section 3.3.1 below for more details.

The aforementioned methods alleviate the need to track the evolution of a mesh of the optimized shape €2, but
this comes at a price: the fact that no proper mesh of € is available raises the need for an approximation of
the partial differential equations characterizing its physical behavior, or for an advanced and often intrusive
finite element method tailored for implicitly-defined domains, such as the eXtended Finite Element Method
(X-FEM) [50], or the cut-FEM method [32].

In this article, we overview a recent mesh evolution framework introduced in [5, 6, 7], which allows to
describe arbitrarily large deformations of the shape throughout the process, and which at the same time
features an exact, well-shaped mesh of the latter. This framework leverages two complementary represen-
tations of shapes: on the one hand, they are meshed exactly, and so accurate mechanical computations can
be conducted by standard finite element methods and solvers used in a “black-box” fashion. On the other
hand, they are represented by means of the level set method on a larger, fixed computational domain, which
makes it possible to account for arbitrarily large deformations. The core of this strategy is a set of numerical
algorithms allowing to switch from one of these representations to the other, and so to consistently use that
which is most relevant for every operation involved in the shape optimization workflow. Since its intro-
duction in the context of structural mechanics, this idea has been successfully applied in a variety of more
challenging physical contexts, such as fluid mechanics and fluid-structure interaction [56, 58], heat transfer
[59], quantum chemistry [28], plasticity [47], fracture mechanics [16], etc.

The aim of this article is twofold. First and foremost, we describe this level set based mesh evolution
strategy and its main numerical ingredients, such as the algorithms involved in the practice of the level set
method, the meshing aspects of the framework, and the efficient resolution of infinite-dimensional constrained
optimization problems. We conclude this presentation with a selection of numerical results obtained by
application of this strategy. The second purpose of this work is in line with the multiple educational articles
that have been devoted to shape and topology optimization, see e.g. [12, 76, 95] or [101] for an exhaustive
list. We propose and detail a python implementation of this level set based mesh evolution framework which
is at the same time pedagogical (and thus reasonably simple), and general enough to allow the user to easily
build upon this code so as to address his personal shape optimization problems.

The remainder of this article is organized as follows. In Section 2, we present the model physical setting of
our discussion, that of shape optimization of elastic structures. We introduce the chief theoretical concepts
at stake, and provide a general sketch of a typical shape optimization procedure. In Section 3, we discuss
the choice of an adequate representation of the shape in the perspective of accounting for its update between
the various iterations of the shape optimization process. After a brief reminder of the relevant notions, we
describe Lagrangian strategies, their limitations, and we present the level set method and its applications
in shape and topology optimization as a potential remedy. In Section 4, we describe the level set based
mesh evolution method at stake in this article, and we describe the main numerical operations involved. In
Section 5, we then present several numerical results obtained with this strategy. This article ends with a
fairly long appendix where a proposed open-source implementation of this framework is presented: each step
of the method is carefully described, with the hope that it is easy for the reader to get into the code and
elaborate upon it for its own purposes.

2. PRESENTATION OF THE SHAPE OPTIMIZATION FRAMEWORK

In this section, we introduce the theoretical framework of this article, and we discuss a few important notions.

To set ideas, our discussion unfolds in the relatively simple physical setting of linearly elastic structures,

which is presented in Section 2.1; some basic facts about Hadamard’s boundary variation method and shape
3

derivatives are then recalled in Section 2.2. Finally, we sketch a generic shape optimization algorithm in
Section 2.3, as a support for the subsequent practical considerations.

2.1. A model shape optimization problem in the context of structural mechanics

Throughout this presentation, a shape is a bounded, Lipschitz domain Q ¢ R¢ (d = 2,3), whose boundary
is the reunion of three disjoint, open regions I'p, I'y, I':

N=TpuUl'y UL.

In this decomposition,

e I'p is a given piece of hypersurface where €2 is clamped;
e 'y is another given piece of hypersurface where loads g € L?(I'y)? are applied;
e The remaining part " of 0f2 is traction free; it is the only part of 92 which is subject to optimization;

see Fig. 1 for an illustration.

I'p

(2O

F1GURE 1. Physical setting of mechanical structures considered in Section 2.1.

Omitting body forces for simplicity, the displacement of 2 is the unique solution ug in the space
HE ()% :={ue H(Q)* u=00onTp}
to the linearized elasticity system:

—div(4e(uq)) =0 in Q,

ug =0 on I'p,
(2.1) Ae(ug)n =g on 'y,
Ae(ug)n =0 on I'.

In this formulation, H!() is the usual Sobolev space of functions in L?(£2) whose first-order derivatives are
also in L2(€2), see [2]. We have denoted by n : 9Q — R the unit normal vector to 9, pointing outward
Q, and the symmetric d X d matrix e(u) := %(Vu + VuT) is the strain tensor associated to a displacement
field u : Q — RZ. The Hooke’s law A is a fourth-order tensor characterizing the physical properties of the
constituent material of €: it relates the state of stress o(u) inside the structure with the strain e(u) via the
relation
o(u) = Ae(u), where, for any symmetric d X d matrix e, Ae = 2ue + Atr(e)l,

and A, p are the Lamé coefficients of the material.

In this context, a generic shape optimization problem reads

G(Q) =0,

(2.2) m{%nJ(Q) s.t. {H(Q)SO.

Several important examples about the objective functional J(2) are:
4

e The compliance of €2
(2.3) c(Q) = / Ae(ug) : e(uq) dz = /g - ugq ds,
Q r

where : is the Frobenius inner product over the set of d x d matrices. Equivalently, C(€) measures
the total elastic energy stored inside 2 or the work done by the applied loads g;
e A least-square discrepancy criterion

D(Q) = /Qk(x)hm —up(z)? dz

between the elastic displacement of 2 and a target displacement up(z), weighted by a function k(z).
e An integral measure of the stress inside the structure

(2.4) (@) = /Q k(@) (ug)|? da,

where for any d x d matrix o, we have denoted ||o||? :== 0 : 0.
In the formulation (2.2), G(?) = (Gi())i=1,...p and H(Q) = (H;(Q))j=1,... 4 are collections of p real-valued
equality constraints and ¢ inequality constraints, respectively. These functionals may be, for instance:
e The volume Vol(f2) or the perimeter Per(2) of the shape,

(2.5) Vol(Q) = [dz, and Per(Q2) = ds.
Q a0

e Other constraints related to the geometry of (thickness, curvature radii, etc.), as imposed by the
manufacturing process.

In the sequel, when it allows to simplify the exposition, we shall sometimes consider unconstrained versions
of (2.2), of the form

(2.6) ngn J(Q),
where the minimized function J(2) may represent e.g. a weighted sum of some of the above shape functionals.

2.2. The boundary variation method of Hadamard

Most numerical algorithms dedicated to problems of the form (2.2) rely on the derivatives of the objective
and constraint functions with respect to the optimized variable. In the present context, this raises the need
to account for derivatives with respect to the domain. This task can be achieved in different fashions, and
we rely on the Hadamard’s boundary variation method, pioneered by [64, 81], see also [13, 45, 67, 96].

In this framework, variations of a given shape) are considered under the form

(2.7) Qg := (Id+0)(Q), 6 € WH(RERY), [10]|wr.00 (e gay < 1,

where W1>°(R? R?) is the Sobolev space of Lipschitz vector fields on RY, see [54]. Intuitively, (2.7) expresses
the fact that is deformed according to the “small” vector field 6, see Fig. 2.

Remark 2.1. Often in practice, the vector fields 0 featured in Hadamard’s method are required to enjoy higher
reqularity, or to vanish on a region of space which is not subject to modifications, so that they are actually
confined to a subset of W (R4 R?). To keep the presentation elementary, we ignore this technicality in
the following, see also Section 4.5.

One functional of the domain F(Q2) is then said to be shape differentiable at a particular shape Q if
the underlying mapping 0 +— F(Qg), from W1 (R4 RY) into R is Fréchet differentiable at §# = 0. The
corresponding derivative 8 — F’(2)(6) satisfies the following expansion:

lo(8)] 60

(2.8) F(Qg) = F(Q) + F'(Q)(0) + 0o(#), where
101112, (e, R

0.

The shape derivatives of the objective and constraint functions J(€), G(2) and H(Q) of an optimization

problem of the form (2.2) are handful for a variety of purposes. From the theoretical point of view, they

are the building blocks of the necessary conditions for a shape € to be locally optimal with respect to (2.2);
5

FIGURE 2. Deformed version Qg of a shape Q) according to Hadamard’s boundary variation
method.

from the numerical vantage, they make it possible to calculate descent directions as vector fields 6 : RY — R?
encoding deformations of 2 improving its “performance”.

Like those introduced in Section 2.1, the functionals of interest in concrete applications usually depend
on the shape) in a quite intricate way, via a “state” wuq, characterized as the solution to a “physical”
partial differential equation posed on 2. Nevertheless, their shape derivatives can be calculated thanks to
the adjoint method, pertaining to the more general field of optimal control. This stake is conceptual and
by no means trivial; however, it is well-understood in the literature, and we do not expand on the subject,
referring to [77], or [91] for a comprehensive introduction to this method; see also the recent review [3] in
the more specific context of shape optimization. Let us simply recall that the shape derivatives of such
functionals usually involve the function ug as well as an “adjoint state” pq, satisfying a partial differential
equation very similar to that for ug, with a different right-hand side. Here are a few examples, working
under mild regularity assumptions on the shape §2 or the state ug, which are omitted for brevity:

e The volume Vol(2) has the shape derivative
Vol' (2)(6) = 0 -nds.
o0
e The shape derivative of the compliance C'(§2) given by (2.3) reads

C'(Q)(0) = —/FAe(uQ) : e(ug) 0 n ds.

e The stress functional S(Q) in (2.4) has the shape derivative

(2.9) s@e) - [

: (k@) llo(ua) > + Ae(ug) : e(pa)) 0 - n ds,

where the adjoint state po is defined as the solution in Hf () to the equation

—div(Ae(pq)) = div(k(z)Ao(ug)) in Q,
(2.10) po =0 onI'p,
Ae(pa)n =0 on"UTy.

The above expressions exemplify a quite general phenomenon. Shape derivatives are naturally calculated
in volume form, i.e. their expressions are made of volume integrals on 2, involving ugq, 6, V@, etc.; under
suitable regularity assumptions on the shape 2, the state ug and the possible adjoint state pq, they can
often be given a surface expression of the type:

(2.11) J'(Q)(0) :/Fvgﬂnds,
6

where v : T' — R is a scalar field whose expression depends on J(Q), ug and pg. In particular, such a shape
derivative J'(€2)(#) only depends on the values of the normal component 6 - n of the deformation 6 on the
boundary 02, in agreement with the so-called Structure theorem for shape derivatives, see e.g. §5.9 in [67]
or Chap. 9, §3.4 in [45].

Surface expressions (2.11) for shape derivatives are convenient for a variety of purposes; for instance, when
the unconstrained minimization problem (2.6) of J(€2) is considered, a descent direction 6 is easily obtained
by imposing that

(2.12) 6 = —vgn on T, so that J'(Q)(0) = f/ vg ds < 0.
r

On the other hand, however more difficult to exploit, volume expressions may lend themselves to more
accurate numerical discretization, see [69].

Remark 2.2. Variations of the domain of a different nature from (2.7) are possible, leading to as many
different notions of derivative with respect to the domain. Notably, it is possible to account for variations of
a shape Q of the form Qg ., := Q\ B(xo,r), where x¢ is a given point inside Q and r > 0. This leads to
expansions of the form
J(Quor) = J(Q) + 7% Tr(20) + o(r?),
where dJr(xg) is called the topological derivative of J at xog and measures the sensitivity of J with respect to
the nucleation of an infinitesimally small hole inside . We refer to [34] about this concept, and to [9, 14]
about different ways of using it in the context of shape and topology optimization; see also Appendix A.10
for an implementation.
Let us also evoke the existence of more exotic “topological ligament expansions”, evaluating the sensitivity
of a shape with respect to the addition of a thin ligament, see [38, 73, 82].

2.3. An abstract shape optimization algorithm

The notion of shape derivative underlies a wide range of algorithms for dealing with shape optimization
problems of the form (2.2); in broad outline, each iteration in their implementation can be decomposed into
three main stages:

(1) The physical quantities attached to the current shape Q™ (the elastic displacement ug» and the
adjoint state pon in the context of Section 2.1) are computed by solving the corresponding partial
differential equations. For instance, this can be conveniently realized thanks to a finite element
solver, if a mesh of the shape Q" is available.

(2) A decent direction 6™ for the problem (2.2) is inferred: 6" is a vector field such that the deformed
version (Id+776™)(Q™) of Q™ along 0™ for a “small enough” time step 7" has “improved” performance
over Q". For instance, when the constraint-free problem (2.6) is considered, #™ is simply a vector
field such that J'(£2")(#™) < 0. When a more general constrained optimization problem of the form
(2.2) is considered, 6™ is calculated from the knowledge of the shape derivatives J'(Q2), G'(Q), H'(Q)
owing to a constrained optimization algorithm.

(3) The shape Q" is updated into Q"+1 := (Id + 776"™)(Q").

This generic procedure is summarized in Algorithm 1.

One critical issue lies in the difficulty of finding a numerical description of the shape and its evolution
which is appropriate to each of these three stages. For instance, choosing to represent the shape with a
computational mesh conveniently allows to carry out the mechanical analyses implied by the first stage.
Unfortunately, such decision makes it notoriously difficult to realize the update of the shape in the third
stage in a robust way, all the more so as when large deformations (not to say topological changes) are at
stake. This dilemma is faced by all implementations of Algorithm 1, and we focus specifically on this point
from the next Section 3.

3. MESHING ASPECTS OF SHAPE OPTIMIZATION

The present section is dedicated to the numerical representation of the shape in the perspective of realizing

its update between two successive steps of a shape optimization procedure. At first, we briefly recall a

few basic definitions and important facts about meshing in Section 3.1, referring for instance to the books
7

Algorithm 1 Generic shape gradient algorithm.

Initialization: Initial shape Q°.
for n =0, ..., until convergence do
(1) Calculate the solution ugn (resp. pon) to the state (resp. adjoint) equation posed in Q™.
(2) From the theoretical formulas for the shape derivatives J'(Q)(0), G'(2)(6) and H'(2)(0), infer
a descent direction 6™ from Q™ for the shape optimization problem (2.2).
(3) Deform Q™ according to 6™ for a small descent step 7" > 0, so that the new shape

QL= (Id + 70 (QY)

is “better” than the previous one in view of (2.2).
end for
return Q"

[25, 26, 60] for more in-depth presentations. We then present the early “Lagrangian” strategies for shape
optimization, emphasizing on their inherent limitations related with meshing aspects. Finally, we describe
the level set method as one attempt to circumvent them, and as a cornerstone of the numerical framework
discussed in this article.

3.1. Basic notions about meshes

Let © be a polygonal domain; a simplicial mesh of € is a collection 7 = {T;},_; 5 of open simplices (i.e.
triangles in 2d, tetrahedra in 3d) which constitute a covering of €2, that is:

N
o=
=1

In addition, one usually demands that

e 7 should be walid, in the sense that the T; are mutually disjoint: 7; N T; = () when @ # j.

e 7 should be conforming: for i # j the intersection T; N T} is either a vertex, an edge, or (in 3d) a
face of T.

The volume mesh 7 of € additionally bears the information of a surface mesh S7, that is, a mesh composed
of edges in 2d, triangles in 3d, accounting for the boundary 0f) and for internal interfaces, delimiting distinct
material regions within 2.

Numerous methods are available when it comes to creating such a mesh 7, depending on how the infor-
mation related to 2 is supplied. Often, a surface mesh S of the boundary 902 is provided, which has for
instance been constructed thanks to a CAD software; the interior of) is then filled with simplices agreeing
with the surface elements of S. The most efficient procedures to fulfill this goal are the constrained Delaunay
algorithm, or advancing front strategies, [25, 26, 60]. Without entering into details, let us stress that, in
spite of its importance and the attention that has been brought to its analysis for several decades, this task
remains delicate.

One crucial aspect of meshes is their quality, a notion which actually takes on two quite different natures,
both illustrated on Fig. 3.

e The finite element quality. The accuracy of most numerical simulations — conducted with e.g. the
finite element method — is strongly dependent on how close the elements of the computational mesh
T are from being regular, see for instance [36] about this classical issue. In practice, a quality factor
Q(T) is used to evaluate the aspect ratio of each simplex T € T, with the meaning that Q(T) ~ 1
when T is close to regular, and Q(T) ~ 0 when it is nearly degenerate. One popular criterion used
in the literature is:

AT) = a Vol(T') 7

d(d+1)/2 g
> lel?
i=1

where the e; are the edges of T', and « is a normalization factor.
8

R A o,
KA Yavey,
PR

Vavivi Ay

RAAPATR
TAVAVAYSPAYS:
ANAVSIY S
LU L OV O]

o
ok
K
LA
0
AR
SE

T
z
R
=
:
%

=
A

v,

- [
VASIEE
AVAVAV VaVAY? .’4»
)
>
%

5
2

A%AVA

s

%
O3
T
i

i

i)
—
“Ml‘ﬂ V’

TR
i)

A v
o
chek

%i
T
S
A Al
AN
VaAvAVAYAVAYAVA

P
i
B

b

AV
VA

5
5

VAYs
M 5
ViSYATY: o
vy g
et s S
SRS ’\'X%‘gyA e~ e v 5,4», v
o R VI
R
RO R PR .
PV AT G
e st

ik KA

A><§VA

X
kX

= — (0 eVl v g
- e S o S
OO
Vo e AT

)
%
TR

VK
N
KRR

5K

v,
LN

A=

«
v

A
/N
Vv,

FIGURE 3. (a) Ill-shaped mesh of a wheel; (b) high quality mesh of the same geometry;
(c) mesh accounting for a poor geometric approxzimation of a plane; (d) fine geometric
approzimation of the same plane.

e The geometric quality. Often in practice, the considered domain €2 (or the internal regions within
Q) is not polygonal; the surface triangulation S is only an approximation of 92, and it is crucial to
ensure that this approximation is accurate enough. This may for instance be expressed by demanding
that the Hausdorff distance d (S7,9€) between Sy and the “ideal”, continuous boundary 92 be
smaller than a user-defined tolerance e.

3.2. “Geometric” shape optimization

One early attempt to implement the abstract program of Algorithm 1 follows an intuitive “Lagrangian”
strategy, see e.g. [80] or [89]. At each iteration n, the shape Q™ is explicitly represented by means of a
computational mesh 7. This choice is particularly convenient for the first stage of Algorithm 1, since
the solution ugn to the linear elasticity system (2.1) (and likewise, that po to the adjoint system) can be
accurately computed thanks to the finite element method; in principle, any commercial solver can be used
in a non intrusive way to this end. The calculation of a descent direction #™ for the shape optimization
problem (2.2), which is the second stage of Algorithm 1, is easily conducted from these data.

The major difficulty posed by this framework is related to the final stage of Algorithm 1, which is about
passing from (the mesh 7" of) Q" to (a mesh 7" of) Q! := (Id + 770")(Q"). Certainly, one mesh 7"+!

9

of Q"1 can be obtained by relocating the vertices of 7™ according to the rule
(3.1) Vvertex zof T, z+——x+71"0"(x),

while keeping the connectivities of the mesh unchanged, see Fig. 4. This simple practice unfortunately suffers
from serious limitations, since some elements of the mesh are prone to become seriously ill-shaped in the
process, not to say downright invalid, see Fig. 4 (c).

FIGURE 4. (a) Mesh T™ of the shape Q" with the descent direction 6™ discretized at its
vertices; (b) updated mesh T"+1 of Q"1 := (Id + 70")(Q") obtained by using the rule
(3.1) with a “small enough” time step 7"; (c) invalid mesh T when the chosen time step

n

7" 4s “too large”.

Admittedly, such an update of the computational mesh can be conducted in a relatively efficient manner
thanks to a number of heuristics. For instance,

e One may extend the displacement field 8™ from the boundary 99" to the interior vertices by solving
an elasticity system, with the hope that the extended field induces little compression of the mesh
elements. Large mesh displacements have been realized based on this idea in [17].

e The displacement (3.1) of the vertices of 7™ can be realized within several sub-stages intertwined
with remeshing operations, whose aim is to improve the quality of elements and thereby to postpone
the onset of degenerate or invalid elements, insofar as possible, see for instance [20, 65] in this
direction.

The so-called Deformable Simplicial Complex (DSC) method, which leverages such ideas together with
further heuristics for coping with topological changes, has recently achieved impressive motions of shapes in
the course of the shape and topology optimization process, see [35, 34].

3.3. Level set methods for shape and topology optimization

The level set method is a general paradigm for tracking dramatic evolutions of domains or interfaces, which
may even feature topological changes. Since its inception in [36] in the context of curvature-driven interface
motion, it has proved to be a very efficient and robust framework for fluid simulations and image processing,
to name just a few applications. We outline the basic stakes of this method in Section 3.3.1, referring to
[62, 85, 93] for more exhaustive presentations. The use of this method in the context of shape optimization,
as an attempt to overcome the aforementioned meshing issues raised by the update of the shape, is then
discussed in the next Section 3.3.2.

3.3.1. A brief reminder about the level set method

Let D C R? be a fixed computational domain. The level set method is a general philosophy whereby an
arbitrary shape 0 C D can be equivalently described as the negative subdomain of a scalar “level set”
10

function ¢ : D — R, i.e.:
o(x) <0 ifzeQ,
(3.2) Pp(x) =0 if z€09,
¢(x) >0 if xe D\,

see Fig. 5 for an illustration.

(X

1 8504E-02 24767E-01
o -
-1 515901 T.1456E-01 38076E-01

FIGURE 5. (a) One shape 2 C R?; (b) graph of an associated level set function ¢ defined
on (a mesh of) a larger domain D.

This representation conveniently allows to reformulate the motion of a shape Q(t) over a time period
(0,T), with respect to a velocity field V(¢,z), in terms of an associated level set function ¢(t,-) (i.e. (3.2)
holds at every time ¢ > 0). Formally, the latter satisfies the following “advection-like” equation:

(3.3) % (t2) + V(t,x) - Vo(t,z) =0 for te(0,T), € RY,
. ¢(0,z) = do(x) for z € R4,

where ¢q is a level set function for the initial shape (0). Hence, the intricate geometric evolution problem
of Q(t) translates into the partial differential equation (3.3) on the fixed domain D.

From the practical vantage, the computational domain D is equipped with a fixed mesh 7, for instance
a simplicial mesh, or a finite difference grid. The level set function ¢(¢,x) and the velocity field V (¢, z)
are discretized in time and at the vertices of the mesh 7. The evolution equation (3.3) can then be solved
efficiently thanks to an adapted numerical scheme, see for instance Section 4.3.

Remark 3.1. The above theoretical framework does mot rely on any assumption about the nature of the
level set function ¢ chosen to represent the shape Q C D. Although, in principle, any function satisfying
(3.2) could be used, it is well-known [33] that the numerical stability of the level set method is significantly
improved when ¢ is the signed distance function dq to Q2. The latter is defined by:

—d(z,000) if x€Q,
(3.4) da(z) = 0 if veo,

d(z,0Q) if € D\Q,
where

(3.5) d(z,09) := min |z — p

is the usual Fuclidean distance from x to 02. Among others, dg enjoys the desirable “Fikonal” property,
whereby its gradient has unit norm wherever it is defined:

(3.6) |Vda(z)| =1 for a.e. z € D,

which expresses a reqular spacing of its level sets. Aside from its relevance in the context of the level set
method, the signed distance function dq enjoys multiple interesting properties related to the geometry of).
Hence, the calculation of the signed distance function to a shape is a topic of interest on its own, see e.q.
[10] about the modeling of thickness constraints in shape optimization using distance functions.

11

3.3.2. Application of the level set method to shape and topology optimization

The application of the level set method in the context of shape and topology optimization was originally
proposed in [94, 87, 11,]. Tt brings into play a computational domain D equipped with a fixed mesh
T (e.g. simplicial or Cartesian). At any time ¢, the shape Q(¢) C D is represented by a level set function
o(t,+) : D — R, discretized, e.g., at the vertices of 7. The update of the shape between any two iterations
n, (n + 1) of the optimization process is efficiently achieved by solving the equation (3.3) for the evolution
of ¢(t,z). In the present context, the velocity field V (¢, z) is the descent direction ™ (z) for the shape
optimization problem (2.2), which depends on the elastic displacement ug» and the adjoint state pon.

The bottleneck of this approach lies in the calculation of ugn and por. Indeed, at a given iteration
n of the process (whose reference in notation is omitted for brevity), no mesh of is available, as Q is
solely known via the function ¢, defined on (the mesh of) the larger domain D. One idea to conduct this
calculation leverages a so-called “fictitious domain approach”: the displacement ug is approximated by the
solution u, to an equation posed on the total domain D. In the present context of linear elasticity, where the
traction-free part of shapes is optimized, the void region D \ Q is filled with a very soft “ersatz” material,
with Hooke’s law €A, ¢ < 1, so that an approximate counterpart to (2.1) is given by the following equation
posed on the fixed domain D:
—div(Ace(ue)) =0 in D,

ue =0 on I'p, A if zeQ,
Ace(ug)n =g on I'y, where A (z) = { eA ifxeD\Q.
Ace(u)n =0 on I,

see for instance [37] for a justification of this procedure. In practice, the tensor A is easily calculated from
the knowledge of the level set function ¢ for €.

In a different spirit, advanced finite element techniques, featuring enriched basis functions, have been
employed to ensure a more accurate approximation of the displacement ug in such a context where only
a fixed mesh of a large computational domain is available; see [50] about the use of the eXtended Finite
Element Method (XFEM) and [32] about that of the cut Finite Element Method (cutFEM). Let us point
out that both approaches to cope with the absence of a body-fitted mesh for) are intrusive, insofar as they
do not lend themselves to a black-box use of a commercial finite element solver.

(3.7)

A typical implementation of the level set method for the shape optimization problem (2.2) is sketched
in Algorithm 2. Note that we deliberately omit the details of Step (2), about the practical calculation of a
descent direction from the derivatives of the shape functionals at stake, as it will be the focus of the later
Section 4.6.

Algorithm 2 The level set method for shape and topology optimization.

Initialization:

e Mesh 7 of the computational domain D;
e Level set function ¢° : D — R representing the initial shape Q.
for n =0, ..., until convergence do
(1) Calculate an approximate version of the elastic displacement ug» and of the adjoint state pgn
on T by solving the ersatz material problem (3.7).
(2) From the theoretical formulas for the shape derivatives J'(Q)(0), G'(2)(6) and H'(Q)(6), infer
a descent direction " : D — R¢ for (2.2) according to the selected constrained optimization
algorithm.
(3) Solve the level set advection equation (3.3) on 7 with (time-independent) velocity V(¢,z) =
6" (z), final time 7' = 7" and initial datum ¢g = ¢"; a level set function ¢"*! for the new shape
Q"+ is obtained.
end for
return Level set function ¢™ for the optimized design Q".

Summarizing, the level set method conveniently alleviates meshing issues and allows to describe dramatic
evolutions of the optimized shape (1, including changes in its topology. Unfortunately, it raises the issue
12

of solving the mechanical equations posed on : although the aforementioned fictitious domain approaches
(notably, the ersatz material method) and extended finite element methods work reasonably well in the
context of linear elasticity, corresponding strategies are not readily available in more challenging physical
contexts, such as that of fluid-structure interactions.

The level set based mesh evolution strategy, presented in the next section, is an increment over this level
set method for shape and topology optimization: it enjoys all the assets of the latter, and additionally
features an exact mesh of the shape at each stage of the process.

4. THE LEVEL-SET BASED MESH EVOLUTION METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION

We now turn to the numerical framework introduced in [5, 6, 7] as an attempt to overcome the individual
difficulties posed by Lagrangian and level set methods when tracking the evolution of the shape during
the optimization process. To set ideas, the presentation unfolds in the structural optimization context of
Section 2.1, where one aims to solve a problem of the form (2.2). After sketching the main stages of the
method in Section 4.1, we overview its main ingredients in the subsequent sections.

4.1. General description of the method

As the name suggests, the level set based mesh evolution method at stake in this article combines the meshed
and level set representations of shapes discussed in Sections 3.2 and 3.3. Efficient algorithms make it possible
to switch from one to the other, so that the most convenient of them with respect to the ongoing operation
can be used.

Let D be a large “hold-all” domain containing all the considered shapes €2. At each iteration n of the
process, D is endowed with a valid and conforming mesh 7", which is modified from one iteration to the
other so that the current shape Q™ is explicitly discretized. More precisely, 7" is consistently made of two
complementary submeshes T, 7% such that T, is a valid, conforming mesh of Q™ and 7, is a valid,

xt

conforming mesh of the exterior part D\ Q7. Thus, two descriptions of Q" are available:

X

o A meshed representation. Q™ is explicitly represented by the submesh 7.7, of 7", see Fig. 6 (a).
e A level set representation. Q" is implicitly defined by a level set function ¢™, defined on the whole

mesh 7™ of D, see Fig. 6 (b).

On the one hand, the meshed representation is handful when it comes to solving partial differential equations
on Q" such as that (2.1) for the elastic displacement uqn; on the other hand, the level set description is
adequate for conducting the update of the shape Q" into the next iterate Q™! in a robust way.

As we have mentioned, this strategy crucially hinges on efficient numerical methods for passing from one
of these descriptions to the other, and notably:

e An algorithm for generating one level set function ¢ : D — R for a shape 2 C D which is explicitly
discretized inside a mesh 7 of the computational domain D;

e An algorithm which assumes the datum of a level set function ¢ : D — R defined on a mesh 7 of D,
associated to a shape Q C D, and creates a new mesh 7 of D in which 2 is explicitly discretized.

This method is outlined in Algorithm 3 in the context of the model shape optimization problem of
Section 2. Its main steps are illustrated on Fig. 6; as they constitute operations of general interest, we
present them in a self-contained way in the next sections. The computation of the signed distance function
to a shape is discussed in Section 4.2, and the resolution of the level set advection equation is presented
in Section 4.3. The aspects of the method concerned with remeshing are addressed in Section 4.4; we then
broach the versatile Hilbertian extension and regularization procedure in Section 4.5, before finally describing
the numerical constrained optimization algorithm in Section 4.6.

Remark 4.1. Appealing features of this approach are its modularity and non intrusiveness: the aforemen-
tioned steps can be carried out with independent numerical codes. In particular, the resolution of the state
(and adjoint) equation for the elastic displacement does not demand any exotic treatment; it can be realized
with any solver, without entering into its implementation details.

13

Algorithm 3 The level set based mesh evolution method.

Initialization: Mesh 7° of the computational domain D, enclosing a mesh 7.9, of Q° as a submesh.
for n =0, ..., until convergence do
(1) Calculate the signed distance function ¢™ = dg» to Q™ at the vertices of 7.
(2) Calculate the displacement ugn and the adjoint state pgn by solving the partial differential
equation (2.1) on the interior part 7.7 of 7.
(3) Use the Hilbertian procedure to calculate gradients 07, 6% and 0%, for J(Q2), G(Q) and H(Q2) at
Q = Q" on the whole mesh 7".
(4) Infer a descent direction 6™ on 7™ for (2.2) thanks to a constrained optimization algorithm.
(5) Choose a small enough time step 7" and calculate a level set function g"“ for the new shape
Qntl = (Id + 76™)(Q2") on the mesh T™ by solving the level set evolution equation (3.3) over
(0, 7™) with velocity field V(t,z) = 6"(x) and initial condition ¢y = ¢™.
(6) Create a new mesh 7"! of D where Q"+ is explicitly discretized, from the datum of the level
set function ¢" ! on T™.
end for
return Mesh 7" of D where)" is discretized as a submesh 7;7,.

4.2. Calculation of the signed distance function

This section deals with the construction of one particular level set function ¢ for a shape 2 C D, namely the
signed distance function dg in (3.4), out of a meshed representation of the latter (Step (1) in Algorithm 3),
see the discussion in Remark 3.1.

Let the computational domain D be endowed with a simplicial mesh 7 and let 2 C D be a shape; we wish
to calculate the values ¢(x) = do(z) at all vertices x € T. Note that in the shape optimization workflow
of Section 4.1, Q is supplied as an explicit submesh Ti,; of T, but for the purpose of this section, it could
actually be given under a different format, for instance, via a proper mesh 7 which is not necessarily a part
of T.

The numerical calculation of dg can be conducted in a variety of manners. “Geometric” algorithms
involve an exhaustive calculation of the distance d(z,9) from z to 9 at every vertex x of T, defined as
the minimum value featured in (3.5). Although this operation can be made efficient owing to a number of
heuristics — see e.g. [79, | and the references therein — we rather rely on “propagation algorithms”, which
comprise two steps:

(1) The function ¢ is initialized with (an approximation of) the exact value of dn at the vertices of
T which are “close” to 092 (for instance, at the vertices of the simplices T € T intersecting 0f2),
and with large, positive or negative values elsewhere. This stage is elementary; however, depending
on the input format and of the complexity of the geometry of {2, it may prove tedious from the
implementation viewpoint, and time-consuming in practice, see e.g. [40].

(2) The calculation of the signed distance ¢(z) = do(x) is realized from the vertices x € T closest
to 0N to farther ones, by relying on a discretization of the Eikonal equation (3.6). This purpose is
greatly simplified when the computational mesh 7T is a Cartesian grid, since high-order finite different
schemes are available.

The most popular algorithm in this second category is certainly the fast marching method, see [92] for
an overview and [72] for an adaptation to the case where the computational mesh is simplicial; let us also
mention the fast sweeping method [104].

In the present work, we rely on an algorithm based on the properties of the so-called redistancing equation,
which is described in [10] and is available in the open-source library mshdist?.

4.3. Advection of the level set function

In this section, we turn to the numerical resolution of the equation (3.3) accounting for the evolution of the
shape.

2https ://github.com/ISCDtoolbox/Mshdist
14

etz 230400

RS, Semeie et

EERRRy
AR
5 '%;42!'1

,
st
4

o

REEL R

b
oo A dh
4 e g
2 s

55

é

3
s

o

R
ke
R

19116Ew00 5 7340E000

FIGURE 6. Illustration of the main stages of the mesh evolution method sketched in Sec-
tion 4.1. (a) Mesh T™ of the computational domain D; the submesh T, of Q™ consists of
the black elements, and that T, of D\ Q" is made of the white elements; (b) isovalues of
the signed distance function ¢™ to Q", calculated on T™; (c) solution ugn to the elasticity
system on the mesh T of Q"; (d) descent direction 0™ on the whole mesh T"; (e) level

set function q~5"+1 on the mesh T"™; the 0 level set of (E"‘H is depicted in red; (f) new mesh
T+ with the new shape Q"' enclosed as the submesh T, (made of the black elements).

int

The generic situation, occurring at each iteration n of the process described in Section 4.1, is the following;:
a level set function ¢ = ¢™ : D — R accounting for the current shape 2 = Q" is supplied via its values at
the vertices of a simplicial mesh 7 = 7" of the computational domain D. Analogously, the velocity field
V : D — R? driving the evolution of the shape, which is the descent direction #™ at the current iteration, is
supplied at the vertices of 7. We aim to compute the solution ¥ (¢, x) to the following advection equation:

% (t,x)+ V(z) Vy(t,z) =0 for t€(0,T), z €D,

(4.1) ¥(0,2) = ¢(x) for z € D,

and notably its values (T, z) at the final time ¢t = T, which stands for the time step 7.
15

Numerical methods for the resolution of (4.1) are manifold when the computational support is a Cartesian
grid, which allows for the use of high-order finite difference methods. This issue is however a little less
classical and deserves a few comments in our context where it is a simplicial mesh. We rely on the method
of characteristics proposed in [90], which is close in spirit to the semi-Lagrangian scheme developed in [97];
see alternatively [52] about the use of discontinuous Galerkin methods, and [1, 21] for the construction of
numerical schemes for more general Hamilton-Jacobi equations on simplicial meshes.

The method of characteristics is based on the analytical formula for the solution to (4.1). The latter is
expressed in terms of the characteristic curves t — X (t,to,x) of the velocity field V(x), emerging from an
arbitrary point z € D at a time t(, defined as the solution to the ordinary differential equation:

(4.2) { 4 X (t,tg,x) = V(X (t,to,x)) for tER,

X(to,to,.’ﬂ) =X.

Intuitively, ¢ — X(t,to,) is the trajectory of a particle located in = at time ¢ = ¢y, which is transported
according to the velocity field V' (x). The exact solution to (4.1) is then given by:

(4.3) vte (0,T), x €D, (t,z)= (X (0,t,1)),

which expresses the natural fact that the value of ¢ at time ¢ and point z is the value of the initial datum
¢ at the initial position X (0,¢,z) of the particle lying in z at time ¢.

One simple means to exploit the closed-form formula (4.3) is to directly discretize it: for each vertex x € T,
the ordinary differential equation (4.2) is solved for the “backward” characteristic curve t — X (¢, T, x), for
instance by a Runge-Kutta 4 scheme; ¢ is then evaluated at the “foot” X (0,7,) of this characteristic line.

Remark 4.2. In practice, it happens that the origin X (0,T,x) of the characteristic curve passing through x
att =T lie outside D. Mathematically, the equation (4.1) is ill-posed in this case, since the velocity field V (x)
is pointing inward D on at least one portion of the boundary 0D. In such a case, it is customary to endow
(T, z) with a consistent value by extrapolating the value of ¢ (and the characteristic curve t — X (t,T,x))
outside D.

An open-source implementation of this algorithm is proposed in the advection® code.

4.4. Using remeshing to pass from a level set to a meshed representation of a shape

This section is devoted to the delicate operation of passing from a level set to a meshed representation of a
shape €, which is Step (6) in Algorithm 3. Let us consider the following generic situation: the computational
domain D is equipped with a simplicial mesh 7, and a level set function ¢ : D — R for a shape Q C D is
provided via its values at the vertices of 7; we aim to construct a new mesh 7 of D in which 2 appears as
a submesh, see Section 4.1.

This task is achieved in two steps:

(1) The 0 level set of ¢ is explicitly discretized into 7. This crude procedure yields a valid, conforming
mesh Tiemp of D, in which € exists as a submesh; unfortunately, Tiemp has poor finite element quality,
and the interior submesh is a poor geometric approximation of the shape §2; see Fig. 7 (b).

(2) Local remeshing operations are applied to modify Tiemp into a new, high-quality mesh T of D in
which € is still explicitly discretized, see Fig. 7 (c).

These two steps are presented with a little more details in the next Sections 4.4.1 and 4.4.2, respectively.
They are implemented in the general purpose open-source library mmg* devoted to simplicial remeshing; we
refer to [39] for a more exhaustive presentation of the latter, and to [18] for recent developments on the
subject.

Throughout the rest of this section, for notational simplicity, the mesh of D will be systematically denoted
by T, although it is constantly subject to modifications.

3https ://github.com/ISCDtoolbox/Advection
4https ://github. com/MmgTools/mmg
16

4.1980E-02 2.3647E-01
— — e

e — T —
-s5205E-02 13922601 33373E-01
VAV aveTa 2
KRR LRSI
SRR AR DO O TR

RREER SRR

RS

ATt

X
K
oBk
o
o
L,
RLARK
AR

5
o

Ko
e
b

N
s
s

avpavavavd
%
el
&

i)
A
ST
e

2

5

RRKK
£
Kl
B
Ly

5
&
RIOR
o
2

KEERR
S
rarivary
o
Ty
N
'4
&
e
rat
H

q
e
s
ey AVAVA:%
O e
RS
£

2R
500
&
D0
e

)

w5
ST
oy
i

o

KR
OO
iy KIS
e
s
ARSI
R
5
A

s
s

o
Lk
Cr

=
2

5
ol
ek
g

v

v
r
7

e

AT

SRR
ok
[y

%

Al

v
TaY

s v
Pk RN e St
Ry
SRR R

rasmat s Ty
e DEa R
Sy AV SO S

FIGURE 7. (a) Isovalues of a level set function discretized at the vertices of a mesh T of a
computational domain D; (b) Ill-shaped mesh Tiemp resulting from the rough discretization
of the 0 level set of ¢ into T; (c¢) High-quality mesh T obtained from Tiemp by remeshing.

4.4.1. Explicit discretization of the 0 level set of ¢ in the mesh T

From a simplicial mesh 7 of D and a level set function ¢ : D — R for a subdomain Q C D, supplied at the
vertices of 7, we aim to construct a new, valid but possibly ill-shaped mesh of D in which € is explicitly
discretized.

To achieve this, we rely on a simplicial variant of the well-known marching cubes algorithm [78], namely
the marching triangles (in 2d) or tetrahedra (in 3d) algorithm [18]. Briefly, we first identify all the elements
T € 7T which intersect the 0 level set of ¢, by looking at the signs of ¢ at their vertices. After linear
interpolation of ¢ inside any of these elements T, the intersection 9QNT is a portion of line (in 2d) or plane
(in 3d) which is completely determined by the values of ¢ at the vertices of T. Then, using a pre-defined
pattern, T is split into several sub-triangles (in 2d) or sub-tetrahedra (in 3d), so that 9Q N T explicitly
appears in the resulting mesh, see Fig. 8.

The mesh T resulting from this rough operation is valid, conforming, and it encloses two submeshes Tip¢
and Tox, of Q and D \ Q, respectively. Unfortunately, it generally contains elements with very bad quality,
and it accounts for a poor geometric approximation of 0f).

4.4.2. Improvement of the quality of T by local remeshing operations

The algorithm of the previous section has produced a valid and conforming mesh 7 of the domain D, in
which the considered shape 2 C D explicitly appears as a submesh. Unfortunately, 7 has bad quality, in
both senses introduced in Section 3.1: it contains nearly degenerate elements, and it accounts for a poor
geometric approximation of the boundary of D and of its internal interfaces, in particular of the boundary 02
of the shape, see again Fig. 7 (b). We wish to modify 7 by repeatedly applying local remeshing operations,
so as to improve both features. The presentation of this section focuses on the case of three space dimensions,
since it contains numerous specificities, and it is on any aspect more involved than its 2d counterpart.

One immediate issue posed by the desire to better approximate the domains D and {2 is that no continuous
description is provided: the only available information about D or € is the supplied discrete mesh 7T itself.
To cope with this difficulty, we first reconstruct local geometric information about D and €2 from the discrete
datum of T this information will be updated throughout the remeshing process. More precisely, normal
vectors n(x) are calculated at the vertices x of the surface mesh Sy, for instance as weighted sums of the

17

—>

N

(0]

FIGURE 8. (a) One pattern for splitting a triangle, based on the values of ¢ at its vertices (¢
is positive at the red vertex, negative at the blue ones); (b) one possible pattern for splitting
a tetrahedron.

N9

(1,0) as = boos

ao = bzoo

0]
@J) (0.1)

FIGURE 9. (a) Creation of a cubic Bézier patch for the region of 02 associated to a surface
triangle T € S1; (b) measurement of the gap between the continuous and discrete domains
from this local patch.

normal vectors to the nearby surface triangles. Besides, remarkable geometric entities such as sharp edges
and corner points are identified. This information allows to infer a piece of the “ideal” continuous surface
0D or 0f) associated to a given surface triangle T' € S7: a cubic Bézier parametrization o : T R3 (defined
on the reference simplex TcC R?) is calculated, which passes through the three vertices ag, a1, as of T and
fits the attached normal vectors ng, n1, na, see Fig. 9 (a). This local continuous model is helpful for a variety
of purposes, in particular when it comes to measuring “how far” 7 stands from the continuous domains D
and 2, as depicted in Fig. 9 (b).

Another key component of the remeshing strategy is the construction and the use of a size map h: D — R,
which encodes at each vertex z € T the desired size for edges surrounding . This value is calculated from
user-defined requirements, such as lower and upper bounds for the size of edges in 7, or a more detailed local
size prescription stemming from a priori or a posteriori error estimates related to the finite element method.
Additionally, when z is a surface vertex, the calculation of h(z) has to take into account the needed local
size to comply with the geometric approximation requirements.

18

The remeshing procedure then starts, properly speaking. The elements of T are travelled repeatedly; the
action of four local remeshing operators is simulated, and their outcome is effectively retained if it shows
an improved mesh quality. These operators are quite commonly used in remeshing practice; their action is
exemplified on Fig. 10 in the case of two space dimensions, and it can be summarized as follows:

e FEdge split. When an edge pq in the mesh is “too long” (with respect to the size map h), it is split into
two edges pm and gm after introduction of a new point m in T; the tetrahedra that were formerly
in the shell of pg — i.e. that were sharing pqg as an edge — are appropriately reconnected.

e FEdge collapse. When an edge pq is “too short”, q is merged with p; the tetrahedra in the shell of pg
are suppressed, and the other elements formerly connected to ¢ are suitably updated.

e Fdge swap. One edge pq in the mesh is suppressed and the elements in the shell of pq are reconnected
so that the mesh remains valid and conforming.

e Verter relocation. One vertex p of the mesh is assigned to a new position, while all the mesh
connectivities are unaltered.

Each operator exists under two versions, dedicated to surface and internal configurations, respectively.
For instance, when a boundary edge pq is split, the new vertex m ought to be inserted directly on the curved
segment on 0D or 02 which is associated to pg via the local surface model o discussed above; on the contrary,
when pq is an internal edge of 7, m is simply introduced at the center of pq.

4.5. Extension - regularization of shape derivatives via the Hilbertian method

The shape derivatives J'(2)(9), G'(2)(0) and H'(2)(#) of the objective and constraint functions J(2), G(Q)
and H(Q) are continuous linear forms on W1>°(R?¢ R?), which is a Banach space. The nature and structure
of these derivatives do not lend themselves to a simple numerical treatment.

This fact is conveniently illustrated by the unconstrained shape optimization problem (2.6). As we have
mentioned, when the shape derivative of J(€) is known under the structure (2.11), a descent direction
is immediately revealed as 6 = —vqn, see (2.12). However appealing, this choice is awkward, since this
formula only characterizes the values of # on the boundary 0f2, while we have seen that for a variey of
purposes, including the practice of Lagrangian mesh update strategies as in Section 3.2, or that of the level
set method described in Section 3.3, 6 ought to be “adequately” defined on the total computational domain
D. Moreover, in practice, the choice (2.12) results in a descent direction which lacks smoothness; this often
causes the shape to develop numerical artifacts in the course of the optimization, see [30] for a discussion
about this feature.

Returning to the treatment of a general problem of the form (2.2), many efficient infinite-dimensional
optimization algorithms leverage a Hilbertian structure when it comes to calculating descent directions, see
for instance the algorithm described in the next Section 4.6.

One handful practice to circumvent these difficulties, with countless additional benefits, is the so-called
Hilbertian extension and regularization method, which consists in endowing the space of deformations 6 with
the structure of a Hilbert space, composed of vector fields obeying certain user-specified properties, such as
their smoothness, their domain of definition, or imposed values on particular regions of space (e.g. § =0
where shapes are not subject to optimization). We refer to [16, 31, 43] about this idea, see also [8] for a
summary.

The key idea is to introduce a Hilbert space V', with inner product a(-, -), which is continuously embedded
in WHo°(R4 R?). Thus, the derivative J'(Q)(#) of a function of the domain .J(£2) induces a continuous
linear form on V; according to the Riesz representation theorem, we may represent the latter by the element
0y € V defined by:

(4.4) Vw eV, a(@y,w)=J(Q)(w).

This element 6; € V is the gradient associated to the derivative 8 — J'(2)(8) via the inner product a(-,-).
As expected, —; is a descent direction for J(2) since

J(Q)(=05) = —a(0;,0,) <0,

where the latter quantity vanishes if and only if Q is already a critical shape for J(2Q).
19

FI1GURE 10. Two-dimensional illustration of the four remeshing operations described in Sec-
tion 4.4.2. (a) Split of the edge pq: the midpoint m is introduced, and the two red triangles
are replaced by the four blue triangles; (b) Collapse of vertex q onto p; the “shell” of pq,
made of the two red triangles, is removed; (c¢) Swap of the edge pq; the two red triangles

are replaced by the two blue triangles; (d) Relocation of the vertex p, while maintaining the
connectivities of the mesh.

Multiple possibilities are available as regards the choice of the space V and its inner product a(-,-), see
again [31]. For instance, one natural choice is:

V = H™(D)? with the usual inner product a(u,v) := Z / 0%u - 0%v dz,
|a|<m D
20

where the index m is chosen large enough so that the continuous inclusion V' C W (R% R?) holds by
virtue of the Sobolev embedding theorem [2]. The gradient 6; € V produced by the identification problem
(4.4) is thus a vector field on the whole computational domain D (and not only on the boundary 0S2 of the
shape), and it enjoys the higher regularity of a vector field in H™ (D).

Another popular practice, albeit formal, is that retained in this article: only the normal component of
the velocity field 6 is extended and regularized. More precisely, we consider the Hilbert space

(4.5) V = HY(D), with inner product a(u,v) = az/ Vu-Vuvdx + / uv dz,
D D

where a > 0 is a user-defined parameter, and we solve the following identification problem:
(4.6) Search for v € V s.t. Yw € V, a(v,w) = J'(Q)(wn),

where n stands for an extension of the unit normal vector to 9Q2. We then take 8; = vn as the “gradient”
of J(£2), which is defined on the total computational domain D. Although not rigorous, since H!(D)? is not
embedded into W (R? R?), this practice yields good results; intuitively, the identification problem (4.5)
and (4.6) amounts to smoothing of the “L?(92) gradient” vg of J(Q) featured in (2.11) over a thickness a
around 0f).

4.6. A null space algorithm for constrained optimization

Only relatively few of the numerous constrained optimization algorithms (see e.g. [83] for an overview) lend
themselves to an efficient treatment of infinite-dimensional problems, and in particular shape optimization
problems. Let us nevertheless mention the article [98] introducing the popular Method of Moving Asymptotes
(MMA) in the context of density-based topology optimization, or that [19] about the adaptation of the
Sequential Linear Programming (SLP) method to the shape optimization context. In this section, we present
a numerical algorithm for dealing with constrained optimization which is particularly well-suited for our
applications; it is presented in detail in [57]°, see also the article [19] where a similar idea was developed
independently. For simplicity, we restrict ourselves to a heuristic presentation in the case of an optimization
problem featuring only equality constraints, although the method allows to treat an arbitrary number of
equality and inequality constraints.

We consider a shape optimization problem of the form

(4.7) rrgn J(Q) st. G(Q) =0,

where G(2) = (G;(Q))i=1,... » € RP is a collection of p real-valued equality constraint functionals.

Let us place ourselves at a given iteration n of the execution of Algorithm 3, dropping all superscripts
referring to the latter for notational simplicity. The current shape is denoted by (2, and we assume that
a Hilbert space V and an inner product a(-,-) have been chosen for the considered deformation fields 6
according to the Hilbertian method of Section 4.5. As discussed in there, the shape derivatives J'(Q) and
G}(2) are accounted for by gradients 6, g, € V,i=1,...,p, that is:

VeV, J(Q)&) = a(0s,8), and Gi(Q)(§) = a(fg,.).

The next iterate (Id + 760)(Q2) in the solution of the shape optimization problem (4.7) is obtained from a
deformation 6 which is sought as a linear combination of 6; and the ¢, ; we may write the latter under the
form

P
& 05— > Niba,,
(4.8) 0 =— (€5 + acéa), where p Tl
&a = Y Biba,,
i=1

and the coefficients \;, 8; are characterized by the following requirements:

5An open source implementation is available at the address:

https://gitlab.com/florian.feppon/null-space-optimizer

21

The vector field §; € V is a descent direction for J() lying in the null-space of the constraint
functional G(2), i.e.

Vi:1,...,p, G;(Q)(fj):a(QGi,fJ):O.
This property rewrites under the form of a p x p matrix system for the coefficients A = (A;)i=1,.._p:

S\ =0b, where S;; = a(fg,,0q,), and b; := a(0g,,0).

The contribution &z € V, which is then the only one able to modify the value of the constraint
functional, should ensure a reduction in the absolute value of G(£2) by a unit:

G((Id+70)(2)) = (1 — agT)G(Q).

This requires that |1 —ag7| < 1, that is ag < % Using the asymptotic expansion (2.8), one obtains,
at first order:

p
Vi=1,....p, Y BiGi(Q)(bc,) = -Gi(Q),
j=1

which leads to the p x p matrix system:

Sp = —c¢, where ¢; ;= —G;(Q).

Intuitively, the weights «; and ¢ in (4.8) encode the relative rates at which the algorithm imposes the
reduction in the value of the objective function and the fulfillment of the constraints.
The practical implementation of this strategy relies on the following adaptations of these considerations:

e The coefficients a; and ag in (4.8) are actually adapted from one iteration to the other, in order to

control the maximum amplitude ||6]|(py« of the descent direction 6; we set:

W if the iteration number n is < ny, Anh
ay = ! AL;JL(D)d herwi and g = min (G, 2) ,
max([6 ([oo pya ®) OtHETWise, ll€c |l Loe (p)a

where h is the average size of an edge in the mesh, and A;, Ag are fixed ratios accounting for the
largest displacement (relatively to the mesh size) of the boundary 02 induced by the requirements
to reduce the value of the objective function and to satisfy the constraints, respectively.

In the above formula, a given number of iterations ng is introduced, and the normalization of £
expressed in the definition of a; is only applied during the first ng iterations of the optimization
process; when n > ng, the normalization factor is replaced by the maximum between the norm
[[€.71| oo (p)a of the current direction £y, and its value = at iteration ng. This leaves the room for the
contribution «;€y, which is in charge of making the value of J(Q2) decrease, to tend to 0 as n grows,
and thus to avoid oscillations of the algorithm in the final iterations of the method.

A merit function is used to appraise the size of the step At during which the direction 6 in (4.8)
allows to improve 2 with respect to the problem (4.7). More precisely, we introduce the augmented
Lagrangian-like shape functional

M(Q) == ay (J(Q) - Ep: AiGi(Q)> + %C’s-lc;(ﬂ) -G(9),

whose shape gradient (with respect to the inner product a(-,-)) is precisely the deformation field 6
n (4.8). The time step At must then be chosen in such a way that M ((Id + At9)(R2)) < M(Q), at
least up to a certain tolerance.

Remark 4.3. One interesting feature of this algorithm is that it does not involve many user-defined param-
eters which may prove difficult to tune: only Ay and Ag have to be specified, whose physical meaning is quite
clear. The ratio Aj/Aq allows to control the pace at which constraints become satisfied.

22

A
v

-—>
0.5
-—
1
T =
0.1
> I'p

FIGURE 11. Setting of the 2d crane optimization example of Section 5.1.

5. NUMERICAL ILLUSTRATIONS

In this section, we present several numerical examples illustrating the main features of our shape optimization
framework, in physical situations where a body-fitted approach is particularly desirable. The first Section 5.1
arises in the exact physical setting of 2d linearly elastic structures introduced in Section 2.1. We then turn
to more complex physical situations; in Section 5.2, we consider the optimization of a two-dimensional
thermoelastic device; in Section 5.3, we deal with the three-dimensional optimization of an aerodynamic
profile, and finally, in Section 5.4, we consider the optimization of a three-dimensional thermal-fluid heat
exchanger.

5.1. Optimization of the shape of a two-dimensional crane

Our first example deals with the optimal design of a 2d crane, as depicted on Fig. 11. The considered shapes
Q) are enclosed in a computational box D with size 5 x 5; they are clamped on two small regions I'p near
the corners of their lower part, and uniform traction loads g = (0, —1) are applied on the two regions I'y
located at the left and right ends of their upper part, accounting for the counterweight of the crane and the
weight of the lifted object, respectively.

The shapes are made of a linearly elastic material with normalized Lamé parameters A = 0.5769 and
1= 0.3846. As presented in Section 2.1, the physical behavior of the shape in this situation is described by
the linearized elasticity system (2.1), and we solve the problem

nbin C(Q) s.t. Vol(Q) = Vp,

where C(Q) stands for the compliance (2.3) of Q, and where the target value Vi for the volume Vol(Q) is
set to Vpr = 2.5.

Several intermediate shapes are represented on Fig. 12, exemplifying in particular the multiple topological
changes undergone by the shape in the course of its evolution. The histories of the values of C (€2 and Vol(Q)
are reported in Fig. 13.

5.2. Minimum compliance problem in thermoelasticity

In this section, we illustrate the application of the level set based mesh evolution methodology to the

minimization of the compliance of a thermoelastic structure. This test case is partially reproduced from the

articles [103, 57]. The considered shapes) are contained in the fixed computational domain D = (0,2)x (0, 1);

they are clamped on the left and right sides of D, whose reunion is denoted by I'p, and they are subjected to
23

FIGURE 12. (From (a) to (f)) Intermediate shapes obtained at iterations 0, 16, 25, 50, 100
and 200 of the crane optimization test case of Section 5.1

a traction load applied on a small region I';y with size 0.0125 centered at the middle of the bottom boundary,
see Fig. 14.
The shape is filled by a thermoelastic material, characterized by the Lamé parameters A = 11510,
u = 7673, and the thermal expansion coefficient o = 0.77 with reference temperature Tyof = 0. The
quantities o and Tyt express that the structure experiences an additional stress induced by thermal dilation
24

Evolution of the compliance and volume of the structure

Evolution of compliance Evolution of volume

1301

120 64

Compliance
-
=
15

-
=)
=3

90

80 1

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
iterations iterations

F1GURE 13. Ewolution of the compliance and of the volume in the crane optimization ex-
ample of Section 5.1.

0.0125

ANANNNNNNNNNNNNNNNNNNNNSNRE
—
ANANANNNNNNNNNNNNNNNN

=
v

FIGURE 14. Physical setting of the compliance minimization problem of a thermoelastic
structure considered in Section 5.2, issued from [L03].

when the temperature T inside the material is larger than Tie¢. In this example, the constant temperature
field T'= 5 is imposed to the structure, causing expansion of the structure.
The displacement ug of the shape in this setting is the solution to the following linear thermoelasticity
system:
—div(o(uq,T)) =0 in
ug=0 onlp
(5.1)
olug, T)n=g onTly

o(ug, T)n=0 onT,
where the stress tensor o(u,T) reads
(5.2) o(u,T) = Ae(u) — a(T — Trer)I with Ae = 2ue 4+ Atr(e)l.

We solve the following minimum compliance minimization problem:

min J(Q) := / Ae(ugq) : e(ug) dz s.t. Vol(Q) < Vp,
QCD Q

where the target volume is Vo = 0.7.
25

FIGURE 15. (From (a) to (f)) Intermediate shapes obtained at iterations 0, 5, 10, 30, 50
and 100 of the thermoelastic test case of Section 5.2

X

FIGURE 16. (a) Optimized design (iteration 200) in the thermoelastic test case of Sec-
tion 5.2, (b) associated mesh T of the computational domain D.

The shape derivative of the compliance in the present context has been calculated in [103, 57], and
the formulas are omitted for brevity. The optimization results are shown on Figs. 15 and 16, which include
respectively plots of a few intermediate shapes, and the mesh of the optimized design obtained at convergence.

5.3. Lift—drag topology optimization for three-dimensional aerodynamic design

This section presents an application of the level set based mesh evolution method in the context of 3d
aerodynamic design. We aim to optimize the shape of a flying solid obstacle immersed into an incoming
fluid flow, so that it generate the largest possible lift force while keeping friction forces small. This classical
industrial problem, which is commonly referred to as “lift-drag” optimization in the literature, has been
mostly addressed in the context where the optimized design is described by a set of CAD parameters, see for
instance [38, 80, 70, 71, 51, 75, 63]. The test case presented in this section is a variation from that discussed
in [58, Section 5.3].

The physical setting is that depicted on Fig. 17: the fixed computational domain is the cube D = (0,1)3.
It is filled by a fluid, entering from the left-hand boundary T';, with a velocity vo = (1,0,0), and exiting
with a stress-free boundary condition at the opposite face I'oys. The domain is divided into a fluid part
Q, denoted by €y, and a solid obstacle Q4 := D \ € which is such that Q5 € D. The boundary of the
solid obstacle is denoted by I' = 0€2;. The physical state of the fluid is determined by its velocity field vg
and pressure field pn which are characterized as the solutions to the system of incompressible steady-state

26

\

FIGURE 17. Physical setting of the lift-drag optimal design problem considered in Sec-
tion 5.3.

Navier-Stokes equations:

—div(os(va,pa)) + pVug v =0 in Qy

div(vg) =0 in Qy

vo = Uy onI'y

(5.3) gf(vQ,pQ)n =0 on ['out
v =0 onI

vo-n=0 ondD\(T in Ulou),

where v is the fluid viscosity, p its density and where o¢(v, p) denotes the fluid stress tensor which is related
to the rate of strain tensor e(v) := (Vo + VoT) via Newton’s law:

o(v,p) :=2ve(v) — pl,
and where n denotes the unit normal vector to 9€2s, pointing outward €2;.

The considered problem is to maximize the lift generated by the obstacle Q; (which is the force allowing
it to fly), under an upper bound constraint on the drag (i.e. the reaction force of the fluid medium on), so
that the obstacle remains aerodynamic. In addition, the volume Vol(£2s) and the center of mass X (£2,) € R?
of the obstacle are prescribed. The corresponding optimization program reads:

mén — Lift(Q)
Drag(2) < Drag,,
(5.4) Vol(Q,) = Vir

s.t. 1
X(Q) = —/ rdr = w0,
U1l Ja,
where the lift functional Lift(Q2) accounts for the vertical force exerted by the fluid on the solid obstacle:
Lift(Q2) := — / ey - 0f(va,pa)nds,
r

where ¢, = (0,1,0). The Drag functional Drag(2) is defined by

Drag(92) ::/ os(va,pa) : Vugdr = / 2ve(vg) : e(vg) dz.
Qy Q

The computation of the shape derivatives of these functionals is fairly classical and can be found e.g. in
[55, 41, 68]. The parameters considered for the present test case are set to v = 1/200, p = 1, corresponding
to a Reynolds number of the order of Re ~ 200, Vr := 0.03 and o = 0. The maximum value allowed for
the drag is set to Drag, := 0.078405, corresponding to 1.5 times the minimum possible drag value for the
prescribed solid volume (obtained from another minimization).

27

SRR NN

FIGURE 18. (From (a) to (f)) Intermediate designs obtained at iterations 0, 5, 10, 50, 100
and 200 of the optimization process for the lift-drag test case of Section 5.3

This computationally intense problem is solved with parallel computing using 20 CPUs and the method-
ology described in [58]. The typical edge length imposed on the fluid-solid interface equals 0.01. The final
mesh features 154,982 vertices and 846,138 tetrahedra, including 134,637 vertices and 700,520 tetrahedra in
the fluid domain.

A few intermediate shapes obtained during the optimization procedure are shown on Fig. 18. The opti-
mized design, its mesh as well as its surrounding velocity field can be appraised on Figs. 19 and 20. Despite
the low Reynolds number which makes this study quite unrealistic with respect to concrete aeronautic ap-
plications, is it quite remarkable that it is able to predict a design whose longitudinal profile recalls that of
an airfoil, and whose “V-shape” at the back reminds that of airplanes.

5.4. Optimal design of a three-dimensional fluid heating device

The numerical example of this section is reproduced from [58, Section 5.5]; it deals with the optimal design
of a heating device whose purpose is to warm up a cold fluid under the coupled effects of convection and
conduction.

The situation is that depicted on Fig. 21. The computational domain D C R? is the box [0, 2] x [0, 1] x [0, 1].
It is divided into a fluid phase Q C D, denoted by Q¢, and a solid phase 5 = D\ €2, with respective thermal
conductivities £y and k; these are separated by the interface I'. A “cold” fluid with density p and viscosity
v enters from the left side of D through a disk-shaped inlet boundary 8Qifn of radius 0.1 with a unit parabolic
velocity profile v = vy and a prescribed temperature T' = 0. The fluid absorbs the heat diffused from a “hot”
stripe 9Q% at the middle of D which is maintained at the constant temperature 7' = 10, before exiting
through a similar disk-shaped outlet boundary 89‘}‘“ at the right side of 0D with a stress-free boundary
condition. No heat is lost through the remaining parts of 9D which are considered adiabatic.

In this context, we aim to optimize the shape {1y = of the fluid phase, and thereby the repartition
of Q¢ and 2, within D, in order to maximize the total heat carried by the fluid, under constraints on the

28

I 1.3e+00
1

—08

— 0.6

v Magnitude

— 04

[.
0.0e+00

FIGURE 19. Optimized design in the lift-drag test case of Section 5.3, with a cut view of the
magnitude of the surrounding velocity field vg.

F1GURE 20. Different views of the optimized design obtained in the left-drag test case of
Section 5.3; (a) side view, (b) bottom view, (c) top view, (d) back view, (e) front view and
(f) perspective view.

static pressure loss through the device and on the volume of {2;. Mathematically, the following optimization
program is considered, see [55, 58]:

min J(Q) := —/ pepva - Vg de,

(5.5) DP(Q) := / pads — / pods < DPr,
S.t BQ‘;‘ aﬂ‘;‘”

VOl(Qf) = VT.
29

FIGURE 21. Setting of the optimal heat transfer problem of Section 5.4. A “cold” fluid flows
from the left to the right blue disk-shaped regions and captures the heat communicated by the
red stripe OO where the “hot” temperature T = 10 is imposed.

Here, the velocity v and the pressure pg of the fluid are governed by the static, incompressible Navier-Stokes
equations:

—diV(Uf(UQ,pQ)) + pVoqug =0 in Qf,
div(vg) =0 in Qy,
(5.6) vog=v9 ond i;],

of(va,po)n =0 on ON",
vo =0 onI'.

where o¢(v,p) is the stress tensor within a fluid with velocity v and pressure p, which is related to the rate
of strain tensor e(v) := (Vv + Vo) via the Newton’s law:

os(v,p) := 2ve(v) — pL

The temperature field Tg, inside D depends on the velocity v of the fluid via the static convection-diffusion
equation:

—div(k‘fVTQ) + pcpvq Vig =0 in Qf,
—div(ksVTq) =0 in Q,
Ta=0 on 0 ifn,
To =10 on 9NE,
(5.7) 6TQ T
_oe on other boundaries,
on
Tq is continuous onI',
T
The flux — kaa—ﬂ is continuous onT,
n

where ¢, is the thermal capacity of the fluid.

The values of the physical parameters entering the formulation (5.5) to (5.7) are chosen as follows. The
density and the viscosity of the fluid are respectively p = 10 and v = 0.167, so that the Reynolds number
of the flow equals Re ~ 60. Its thermal conductivity and capacity coeflicients are respectively set to kf = 1
and ¢, = 500; hence, the Péclet number Pe equals 5,000. The thermal conductivity of the solid phase is
ks = 10. The imposed upper bound on the pressure drop in (5.5) is set to DPp = 0.85, while the target
volume for the fluid phase equals 20% of the total volume: Vp = 0.2Vol(D).

The numerical realization of this program relies on the application of the level set based mesh evolution
Algorithm 3, where the formulas for the derivatives of the shape functionals at play have been established
30

FIGURE 22. (From (a) to (f)) Iterations 0, 5, 15, 25, 50 and 152 of the optimization process
of a heating device considered in Section 5.4.

n [56]. The initial repartition of the phases Q, Q features islands of solid spherical inclusions, see Fig. 22
(a). A few intermediate shapes arising in the course of the optimization process can be seen on Fig. 22,
illustrating the dramatic topological changes undergone by the system. The resulting optimized design is
displayed on Fig. 23. Interestingly, the latter features thin inclusions of fluid attached to the main pipes
so as to take advantage of the insulating effect induced by the low thermal conductivity of the fluid with
respect to that of the solid.

The sizes of the meshes of D considered for this test-case range from approximately 22,000 to 278,100
vertices. The numerical resolutions of the Navier-Stokes and the advection-diffusion equations (5.6) and (5.7)
are efficiently achieved by combining the finite element method with domain decomposition techniques on
30 processes. The total computation takes approximately 2 days.

6. CONCLUSION AND PERSPECTIVES

In this article, we have presented a numerical framework for shape and topology optimization which combines
the level set method with remeshing techniques to reconcile the antagonistic needs for accurate mechanical
31

FIGURE 23. (a) Optimized heating device obtained in the example of Section 5./; (b) mesh
of the fluid component of the final design; (c) sectional view of the optimized solid domain
(d) sectional view of the optimized fluid domain. In all the pictures, the colors correspond
to the temperature profile.

computations on the shape and for a robust description of its evolution. This numerical strategy has been
successfully applied in a wide variety of physical contexts, including those of linearly elastic structures,
fluid-structure interacting devices, heat exchangers, etc. It could also be used fruitfully beyond the realm
of shape optimization, and notably in the simulation of multi-phase problems (for instance, in the study of
multi-phase flows), or in the solution of inverse problems implying the detection or reconstruction of objects.

Beyond ever more complicated physical situations, we are currently working on extending this method to
deal with the optimization of the shape and topology of regions embedded in a fixed surface. This would
allow, for instance, to optimize the regions of the boundary of a domain bearing various types of boundary
conditions, in the spirit of our previous work [42]. We also wish to extend this methodology to handle the
evolution of open curves in 2d, and open surfaces in 3d, which would make it possible to optimize shell
structures.

Acknowledgements. The work of C.D. is partially supported by the project ANR-18-CE40-0013 SHAPO,
financed by the French Agence Nationale de la Recherche (ANR). The body of work presented in this article
owes much to the diverse expertise of many colleagues: in particular, we are very grateful to M. Albertelli,
F. Bordeu, J. Cortial, C. Dobrzynski, A. Froehly, G. Michailidis. The authors are especially indebted to G.
Allaire and P. Frey, who were at the inception of this project, and made it thrive with their key insight and
relentless suggestions.

32

»
| o

0.1}

—_
<
SOOARN NN NS OONANOSNOSNOSAOSAOAOANANNNNNDY

A
v

2

FIGURE 24. Setting of the 2d cantilever test-case considered in Appendiz A.

APPENDIX A. MANUAL OF THE COMPANION CODE

In this appendix, we describe the python-based implementation of the level set mesh evolution method
accompanying this article. Our aim is to provide a code which meets a compromise between simplicity,
re-usability and computational efficiency: we hope that it is simple enough so that a user can easily get ac-
quainted with its main features, and at the same time general and modular enough so that it can be modified
with a minimum amount of effort to address a whole gamut of new and more challenging applications.

The source code can be downloaded from the Github repository

https://github.com/dapogny/sotuto

which is organized in several folders: the one named ./base contains the material devoted to the benchmark
2d cantilever test case; it serves as support for this presentation. The other folders are as many variations
around this main theme, which are briefly presented in Appendix A.10.

A.1. Description of the 2d cantilever test-case

Our model example arises in the linearized elasticity setting described in Section 2.1. The considered shape
Q) represents a cantilever beam; (2 is comprised in a box D with size 2 x 1, it is clamped on the left-hand side
I'p of D, and traction loads g = (0, —1) are applied on a given region I'y near the center of its right-hand
side, see Fig. 24. In this context, we aim to solve the problem

(A1) m{%n (), s.t. Vol(Q) = Vp,
where the compliance C(€2) and the volume Vol(2) of a shape {2 have been defined in Section 2.1 as:

cQ) = /QA@(UQ) : e(ug) do and Vol(Q2) = /Q dz,

and where Vr is a volume target. The elastic displacement uq involved in the definition of C(2) is the
unique solution in Hf\(€2)¢ to the linear elasticity system (2.1), whose variational formulation reads:

(A.2) Yo € H Q)4 /QA@(UQ) ce(v)dx = /F g-vds.

N

For the convenience of the reader, we recall from Section 2.2 the expressions of the shape derivatives of C'(2)
and Vol(£2):

(A.3) C'(Q)(0) = — /F Ae(ugq) : e(uq) 0 -nds, and Vol'(Q)(9) = /1“9 -nds.
33

A.2. Getting started: download and installation of the files

As a preliminary stage, the use of our program requires the installation of four open-source libraries, written
in C or C++:
e The library mshdist [40] performs the computation of the signed distance function to an input
domain at the vertices of a simplicial computational mesh, as detailed in Section 4.2. It can be freely
downloaded from the repository

https://github.com/ISCDtoolbox/Mshdist

and compiled by following the instructions supplied at this address.

e The library advection [30] solves the advection equation (3.3) governing the evolution of a level
set function on a simplicial computational mesh in 2d and 3d, see Section 4.3. It is available at the
following link:

https://github.com/ISCDtoolbox/Advection

where instructions are given to compile the library.
e The library mmg [39] is in charge of the remeshing operations of the strategy, as presented in Sec-
tion 4.4. It can be downloaded through the webpage of the project

https://www.mmgtools.org/

where a series of tutorials is available to exemplify the main features of this program, see also the
github link

https://github.com/MngTools/mmg

e The software FreeFem [(0] is a numerical environment where partial differential equations can be
solved in a few lines of commands through the input of their variational formulation. More generally,
it conveniently and efficiently allows to handle finite element spaces and functions thanks to an
intuitive C++ based pseudo-language. The latest version of Freefem can be downloaded from the
webpage:

https://freefem.org/
which also contains an exhaustive documentation, and multiple worked examples.

In addition to these four required codes, we recommend the installation of the open-source vizualization
software medit, provided at the following address:

https://github.com/ISCDtoolbox/Medit
where a short manual is also available”.

Our numerical implementation of the level set based mesh evolution method relies on a main frame written
in python, supplemented by FreeFem scripts dedicated to the operations involving finite element computa-
tions. The calls to the four aforementioned external libraries are encapsulated in python functions which
merely execute unix command lines via subprocesses®. These interface functions are not supposed to be
modified by the user, and we limit ourselves with presenting their syntax in Appendix A.7 below. Their
proper functioning requires that, after installation of the libraries mshdist, advection, mmg and FreeFem, the
user set the paths of the corresponding executables in the path.py file, as described in Appendix A.5.1. The
communications between the main python program and these codes (such as the exchange of input parame-
ters or output results) are realized via an exchange file referred to as path.EXCHFILE in the python program;
this mechanism should be invisible to the user.

This manual is organized as follows. We first present the overall architecture of the program in the next
Appendix A.3. In Appendix A.4, we outline the practical shape optimization strategy realizing the abstract
Algorithm 3, and we introduce the functions corresponding to its main stages. These functions are detailed
in the subsequent sections, with a particular emphasis on the parts that the user may have to modify in

6A python package interfacing FreeFem is available at the following link: https://gitlab.com/florian.feppon/pyfreefem

"The python package PyMedit can be used to conveniently handle and vizualize the mesh structures processed by medit:
https://gitlab.com/florian.feppon/pymedit

8These command lines are adapted to Linux and MacOs environments, and some adaptations may be necessary for systems
relying on Windows.

34

order to implement his own examples. Note that, for clarity, we have allowed some redundancy between the
various sections of this manual, as it is not necessarily meant to be read in linear fashion.

A.3. Global architecture of the program

The source code in the ./base folder is made of files of three different types:

e The .py files are python modules;

e The .edp files are FreeFem scripts, which are executed by calling FreeFem from python functions;

e The .idp files are also processed by FreeFem; they contain general information and routines shared
by most of the .edp scripts.

Two of the above files are dedicated to the input of user-defined parameters:

e The module path.py contains global variables and the paths to the directories where input and
output objects are stored, to the executables, etc. For instance, path.EXCHFILE is the address of the
aforementioned exchange file between python and FreeFem modules, the file path.HISTO contains
the data (values of the compliance and volume) of the successive shapes produced during the opti-
mization process, path.FREEFEM is the command line for calling FreeFem, etc. This file also contains
the definition of shorthands used throughout the program: path.step(n,"mesh") is the string of
characters containing the name of the mesh of D at the n'" iteration, path.step(n,"u.sol") refers
to the file containing the elastic displacement, etc.

The contents of this file are more thoroughly described in Appendix A.5.1.

e The file macros.idp contains global variables and macros used in FreeFem scripts; it is described in

Appendix A.5.2.

The main program is executed by calling the file main.py, which orchestrates the functions from the
other python modules. These modules are:

e The module inout.py contains the functions for reading and printing data from and to external
files;

e The module inigeom.py is devoted to the creation of the initial shape, see Appendix A.6 for its
description;

e The module mechtools.py gathers the functions in charge of the mechanical calculations of the
framework, and notably the resolution of the linear elasticity system (A.2), the calculation of the
compliance of shapes, that of a descent direction for the problem (A.1), etc. These are described in
Appendices A.8 and A.9;

e The module lstools.py contains the functions dedicated to the treatment of level set functions, and
notably the interface functions with the C libraries mshdist and advection. The practical use of
these functions is described in Appendix A.7.

e The module mshtools.py contains the interface functions with the library mmg, see Appendix A.7;

The execution of our program mainly results in the production of data files of two types, written in the
common formats used by mshdist, advect, FreeFem, mmg and medit:

e .mesh files contain meshes,
e .sol files contain (scalar- or vector-valued) P; finite element functions given by their values at the
vertices of a companion mesh.

For brevity, and since the structure of such files is not needed for our purpose, we do not describe them in
the present manual, referring for this matter to the documentation of any of the codes mentioned above.

A.4. Overview of the global strategy: description of the file main.py

The code contained in the folder ./base is executed by entering the following command line from the root
folder.

./base/main.py

In the present section, we describe in some detail how the file main.py implements the strategy of Algo-
rithm 3; the outline of this practical realization is provided in Algorithm 4.
35

Algorithm 4 Practical realization of the level set based mesh evolution method.

Initialization:

e Function inout.iniWF: Initialization of folders and exchange files.

e (Optional) Function inout.testLib: Test of the links with python functions and external C
libraries.

Function inigeom.iniGeom: Creation of the initial mesh 70 of D.

Function mechtools.elasticity: Calculation of ugo.

Functions mechtools. compliance and mechtools.volume: Calculation of C'(Q°) and Vol(Q2°).

for n =0,...,path.MAXIT — 1 do
(1) Function lstools.mshdist: Calculation of the signed distance function ¢™ on 7.
(2) Functions mechtools. gradCp and mechtools.gradV: Calculation of the gradients of C'(£2) and
Vol(2) on T™.
(3) Functions mechtools.descent: Calculation of a descent direction for (A.1).
(4) Functions mechtools.merit: Calculation of the merit of Q™.
(5) Line search: for k =0,...,path.MAXITLS — 1 do

(a) Function lstools.advect: Resolution of the level set advection equation, for the the
new function ¢"*! on the old mesh 7" of D.

(b) Function mshtools.mmg: Creation of the new mesh 7"*! of D, where the 0 level set of
¢t is explicitly discretized.

(c) Function mechtools.elasticity: Calculation of ugn+1 on 77FL.

(d) Functions mechtools.compliance, mechtools.volume and mechtools.merit: Cal-
culation of C(Q"*1), Vol(Q"1) and M (Q"+1).

(e) Decision: Acceptation / Rejection of the new iterate.

end for
end for
return Mesh 7" of D where Q" is discretized as a submesh

n
int-

A.4.1. Initialization

The program starts with the creation of the folder ./res/, where all the mesh and solution files produced
during the execution will be saved. Meanwhile, the files path.EXCHFILE, path.HISTO are created, as well as
other exchanges files whose descriptions are not needed by the user.

Initialize folders and exchange files
inout.iniWF ()

Then, the calls to the four external libraries FreeFem, mshdist, advection and mmg are tested.

Test the links with extermnal C libraries
inout.testLib ()

This should result with the following terminal output.

FreeFem installation working.
Mshdist installation working.

Advect installation working.
Mmg installation working.
All external libraries working.

Of course, once the user is confident with his settings, this testing stage can be deactivated by simply
removing this instruction.
36

The next call to the function iniGeom from the module inigeom.py, which is described in Appendix A.6,
is meant to create the initial mesh 79 of D, equipped with the boundary conditions of the test-case, and
featuring an explicit discretization of the initial shape Q° as a submesh 7,2,

Creation of the initial mesh
inigeom . iniGeom (path.step (0,) ,path.step (0,)

The resulting mesh file step.0.mesh is stored in the folder path.RES; it is depicted in Fig. 25 (a), where the
interior submesh T, is that made of the black triangles (identified by the reference path.REFINT), while
the exterior submesh 72, is the collection of white triangles (with reference path.REFEXT).

X

The linear elasticity system (A.2) for the elastic displacement ugo of QU is then solved on the interior

submesh 7.9, thanks to the function elasticity from the mechtools.py module.

Resolution of the state equation
mechtools.elasticity (path.step (0,) ,path.step (0,))

This function is described in Appendix A.8 below.

Finally, the values C(Q°) and Vol(2°) of the compliance and the volume of Q° are calculated owing to
the following commands:

Calculation of the compliance and the volume of the shape
newCp = mechtools.compliance (path.step(0,) ,path.step (0,))
newvol = mechtools.volume (path.step (0,))

The functions compliance and volume from the module mechtools.py are detailed in Appendix A.8.

A.4.2. Main optimization loop

At the beginning of each iteration n, ranging from 0 to path.MAXIT —1, a few shorthands are defined, such
as for instance:

e curmesh is the address path.step(n,"mesh") (corresponding, by default, to the file step.n.mesh
in the folder path.RES) for the mesh 7™ of D;

e curphi is the address path.step(n, "phi.sol") (corresponding, by default, to the file step.n.phi.sol
in path.RES) for the level set function ¢™ : D — R.

At this moment, the following objects are available:

e The mesh 7" of the domain D, called curmesh; the shape Q" (resp. the exterior part D\ Q") is
represented by the submesh 7,7 (resp. 7%,), whose elements are the triangles with label path.REFINT
(resp. path.REFEXT).

e The displacement ugn, solution to the linear elasticity equation (A.2)) on Q" is called curu. It is
encoded as a Py finite element function on the whole mesh curmesh, with the convention that only
its values in the interior part of curmesh are to be considered.

e The respective values newCp, newvol of the compliance and volume C(Q2™) and Vol(Q2™) of the current
shape Q7.

The n'" iteration starts with the calculation of the signed distance function ¢™ = dgn to Q™ at the vertices
of the mesh 7™. This relies on the function mshdist from the module lstools.py:

Generation of a level set function for $\Omega"n$ on D
Istools .mshdist (curmesh, curphi)

The use of this function is described in Appendix A.7.

The shape gradients of the objective and constraint functionals C(€2) and Vol(Q) are then calculated.
This is realized thanks to the functions gradCp and gradV from the module mechtools.py, which rely in
particular on the Hilbertian extension-regularization procedure presented in Section 4.5.

37

Calculation of the gradients of compliance and volume
mechtools. gradCp (curmesh , curu, curCPgrad)
mechtools. gradV (curmesh, curVgrad)

These functions are described in Appendix A.9.1.

A descent direction for the optimization problem (A.1) is then inferred from these gradients, following
the constrained optimization strategy presented in Section 4.6.

Calculation of a descent direction
mechtools.descent (curmesh , curphi, curCp, curCpgrad, curvol, curVgrad, curgrad)

This function is described in Appendix A.9.2. It takes as arguments

e A string of characters curmesh for the name of the current mesh of D;

The name curphi of the level set function for the shape Q7;

The values curCp, curvol of the objective (compliance) and constraint (volume) functionals;
The respective names curCpgrad, curVgrad for the gradients of these functionals;

The name curgrad for the file where the calculated descent direction should be saved.

Remark A.1. The descent direction produced by this function is normalized, so that its L> norm equals
the typical size path.MESHSIZ of an element in the mesh, see Appendix A.9.2 about this practice. Hence, a
motion of the shape Q™ in the direction of curgrad for a pseudo-time step ™™ =1 corresponds to a mazimum
amplitude path.MESHSIZ for a motion of a point of the shape.

The above function descent prints in the file path.EXCHFILE the values of the coefficients A, S (which
boils down to a scalar value in the present example), «;, ag used in the optimization strategy, as they are
needed in the evaluation of the merit function M (Q), see (4.9).

This value of M (™) is then calculated, thanks to the following function, which is described in Appen-
dix A.9.3.

Evaluation of the merit of $\Omega"n$
merit = mechtools.merit (curCp, curvol)

A line search procedure then begins, under the form of a nested loop indexed by k; for each substep, the
following operations are carried out.
(1) The motion of the current shape Q™ given by curmesh and curphi in the direction curgrad is
realized, for a certain pseudo-time coef. Because of the chosen normalization for curgrad (see
Remark A.1), the maximum displacement of a point of the shape equals coef * path.MESHSIZ.

Advection of the level set function

()

Istools.advect (curmesh, curphi,curgrad, coef ,newphi)

The use of the function lstools.advect is explained in Appendix A.7. The level set function ¢"t!
for the new shape Q™! resulting from this operation, stored in the file newphi, is still attached to
the mesh curmesh.

(2) The 0 level set ¢"*1, named newphi, is explicitly discretized in the mesh curmesh by calling mmg.

Creation of a mesh associated to the new shape
()
retmmg = mshtools.mmg2d (curmesh ,1,newphi,path.HMIN, path.HMAX,
path.HAUSD , path.HGRAD ,1,newmesh)

The function mshtools.mmg2d in charge of the interface between the library mmg and our python
framework is described in Appendix A.7.

38

(3) (Unless the execution of mmg has accidentally failed) The elastic displacement ugn+1 is calculated on
the new shape defined by the mesh 77*! of D, named newmesh, or more accurately, on the submesh
T U of 77! made of the triangles with reference path.REFINT. The corresponding values of the
compliance and volume functionals, and then the new value of the merit are evaluated.

(retmmg)
Resolution of the state equation on the new shape
()

mechtools.elasticity(newmesh ,newu)

Calculation of the new values of compliance and volume

()
newCp = mechtools.compliance (newmesh ,newu)
newvol = mechtools.volume (newmesh)
newmerit = mechtools.merit (newCp,newvol)

The final step of the inner line-search loop is the decision stage: the new shape newmesh is accepted if the
corresponding value newmerit of the merit function is less than that of the previous shape curmesh (up to
some tolerance), or if a maximum number of iterations has been made in the line search procedure with this
descent direction. Otherwise, the new iterate is refused; the algorithm goes back to the beginning of the line
search procedure, with a reduced value of the “time-step” coef.

Accept iteration: break and increase slightly the "time step"

(retmmg (newmerit < merit + path.TOL*abs(merit))
(k == 2) (coef < path.MINCOEF))
coef = min(path.MAXCOEF ,1.1*coef)
(: (n,k))

Reject iteration: go to start of line search with a decreased "time step"

(. (n,k))
proc = subprocess.Popen ([. (nmesh=newmesh)] ,shell=True)
proc.wait ()
coef = max(path.MINCOEF ,0.6*coef)

A.4.3. Outputs

At each iteration n = 0, ..., path.MAXIT—1 of the main loop of our optimization procedure, the following
files are saved in the path.RES repository:

e The current mesh 7" of D, referred to via the shortcut curmesh, is saved as the file path.step(n, "mesh")
(which is, unless specified otherwise by the user, the file step.n.mesh in the folder path.RES);

e The level set function ¢™ for the shape Q", called curphi, is saved as the file path.step(n, "phi.sol");

e The solution ugn to the elasticity system associated to 2™ is saved in the file path.step(n,"u.sol");
let us recall that, although ug~ is only defined on Q" from the mathematical point of view, it is
actually stored as a P finite element function on the total mesh 7", being understood that only the
values at the vertices of the interior part 7.}, are relevant;

e The gradients curCpgrad and curVgrad of the objective and constraint functionals are saved in the
files path.step(n,"CP.grad.sol") and path.step(n,"V.grad.sol"),

e The descent direction 0", called curgrad, is saved in the file path.step(n,"grad.sol").

Eventually, the values of the compliance and volume attached to each shape 2"are stored in the path.HISTO
file.
39

S
PR
%
e
S

o

=
KR
5

L

o

5
R
K

A

XK
5%
7

5

P
i
&

A
FRREELD
i

T

e

K
B
5

2

R
XX
S

KBNS
QU
s

5
5
4
Rk
5

FIEED
LR

AEaROE
DR
TS,

LR

A

T
]

i

B
s

K
S
BRI

ot

<

e
IR
Bavass

5

ORISR
SRR
PR

2
é§h>

e
e
£
1
L

i
i
X

>
5
£

KK

5

X

et

Yaran

s
ok
SR

B
5
PR

£

oL

s
R

)
REP

i
vatizy
s

2

o
a2

S
LR

N

5

s

R
i
7

i
S
R
R
R

X
o
L

s
i
&

0

.

A
AP
FALO0S

U
s

5&
)
&

5

B
&L
‘a,“,:‘

B
i
3

e,

£
anih
5
e

o

K

£

X
£

R
X

S e,

EREH

iy,

S
o

Yy

4
5

2
2

K

CRRAS
R
paa

o

8
e

o
s

2
i

s

SR

00

o]

o
N

SORDLN

%
K

iy
s
s

F

i

K
0

W

B,

5
aT

i
s

oy

KA
Ay

A.
e,
s,
LRI
P
O
RO
HELOR

e
ERRRAL
A
R
KE

R

o

SRR
LRRREER
e
e
Fe

5
G
e
R

Sy
KL DA

LR
OODEKRRRRRRIRAR

Koy
s
FRRRR

e
SO
R

s
Y

5

o
&
5

S
v

RS

5
=

2

£

2
o

Dol
B

%
aman
)
<

55
KX
£

%
?

o
pak

(o
HEcE

€]
13
N

5
B
(SRS RF
i
R

s o
NS
Vs

B
s 7
E
w0l

5

4
]
0
e
P
oo
DO
REE
FEEH
AN,

Vi

o
755
0

5
5
<5
A

S

i
i
£
o

5
o
nt
i
S

&

&

REY

2

A

B
st
Skl
% T,
OO
T
Seagy

Rk
s
ALy
EEY
5
vf»
&

».
o
S5
s
o

3
RS
Sea
R
7
P
LR
008
s

X

5
RoRe V7o)

i

55

cx
s
5

e s
&

KX
s

i
Lt

o
5
i

A

2

iR
&
i
VZravits
A
FErE

)
i
6

e
e
R
s

T
e

5

o
e

4

25
P
iy SO
SR Vst
S, ﬂmwl

oK
)
e

o
SR8

e
i

LR g
sk,)
N

o
T
o
R

A ,
A,
S, s
SO, | SRt
v%uiﬂvvr
AR

>
3
K

2

55

e

Rl
AR

=

&

SRS
el

K

£y
R
ORISR

LA
s
FRRRS
ERACR
R
I
XX

i
J
o

)
e
FERX

K
b
“

PR
R
s
S

<

S

s
e
S,

:
K

i
s,
DERSAT

5
&
-

g
A
)

LRk

7

R,
&%

¢

R
XRRARE:
RN
s
4
MR
gt
o
o

X
A
o

R

o

2
£1

%

LoLr
o

e
s
i

]
5%

20
5

5
S

Vi
KLk

R
R
SRR
LR
s AT

s

v
A
o

o)

X

%

17

a7t

2
s

Er
5

e

AL

R
EEOEE
IR
SRR
AT L
AR
T S,
SO OROT
i S

=
&

KA
X
2

e
TS S
LR
DRSO,
oy «r.v.v%i,:'m,.!
TR

55
e

SR

i

5t
A
s

X
ot

5
5
=
By
55

vy
i

K

v

A%

o
vy
s
ol
e

&

i
o
KBk

B,
K

N
Tio N,
SRS

2
£

D

Y
K
ok
REE
e
fhess
s

e
Va e v
ST,
SRR

&

‘?slzséue
Lo
R LRI
RO O &

Sy

lrararEel

10N PTocess

imizat

FIGURE 25. Iterations (a) 0, (b) 20, (¢) 50 and (d) 150 (final) of the opt

z A

{

Append

d in

scusse

the cantilever test-case d

m

25. The histories describing

the evolution of the compliance and volume of the shape can be displayed by calling the plot.py module via

the following command line

1g.

tion are depicted in F

1miza

A few shapes produced in the course of the opt

>
[oF
FE)
o
1
[oB
~
0]
)]
d
Qo

see Fig. 26.

140

120

M
80 100

iterations

Evolution of volume
60

40

20

1.84
1.6
1

0.8

100 120 140

80

Evolution of the compliance and volume of the structure
iterations

Evolution of compliance
60

40

20

0.75
0.5
0.45

the cantilever ex-

m

ionals i

f the compliance and the volume functi

won o

. Bvolut

FIGURE 26

endiz A.

ample of App

40

A.5. Description of the two files dedicated to the specification of the global variables and paths
to executables

A.5.1. The file path.py
The file path.py contains the global variables used in all the python functions.

Global parameters

REFDIR = il # Reference for Dirichlet B.C

REFNEU =02 # Reference for Neumann B.C.

REFISO = 10 # Reference for the boundary edges of the shape
REFINT = 3 # Reference of the triangles in the interior domain
REFEXT = 2 # Reference of the triangles in the exterior domain

The parameters regarding the desired size of the elements in the mesh are specified next; their meanings
are described in Appendix A.7.

Parameters of the mesh

MESHSIZ = 0.02
HMIN = 0.001
HMAX = 0.02
HAUSD = 0.001
HGRAD = 1.3

Other parameters

EPS = 1e-10 # Precision parameter
EPSP = 1e-20 # Precision parameter for packing
MAXIT = 150 # Maximum number of iterations
in the shape optimization process
MAXITLS =3 # Maximum number of iterations

in the line search procedure

[...]

The file path.py also contains the command lines needed to call the external programs mshdist, advect,
mmg and FreeFem from the terminal; as hinted at in Appendix A.2, these instructions should be supplied by
the user after their installation.

Call for the executables of external codes
FREEFEM =

MSHDIST
ADVECT
MMG2D

The names of the various Freefem scripts of the archive used in the python functions are provided:

Path to FreeFem scripts

FFTEST = SCRIPT +
FFDESCENT = SCRIPT +
FFEVALOBJ = SCRIPT +

Eventually, a shorthand is defined for the names of various output files at each iteration of the process,
see Appendix A.4.3.

Shortcut for various file types
step(n,typ)
STEP + + str(n) + + typ

41

A.5.2. Global variables and macros related to the Freefem functions

The archive contains two files macros.idp and inout.idp which are loaded in the preamble of all the
FreeFen scripts, via the following lines.

include "./sources/inout.idp"
include "./sources/macros.idp"

The file macros.idp contains the global variables and the macros shared by the FreeFem scripts of the
archive. It is organized as follows:

/* File for communication of data with python x*/
string EXCHFILE = "./res/exch.data";

/* Inner product for extension / regularization */
real alpha = getrParam (EXCHFILE, "Regularization");
macro psreg(u,v) (int2d(Th) (alpha~2*(dx(u)*dx(v)+dy (u)*dy(v))
+ ux*xv)) // EOM

/* Linear elasticity parameters */
real 1m = 0.5769;
real mu = 0.3846;

/* Load case %/
real loadx = 0.0;
real loady -1.0;

In particular, this file contains the definition of the inner product a(-,-) endowing the space of deformations 6
with a Hilbertian structure. In the present context, a(-,-) is a bilinear form, associating to two scalar-valued
functions u,v : D — R the value

(A4) a(u,v) = a2/ Vu-Vudz + / uv dz,
D D
where a can be interpreted as a regularization length, see Section 4.5.

The file inout.idp gathers several functions in charge of reading and printing parameters or files. These
functions ensure the communication with the python part of the implementation; their syntaxes are meant
to be explicit enough so that the user does not need to enter their implementation.

/* Get real parameter from file */

func real getrParam(string file,string kwd) {
[...]

}

/* Read a .sol file containing a scalar-valued solution x*/
func int loadsol(string sin, reallint] & u) {

[...]
}

/* Read a .sol file containing a vector-valued solution in 2d */

func int loadvec2(string sin, real[int] & ux, reall[int] & uy) {
[...]

+

42

/* Save scalar function u as a .sol file */

func int printsol(string sout, reallint] & u) {
[...]

}

/* Save vector field [ux,uy] as a .sol file */

func int printvec2(string sout, reall[int] & ux, reallint] & uy) {
[...]

+

A.6. Creation of the initial geometry and specification of the test case

The function dedicated to the creation of the mesh 7° of D, in which the initial shape Q0 is explicitly

discretized as a submesh T2, is contained in the module inigeom.py.

iniGeom (mesh)

This function proceeds in several stages:

(1) The exchange file path.EXCHFILE is filled with the names of the output mesh and of the intermediate
level set function used in the creation of the latter:

Fill in exchange file
inout.setAtt(file=path.EXCHFILE , attname= ,attval=mesh)
inout.setAtt (file=path.EXCHFILE , attname= ,attval=path.TMPSOL)

(2) A mesh of the computational domain D is generated via the call to the FreeFem script path.FFINIMSH,
whose contents are described in the next listing.

/* Get mesh and sol names */

string MESH = getsParam (EXCHFILE, "MeshName");
int REFDIR = getiParam (EXCHFILE,"Dirichlet");
int REFNEU getiParam (EXCHFILE , "Neumann") ;

/* Create mesh */

/* Mesh definition x*/

border left(t=0.0,1.0){x=0.0; y=1.0-t; label=REFDIR;};
border bot(t=0.0,2.0){x=t; y=0.0; label=0;7};

border right1(t=0.0,0.45){x=2.0; y=t; label=0;};
border right2(t=0.45,0.55){x=2.0; y=t; label=REFNEU;};
border right3(t=0.55,1.0){x=2.0; y=t; label=0;};
border top(t=0.0,2.0){x=2.0-t; y=1.0; label=0;1};

mesh Th = buildmesh (left (100)+bot (200)+rightl (45)+right2(10)
+right3(45)+top (200));

/* Save mesh */
savemesh (Th , MESH) ;

(3) The resulting mesh is modified towards quality improvement, thanks to the external library mmg.

Call to mmg2d for remeshing the background mesh
mshtools.mmg2d (mesh ,0,None , path. HMIN, path . HMAX,
path.HAUSD ,path.HGRAD ,0,mesh)

Again, the syntax of the function mshtools.mmg2d in charge of making the interface with this external
library and our python implementation is described in detail in Appendix A.7.
43

(4) In this example, QY is the total computational domain D, deprived from a collection of holes, see
Fig. 25 (a). In order to create the associated mesh T of D, one level set function ¢° for this shape
is generated via the FreeFem script path.FFINILS.

/* Get mesh and sol names x*/
string MESH = getsParam (EXCHFILE, "MeshName");
string PHI = getsParam(EXCHFILE,"PhiName");

/* Read mesh */
mesh Th = readmesh (MESH) ;

/* Finite element space and functions */
fespace Vh(Th,P1);
Vh phi;

/* Definition of the initial level set function */
func real inilS(real xx,real yy) {

[...]

return (dd);
}

phi = -inilS(x,y);

/* Save LS function */
printsol (PHI ,phi[]);

(5) This level set function ¢ is explicitly discretized in the mesh by another call to mmg, resulting in the
mesh displayed in Fig. 25 (a).

A.7. External calls to the libraries mshdist, advection and mmg

This section is devoted to the python functions through which the external libraries mshdist, advection and
mmg are executed in our implementation. Since they are not meant to be modified by the user, we solely
present their syntax. We recall that, after the compilation of these three codes, the command lines for their
executions have to be specified in the file path.py, as described in Appendices A.2 and A.5.1.

Let D be a domain equipped with a mesh 7 in which the shape Q of interest is discretized, as the submesh
Tint of triangles with labels path.REFINT. The calculation of the signed distance function ¢ = dg to Q is
carried out by the function

mshdist (mesh,phi)

from the module lstools.py. Here,

e mesh is a string of characters, bearing the name of the .mesh file for 7.
e phi is a string of characters, containing the name of the .sol file where ¢ should be saved.

When D is a domain equipped with a mesh 7, the resolution of the level set advection equation (3.3),
starting from ¢°, with velocity field V : D — R, over a time period (0,7, is realized via the function

advect (mesh ,phi,vel,step,newphi)

from the module lstools.py. Here,

e mesh is a string of characters, containing the name of the .mesh file for 7.
e phi is a string of characters referring to the .sol file for the initial level set function ¢°.
e vel is a string of characters, containing the .sol file for the velocity field V.

44

e step is a real value, standing for the length T' of the advection time period.
e newphi is a string of characters, containing the name of the .sol file where the resulting level set
function should be written.

Last but not least, the remeshing operations of an input mesh 7 of a domain D involved in our framework
are realized by the mmg library. All the calls to this library are encapsulated in the proposed python
implementation via the function

mmg2d (mesh ,1s,phi,hmin,hmax,hausd,hgrad,nr,out)

defined in the module mshtools.py. The parameters of this function are the following:

e mesh is a string of characters bearing the name of the input mesh 7.

e 1s is an integer, taking the values 0 or 1. When 1s= 0, the mesh 7T is remeshed towards improving
the quality of its elements; when 1s= 1, the 0 level set of the function phi is explicitly discretized
in 7, which is then remeshed towards improving the quality of its elements.

e phi is a string of characters, bearing the name of the level set function in the case where the 1s
parameter is set to 1.

e hmin is a real value, corresponding to the minimum authorized length for an edge in the mesh.

e hmax is a real value, corresponding to the maximum authorized length for an edge in the mesh.

e hausd is a real value, encoding the maximum gap authorized between an edge on the surface part
St of T and the underlying curve drawn on the ideal surface, see Section 4.4.2 and Fig. 9.

e hgrad is a gradation parameter controlling the shocks of lengths between adjacent edges in the mesh.
It is a real value, specifying the maximum ratio allowed between the lengths of two adjacent edges
(typical values are 1.3 or 1.4).

e nr is an integer taking two values 0, or 1. It equals 1 when sharp angles are to be detected by mmg,
then treated as corners during remeshing, 0 otherwise.

e out is a string of characters containing the name of the output mesh.

The function mmg2d returns 1 if the remeshing process is successful and 0 if an error occurred.

A.8. Mechanical calculations

Let D be a computational domain, equipped with a mesh 7 in which the shape) of interest is explicitly
discretized, as the submesh T;, composed of the triangles with label path.REFINT.

The resolution of the linear elasticity system for the displacement uq is achieved by the elasticity
function, pertaining to the module mechtools.py.

elasticity(mesh,u)

In this command,
e mesh is a string of characters, bearing the name of the mesh 7.
e u is a string of characters for the name of the output vector field ug. The latter is treated as a
Py finite element vector field, stored as a .sol file containing values at all the vertices of T, being
understood that only those values at the vertices of iyt will be considered.
The function proceeds by first entering this information in the exchange file path.EXCHFILE, then calling
Freefem with the script path.FFELAS, that we now touch on.

After a few lines, where notably the mesh Th of D is loaded, this mesh is truncated thanks to the
trunc function.

/* Mesh of the interior part and corresponding FE space */
mesh Thi = trunc(Th,(reg(x,y) == REFINT),label=REFINT);
fespace Vhi(Thi,P1);

Vhi uix,uiy,vix,viy;

Hence, Thi is the desired mesh Tiy; of the shape 2 and Vhi is the corresponding finite element space of Py
Lagrange finite element functions. Then, the linear elasticity system is solved on this interior mesh.
45

/* Variational formulation of the problem */
problem elas ([uix,uiy],[vix,viy]) =
int2d (Thi) (mu*(2.0*dx (uix)*dx(vix) + (dx(uiy)+dy(uix))*(dx(viy)+dy(vix))
+ 2.0*xdy (uiy)*dy(viy)) + lm*(dx(uix)+dy(uiy))*(dx(vix)+dy(viy)))
- intl1ld (Thi,REFNEU) (loadx*vix+loady*viy)
+ on(REFDIR ,uix=0.0,uiy=0.0);

/* Solve problem x/
elas;

Finally, the result is transferred onto the total mesh of D.

/* Transfer the problem on the full mesh */
ux = uix;
uy = uiy;

The calculation of the compliance of €2 is easily realized from the datum of the mesh mesh and of the
resulting elastic displacement u. In our implementation, this task relies on the function

compliance (mesh,u)

from the module mechtools.py. This function essentially calls the FreeFem script path.FFCPLY, which is
organized as follows.

/* Get mesh and sol names, and global parameters */

string MESH = getsParam (EXCHFILE , "MeshName") ;
string SOL = getsParam (EXCHFILE , "DispName") ;

int REFINT = getiParam (EXCHFILE, "Refint");

int REFNEU = getiParam (EXCHFILE, "Neumann") ;

int REFISO = getiParam (EXCHFILE , "ReferenceBnd");

/* Loading mesh */
mesh Th = readmesh (MESH) ;

/* Read solution x*/
loadvec?2 (SOL,ux[],uy[]1);

/* Calculate compliance x*/
cply = int2d (Th,REFINT) (mu*(2.0*dx (ux)*dx (ux)
+ (dx(uy)+dy (ux))*(dx (uy)+dy (ux))
+ 2.0xdy (uy)*dy (uy))
+ 1lm*(dx (ux)+dy (uy))*(dx (ux)+dy (uy)));

/* Save result */
setrParam (EXCHFILE, "Compliance",cply);

The calculation of the volume of 2 is likewise conducted via the function

volume (mesh)

from the module mechtools.py, whose syntax is analogous.
46

A.9. Calculation of a descent direction

In this section, we detail the calculation of shape gradients for the compliance and volume shape functionals,
and that of a descent direction 6 for the optimization problem (A.1). The shape Q of interest is supplied
by a mesh 7 of the computational domain D in which it is explicitly discretized, as the submesh T;,; of
triangles with reference path.REFINT. Let us recall from Sections 4.5 and 4.6 that these calculations hinge
on the choice of an inner product acting on the vector space of deformation fields, according to the so-
called Hilbertian extension-regularization procedure. The macro for this inner product is supplied in the
macros.idp file, as described in Appendix A.5.2.

A.9.1. Calculation of the gradient of the compliance (and volume) functional

The calculation of the shape gradient for the compliance functional is realized by the function

gradCp (mesh ,disp, grad)

from the mechtools.py module. This function essentially calls FreeFem with the file path.FFGRADCP, which
is organized as follows.

/* Get mesh and sol names x*/

[...]

/* Loading mesh x*/
mesh Th = readmesh (MESH) ;

/* Finite element spaces and functions */
fespace Vh(Th,P1);
fespace VhO(Th,PO);

Vh ux,uy,g,v;
VhO reg = region;

/* Load elastic displacement x*/
loadvec2 (DISP ,ux[],uy[]);

/* Mesh of the interior part and corresponding FE spaces */
mesh Thi = trunc(Th,(reg(x,y) == REFINT),label=REFINT);
fespace Vhi(Thi,P1);

fespace VhO0i(Thi,PO0);

Vhi uix,uiy;

VhOi Aeueu;

/* Integrand of the shape derivative */
uix = ux;
uiy = uy;
Aeuveu = mu*(2.0xdx (uix)*dx(uix)
+ (dx(uiy)+dy (uix))*(dx(uiy)+dy(uix))
+ 2.0xdy (uiy)*dy (uiy))
+ Im*(dx (uix)+dy (uiy))*(dx (uix)+dy (uiy));

/* Resolution of the extension - regularization problem x*/
problem velext(g,v) = psreg(g,v)

- int1d (Thi,REFIS0) (-Aeueu*v)

+ on(REFNEU,g=0.0) ;

/* Solve problem and save solution */
47

velext ;
printsol (GRADCP ,gl[]1);

In a few words, the variational problem featured in this script solves the identification problem (4.4) with
the inner product a(-,-) — given by (A.4) and supplied in the file macros.idp described in Appendix A.5.2
— and the right-hand side C’(2)(-n) given by (A.3).

The calculation of the gradient of the volume functional follows the exact same trail, and we do not detail
further the contents of the corresponding function

gradV (mesh, grad)

A.9.2. Derivation of a descent direction

The null-space optimization algorithm described in Section 4.6 is implemented in the function

descent (mesh ,phi,Cp,gCp,vol,gV,g)

from the mechtools.py module. The latter essentially calls FreeFem with the file path.FFDESCENT, which
proceeds as follows.

After reading the computational mesh 7 of D, finite element spaces and parameters are declared. The
finite element functions associated to the level set function ¢ for € and the gradients of the compliance and
volume functionals are loaded.

loadsol (PHI,phi[]);
loadsol (GRADCP,thJ[]);
loadsol (GRADV,thG[]);

The contributions £; and &g to the total descent direction 6, given by (4.8), are then calculated.

/* Coefficients for the descent direction */
m = psreg(thG, thG);
lambda = 1.0 / m * psreg(thJ,thG);

/* Null space and range contributions to the descent direction x*/
xiJ = thJ - lambdax*thG;
xiG = 1.0/m*(vol-vtarg)*thG;

The coefficients a; and ag are next calculated, and the scalar amplitude of the descent direction is inferred,
see again (4.8) and Section 4.5.

maxxiJ = max(-xiJI[] .min,xiJ[].max);
mMaxxiJ = max(maxxiJ,maxNormXilJ) ;
maxxiG = max(-xiG[].min,xiG[].max) ;
alphaJ = AJ*meshsiz / (eps”~2+mMaxxilJ);

alphaG = AG*meshsiz / (eps”2+maxxiG);

/* Scalar descent direction */
g = - alphaJ*xiJ - alphaG*xiG;

Then, the extended normal vector field n to the boundary of the shape € is calculated on the whole domain

D via the formula n(z) = ‘gigg‘, first as a Py vector field on 7T, then as a P; vector field.

/* Extended normal vector as a PO function over the mesh */
norm0 = sqrt(eps+dx(phi)*dx(phi)+dy (phi)*dy (phi));

nx0 = dx(phi) / normO;

ny0 = dy(phi) / normO;

48

/* Extended normal vector as a P1 function over the mesh */
problem extnx(nx,v) int2d (Th) (nx*v)
- int2d (Th) (nx0*v) ;

problem extny(ny,v) int2d (Th) (ny*v)

- int2d (Th) (ny0*v) ;

extnx;
extny;

norm = sqrt(eps”~2+nx*nx+ny*ny) ;
nx = nx / norm;
ny = ny / norm;

Eventually, a descent direction for the optimization problem (A.1) is obtained as a vector field D — R? and
the data are saved in the appropriate files.

/* Save solution */
printvec2 (GRAD ,gx [1,gy [1);

/* Save coefficients for the merit function x*/
setrParam (EXCHFILE,"Lagrange",lambda) ;
setrParam (EXCHFILE, "Penalty" ,m) ;

setrParam (EXCHFILE, "alphaJ",alphal);

setrParam (EXCHFILE, "alphaG",alphaG);

setrParam (EXCHFILE , "NormXiJ" ,maxxiJ) ;

A.9.3. Ewvaluation of the merit function

The evaluation of the merit M(Q) of a shape 2, defined in (4.9), is simply realized via the function merit
of the mechtools module:

merit (Cp,vol)

This simple function takes as arguments the compliance Cp and the volume vol of the shape, which have
been calculated via the functions defined in Appendix A.8. It also relies on the coefficients A, S, ay, ag
produced by the optimization algorithm of Appendix A.9, stored in the exchange file path.EXCHFILE.

Read parameters in the exchange file

[alphaJ] = inout.getrAtt(file=path.EXCHFILE, attname=)
[alphaG] = inout.getrAtt(file=path.EXCHFILE, attname=)
[ell] = inout.getrAtt(file=path.EXCHFILE, attname=)

[m] = inout.getrAtt(file=path.EXCHFILE, attname=)

[vtarg] = inout.getrAtt(file=path.EXCHFILE, attname=)

merit = alphaJ*(Cp - ellx*x(vol-vtarg)) + O0.5*alphaG/mx*(vol-vtarg)**2

merit

A.10. Elaborations upon this code

The code described in this appendix has been prepared with the concern that it should be reasonably simple
to adapt to the treatment of a wide variety of shape optimization problems. In this section, we briefly
49

/ / /
A A
r
D D
1
1.5
9 v
0.1
0.1 -« 0.1 0.1 t
> [N -«
v
r 2
[a] 2
v

gfﬂu L T T

10

FIGURE 27. (a) Setting of the bridge test case considered in Appendiz A.10.1; (b) setting
of the L-shaped beam example considered in Appendiz A.10.2; (c) setting of the multi-load
bridge considered in Appendiz A.10.3; (d) setting of the 3d cantilever test case considered
in Appendiz A.10.4.

describe four such settings, illustrating as many features that can advantageously enrich the base code. The
corresponding source files are provided in the github repository of the project.

A.10.1. A combination of shape and topological derivatives: minimization of the compliance of a 2d bridge

This section illustrates the resolution of a shape and topology optimization problem by means of a combi-
nation of the boundary variation Algorithm 3 with an occasional use of topological derivatives, as originally
proposed in [9].

As we have mentioned in Remark 2.2; the topological derivative dJr(Q)(z) of a function J(€2) at some
point z € Q is the first non trivial term in the asymptotic expansion

J(Q\ B(z,r)) = J(Q) + rdeT(Q)(x) + O(Td);

in particular, the value of J(Q) is decreased if a tiny hole is nucleated around a point « € Q where d.J7(Q2)(z)
is negative. Let us recall the following expressions of the topological derivatives of the compliance and volume
50

functionals C'(2) and Vol(Q):

(A +2u)

(A5) dCr (@) = 3 50

(4nde(ua) : e(un) + (= ptx(Ae(ug))tr(e(un))) (2),
and dVolr(Q)(z) = —,

see e.g. [61, 84].

The considered example deals with the optimization of a 2d bridge, as depicted on Fig. 27 (a). The
shapes of interest are contained in a box D with size 2 x 1.5; they are clamped on their lower-left corner,
their vertical displacement is prevented on their lower-right corner, and a unit vertical load g = (0,—1) is
applied on a small region I' ;y around the middle of their bottom side. In this context, we aim to minimize
the compliance C(€2) of under a constraint on its volume Vol(€2): we solve problem (A.1) with a target
volume Vp = 0.7.

To achieve this, we rely on the boundary variation Algorithm 4 with an extra ingredient: at each iteration
n of the main loop, a boolean value dotopder is calculated:

dotopder = 1 (it % 5 == 0 it <= 50) 0
Equals 1 if topological derivative operation, O else

The iterations n where this parameter equals 0 unfold exactly as those of the base code: the shape
gradients of C'(Q2) and Vol(2) are calculated, a descent direction for the problem (A.1) is inferred from the
null space optimization algorithm described in Section 4.6 and Appendix A.9, then the shape Q" is updated
into the new iterate Q"1 (a level set function ¢™ for Q" is calculated on the mesh 7™ of D, the level set
advection equation is solved, etc.).

The iterations n where dotopder equals 1 are associated to a stage of topological sensitivity analysis,
which proceeds along the following lines.

Modification of the shape using topological gradients
(dotopder)
Calculation of the topological derivatives of the compliance and volume
()
mechtools. topgradCp (curmesh, curu, curtopCpgrad)
mechtools. topgradV (curmesh, curtopVgrad)

Calculation of the topological derivative of the merit functional
mechtools.descentTG (curmesh, curphi, curCp, curtopCpgrad , curvol,
curtopVgrad, curtopgrad)

Update of the level set function of the shape
Istools.creaHoles (curmesh, curphi,curtopgrad,path.VFRACTG ,newphi)

Creation of a mesh associated to the new shape

()
retmmg = mshtools.mmg2d (curmesh,1,newphi,path.HMIN, path.HMAX,

path.HAUSD ,path.HGRAD ,1,newmesh)

Decision

[...]

Briefly, the topological derivatives of C'(€2) and Vol(f2) are calculated from the formulas (A.5), thanks to the

functions topgradCp and topgradV of the mechtools.py module. These essentially call the FreeFem scripts

path.FFTOPGRADCP and path.FFTOPGRADV, whose syntaxes are quite straightforward. Then, the function
51

g TR
e e
X SR

e
a

5

=

ok
5
P

B

fé&
et
3

i3

R 5
TR bl
R Rt Ko
SR e
s st 5
e e
e
ol e

;ﬂ

R

iy 4 e
G e e
ek St

BN SE0l
S CE
‘4; ey RS

:

b
i
o
o
£
sﬂ
.

Densy SEsS e b
i ene i o
iy *«-E?-«, K L

i

SRR Y

R

SR E L

RNt

) §ME§4

AT
ik
B
i
2

o

/it

5
o
o
"
o
o
T
o
SRR
s
LR
S
5
%
2
o
7
L

7
L

m
S

L

o

A
S
R
LR
bR
KRR

ks
b
=
-
thk
L5
o
]
if
o
s
s
it
i

SRt

e
.
&
K
:
v
:
:
.

s

s 4:?"‘5‘.:
ot
R
o]
e
e S
S
o oS

5
i
e
S A Sy
e e R
d o
S e

5%

e
2

o
=
:
.
:
L
:

A
<

o

7
i

&Y,
X
D

25
K
£
o
gl
o

A

5

o
Eu:v‘,
R
£
K
EX]
i

4

5

£

5

o
o
5

4.:
5
4
!
<
=
:‘
2
.
i
o
oy
b
.

S
B

5
o

e
5
R
e
o

e

s

:
KR

:
%
i
ik
it
5
S
N
s
o
s
.

o
£
e
5
s
>
%
o
Lhr
5
S
S
50

R
v
Ty

I
o
=

i

o
0
1

i
FE
R
s
B
1
e

-
i

oo
&

-

e
IRRRLPRRORS
PR

5
i
5
s
=
=

x
i
u
o
5
i

L
=

o
;g?

S
L

o

X
s

eo

s
i

o
5

a6
£

i

B
%
5
el

22
S

e

2L

o

o
prat
S

5
0
35
%
i
o

X
s

i
s
TAs s
EROROE
R
<
)

o

5
i

b il
e

SRR
ey
fadiney
RO

A.
i
it
al
i
=
2
3
=

g
o
S

&
E
R

%}
:
o

4

KR

s
K
&
E
5

m
R
B
s
5

g
Seass
4
sl
=

o
54
o

o
2
X
5
.

n‘ﬁ
2

5
i
7

D

!
Xl
ek

oI
e
=
i
B

o]
:
5

45

S

=
-
oy é
b
2]
Vi

5

=

o

i

m
o
2

s

5
e

SR

£

e
o

XEEL 45%
&
%
A
s
&
1
-
T
o
S

e

2

£

&

%)
R
Lo

o
e
R
U

. 4>.m§;1:%g.¢v

Byt

g

5
)
5

R

,
KLY
L
e
Ty
o
.
pe
2
-
l
)
|

inet

ok 7 £f

,wvst;‘:ﬁ#‘g::gégg%_%%
S S M O R L
D e e
B O e O S R o0y
el e
B s S 4 0

e e e O

S & RAASR

;
e
e
e
5
CH
L
TR
£l

i
%
LK

.'
X
o
:
s
o

o
Ky
e
i
PR
SRR
Se

S

£
0
v

=

R
3
K

s

e
&

e
e

s
£

.,
i

2

o
Sies
o
< iy
ekt
Oy
i
s
0
3

5

4? o
s
e
i

A
l
bk
4
=
o

&
5
s
3
9
R
B
e
e

e

&

i
ae:

%

ot
: e

s
5
o
B2
B
K
g
£
o
a%i.’e'
]
e
e

2
<o
s

ALk

B

0
X
e

DR,
b

o

,
o

S

ke

A
o
o
4t

R
Rk
&
o
ke
e

e
e
S
oA ;’3
i

ok

G5y
e
B
S

s

A

K
5
Y

AERIOOH
LRy
RSB
e
AN

St

D
TROHELAL

4

=

Sy 5 -
SRRSO BORRERE S
SR D S

Sk S

o
X
ATk
o
e
oS
e
o

SR ae e
g v&:ﬁ%&mﬁ%ﬁ& e
SRR e
£

:
-EAé

SRR,
NEROEERO SR,
e
ﬁ.ﬁ&#ﬂggﬂgﬁ"" e
SR
AR

5 ;:'%é:.
X6

o
A
e

v
o
i
£
5
Fx
o
2
2

s

1ok
o
2
5
>
G

A
o

=
aRa

%
o
i
o
v
1

o
=

5
o

g
fgi%‘ TR
e

L

‘.'s‘;i

A
=
]
L
2
e

5

d

&
¥

5
&
5

o

o]
QR
K
%

K

g

s

e

£
o

5

EPRE
&
o

<
i

:

Yoy

W

o

=

g
RS
2
208
XY
o
o
.
KRGy
R
:
i
Al
ot
-
ol
2
s
o
e
LXK
S
o

%

20
Sp et R
shasal
L

XY
L
(%
=
i

ae

5
o
T
X
W
=
=
=
oEr
%
X
-
o
s

s

iy

X
Rk
%

P

X

5

1
o
o

2
e
o
e

Lk
it

DX
£

XEERREERRAN

o]
SO

e

4

R K

(it

s
o
&
4

o
i
=
5
e
P
Heuet
& i
B
5
o
2
2
o
it
i
7
i

s
e
i
2
e
Y
<1
s

i
it

S
e
e
R e

KRR,
R
Rt
AR AR
»;mﬁwwggi,%‘
EEROAR

g

%

o

5 see i

SRR

.§

i

5
K
=
3
e

8
i

4
i

K
»

by

R
o

i

e

+

o iﬁ'
.

e

0

il
=
o
B
Y
far
o
o
Fad
g
R
gt
%
IR
£
v&'

"
o
Lok

,
5
TN
e
ks
B

o
o
o
4

i
=
af
.
e
-
-
o

%
&
o
3

-
.
b

i
£
s

5

e

;
Zk

i
i

£
S
i
F
Vi
e
o
Tt
L
s
K
&
A

PEFRER
E

£
i
o
£
%
k]
X
A
i
iy
2
-
L
o
K5
S
Lo
o
S
%
ok
K
S

¥
/
Xk
2

,
o
!
£
i
o
i
%
K
5
R
0
e
ER
AT
R
s

v‘

I
S
R

g
L
sk
o
2
e
e
o
s
0
55
B
SR
o
KR
24
e

&

25

R

K Lo
o

i
SRR
e

g
SRS &
.

2

v,,.
o
ol
i

o
Ak
s

o
5
o
5
&
Y
s

o
i

X
v
5

B

s

5

FEOLE

s
%
AX
o
£
%

i
i
,E It

e

S

B
Ea

e

R

s
o

o

R

o

'%'%

e
4

S

S
o

a

5

-
it
%

=
s
“

£
R
e
SERE
e
e

g
0
o
o

2
%

£

.
5
s
&
e
o
g
s
5
o
S
=
I
o

0%
DG OO
A s S e b e e
TS e R
e, s

AR
e s el
v:'«‘

S
EES
L

P
d
e
i

ok
10

i
o egé
o
£

o

i

S

BRI
S

o
5
K
i
5
o
0

IR
AR

=
e

i
s
i
i
%
4
&
S
HEa

e
oA

¥

R
S
s s
4
)
o
o
i
s
i)
27
L
SRR,
z";“w«.'f%%'
B KL
S
L

m
G
-
‘VAA
(X
<
&
o
5

%
5
i
S
-
e
&
&
i

0

2
4
S
S
g
AL
.
B

w2
£

W

o
b
o
i
AT
i
g
o
S
o
0
:
o
i
=
5

2

T
5
5
5

o

SRR
s
£

e
x
%
i
of
i
Gae
5
%
o
0
e

RRE

A

L

o
o
i
=
ey
5
i
i
i
s
i
%

5

s

2
L

Sia
i
s
A
o
RO
i
PSR
E

S
i

e
s a
e

R

4;‘

8
=
4;:33

S

i
5

L
i
5
&
‘
S
A

ke
-

7
X

X
X

S
g‘g’

.
i
2
e
SRe
RS
ok
o
M
o
e

55
S
]
%
o
T
o
%

£

S

o

$

e e AR
FRRERRA b
e e R s
R L

PR
&5
i:g‘

G
A

,4
8

:
10;
.
<

R
.
ivly
5
i
s
e
S
KDk
4
oy
-

b %

s
&
-
%
P

%
A
DRI R R
AN,
S
RREErpt

i

5 e
o

s
Gg;‘s
s

O
£
S
e
&

I
o

o
oRE
)
S
£
T
b
u::‘ kx
‘;:5{&:
pRese
o
i
o

b

o0
f

%
£k
x

i
B

S
g:

e
i
e
o
:

;
o
I
s

i
4

Pl

4

Ef

%

ot
s
%
el
0y

S
-

o

s
R

e

el
i

5

.
e
s
TAE
(%
S
TRk
il
S
LR
&
5
ok
CH
:
e
R

2
A
&
£
.
B
%

Ay
s

o

S
oS!

£
5
o

5
aats
K AT

e
e

A
o
it
B
o

i
DR

%A

e,
i
e

3
%
4

R0

%%gﬁ;}w
0

L
0

s
o
e
Gl
et e
CEae
die

s

i
A
%
-
i

b

.
l
i

“u

>
i
o

L

S8
o

<
S
&
i
%
%
s

e
7
GRS
£5

e

R

%
e,
CREPEE
-

e

z

7

e
%:Au

e
o
q#
&

#
S

e
LA
&

=
f

7 fmay” o
Y
e 2

»

S
!
e

%ei

s REREeRs:
SR el il
R K 3 e R,

e ¢ @ N Y sl

)

:ﬁ‘,ﬂq

i
R
A

an R

e
e s RRERRRERSR Al

FIGURE 28. [terations (a) 0, (b) 26, (c) 40 and (d) 150 of the optimization of the shape of
a 2d bridge with the combined use of shape and topological derivatives proposed in Appen-
diz A.10.1.

descentTG of the mechtools.py module infers a descent direction for (A.1) as a scalar field on the com-
putational domain, owing to a simple adaptation of the null space algorithm of Section 4.6. Finally, the
function

creaHoles (mesh,phi,grad,volfrac,newphi) :

of the Istools.py module is called. The latter expects the following arguments:

e A string of characters mesh for the name of the current mesh of D.

The name phi of the file containing a level set function for the shape Q™.

The name grad of the file containing the descent direction for (A.1) resulting from the topological
sensitivity analysis.

e A real parameter volfrac (taking values between 0 and 1).

e The name newphi of the output file containing the level set function of the new shape Qm*1.

This function essentially relies on the FreeFem script path.FFUPTG. It first identifies by dichotomy the
volfrac percentage of elements of the input shape phi where the values of grad are the most negative, and
it then returns a new level set function newphi featuring holes in place of these elements.

A few iterations of the resolution of (A.1) with this strategy in the 2d bridge example are depicted on
Fig. 28. The corresponding source code is contained in the following folder:

https://github.com/dapogny/sotuto/topder

52

A.10.2. Handling shape functionals whose derivative involve an adjoint state: minimization of the stress
within an L-shaped beam

The present example illustrates how the base code described in this appendix can be adapted to handle other
objective functionals than the compliance, whose shape derivatives involve an adjoint state.

Let us consider the physical situation depicted on Fig. 29. Shapes €2 are beams contained in an L-shaped
domain D with size 1 X 1; they are clamped on their upper side I'p, and a unit vertical load g = (0,—1) is
applied on a small region I'y around the middle of their right-hand side. In this context, we consider the
shape optimization problem

(A.6) ms%n S(Q) s.t. Vol(Q) = Vp,

where S(€2) is the integral measure of the stress inside 2 defined in (2.4) and Vp = 0.7 is the volume
target. The shape derivative S’(Q2)(6) of S(Q) is provided in (2.9); its expression involves the adjoint state
pa € HE ()¢, which is defined as the solution to the system (2.10).

The numerical resolution of this problem is almost identical to that featured in the base implementation,
except when it comes to the calculation of a shape gradient for the stress-based functional S(€2). At each
iteration n of the main loop, this operation proceeds along the following lines:

Calculation of a descent direction

()

mechtools.adjoint (curmesh, curu, curp)

Calculation of the gradients of stress and volume
()
mechtools. gradS (curmesh, curu, curp, curSgrad)
mechtools. gradV (curmesh, curVgrad)
mechtools.descent (curmesh , curphi, curS, curSgrad, curvol , curVgrad, curgrad)

In short, the adjoint state pon is calculated by the finite element method, thanks to the function adjoint of
the mechtools.py module; the latter consists in turn in executing the FreeFem script path.FFADJ, which
is very similar to the script path.FFELAS described in Appendix A.8. Then, the function gradS of the
mechtools.py module is in charge of calculating a shape gradient for S(£2) at 2", in a analogous way to
the computation described in the above Appendix A.9.1.

A few iterations of the resolution of (A.6) in the setting of the L-shaped beam example are presented on
Fig. 29. The source code associated to this development is contained in the following folder:

https://github.com/dapogny/sotuto/stress

A.10.3. Using multiple equality or inequality constraints: optimization of the shape of a bridge submitted to
multiple loads

In this section, we illustrate how shape optimization problems featuring multiple equality or inequality
constraints can be handled with an adaptation of the base code. This task relies on the open-source imple-
mentation of the null space optimization algorithm of Section 4.6, which is provided at the address

https://gitlab.com/florian.feppon/null-space-optimizer

where a documentation of the library is available.
The physical situation of interest is that depicted on Fig. 27 (c): the considered shape {2 represents a
two-dimensional bridge contained in a box D with size 10 x 2. It is clamped on its lower-left and lower-right

corners, and 7 loads g; = (0, —1) are applied on as many different regions I'ny; (¢ = 1,...,7) of its upper
side. In this setting, we aim to solve the optimization problem
(A.7) innVol(Q) st Ci(Q) < Cr,

In this formulation, C;(2) is the compliance of when the i*" load g; is applied on T'y ;, involving the
solution ugq; to the linear elasticity system (2.1) in this situation. The threshold Cr is calculated from the
53

/)
BB E OO0
RGN
VA PavaAYY
<CAE)
Ve

e

K
A
WS
R

o
KT 4“
E"a‘

N

N
L TAVAY s
SIS
A

s
)
A

v
Lo

=
JLR%
APAVAVASSS
G
AVaVi

.
AAVAV
S
0'#"

;

%

o

Al
27
o

£

7
IS
AV

R

o

2

o
i

v
5%

% o
2
%
K

ot
SRR
L
avar

Lot
e

Sty
P A
ooy
A

%

R i
:«;:M vy S
L RIS LR
aravavvey, CHOCEH
VAT, S
ALY
L

o
B
[
i
X
§
Tavy,
£
N
A

A
1K
5
A
-
8
o

=
5k
00
&
PR
W
i
F

.

ol
N KA
I
S

A

&
=l
o
2l
AV
A5

-
el
RO
ORI
VAVANIEIGavav)

B
£
o

SRLORRRS
X sed <] AVAY;

SR
7
aAvavs

S
.

>

YAV
T

=
y)

PavaVAVAV,Y
VAVAVAVAY

[
3l
4

7

A
]

N
o
ravA

o,
X
Vs

g
%

™
Kk

VaVAVAY
55
AVAY
avy
ey
e
>
T

N
DAL

NN

'§b4
VAVAYY
N
2ot

HAAR
S
Pavas
AVAYA
5
VAVAVA)
& VAY)

5
<
aw
YA
K
LAY

2
VaY
]

o0
X

R

Ry

RS0
1<)
K

e
s
;'
[
a'
’

5
AVAVAYAVAS v
ST N
=5 4'5‘ vl
AV, g
VAVAV
B
oAby
<§VQV
VAV

AVAVATR

VAVA
o

o
5
Y
st
(ks

%
<
R

2
KD
1

pYAV YA
1 L A;:q ol
YNGR /N AY SO\ SVAVAVAVAVAYY um»"s“_as‘»”‘ N 4
R O R R A
R AN Gt RER 5 NN SN R
A NIVAVAVAN LG KNSR g A o]
ik LA R VAVSAVoyy' i & KPS
aviva " ATy BRI A A O
Ta) R Tax Varg 9O
%{%%%é, G £ B i ,Z i ; S
1y AR
AN R SRS
50, ASE}%%%E"‘VA %X%;gigﬁ : JavAVAY S
i % & o OO
SILY SAGENAT
< Ve vaAY A o,
AV, TINNATO S
VAVAY, AR AVAV AVAYE
=

PATANE i SR L)

N N

CERE N FRA f J{:’,"‘% - : ,Vé%ﬂ

VaysVat S SO AV AYAAY KK

OO LK) VYIS Y, Vil
= < .

FIGURE 29. [terations (a) 0, (b) 26, (¢) 35 and (d) 200 (final) of the optimization of

the shape of an L-beam with respect to an integral measure of the stress, as presented in
Appendiz A.10.2.

values C;(Q°) of the compliances of the initial design Q° in each load scenario:
Cr=0.9 max_ C;(Q").
i=1,...,7

The treatment of this problem with the null space optimization library essentially requires a modification

of the main loop of the optimization strategy. Briefly, the main steps of the optimization strategy are
re-organized as the methods of a new class Bridge.

#H########## Definition of Optimizable class Bridge ####H#######H
class Bridge (Optimizable) :

54

Initialization
x0(self)
path.step (0,)

Calculation of the objective and constraint functions
evalObjective (self ,x)
[...]
for i in range (0,path.NC)
refneu = path.REFNEU + i

gx = path.GX[i]
gy = path.GY[i]
ui = nam + +str(i)+

mechtools.elasticity(x,refneu,gx,gy,ui)

Calculate J and H
J = mechtools.volume (x)
Cptab = []
for i in range (0,path.NC)
Cp = mechtools.compliance (x,nam+ +str(i)+)

Shape derivatives, sensitivity of objective and constraint
evalSensitivities (self,x)

[...]
Calculate dJ and gradl]
mechtools. gradV (x,nam+ ,nam+)

Calculate dH and gradH
for i in range (0,path.NC)

mechtools.gradCp (x,nam+ +str(i)+ s
nam+ +str (i) + , nam+ +str(i)+)
[...]
Retraction: shape update
dx = array of np values containing values of the scalar velocity field
retract (self, x, dx)
[...]

Generation of a level set function for $\Omega"n$ on D

()

Istools .mshdist (curmesh, curphi)

Put scalar velocity defined on D into the normal direction
inout . saveSol (dx,path.TMPSOL)
Istools .norvec (curmesh, curphi ,path.TMPSOL , curgrad)

Advection of the level set function

()

55

Istools.advect (curmesh, curphi, curgrad,1.0,newphi)

Creation of a mesh associated to the new shape
()
retmmg = mshtools.mmg2d (curmesh,1,newphi,path.HMIN, path.HMAX,
path.HAUSD ,path.HGRAD ,1,newmesh)
newmesh

Accept step
accept (self ,results)

[...]

The optimization is then launched by applying the nlspace_solve function to an object of this class.

Run optimization solver

optSettings = { : path.MESHSIZ,
1.0,
2.0,
300,
True ,
3,
3
}

results=nlspace_solve (Bridge (), optSettings)

A few intermediate shapes arising during the resolution of (A.7) are represented on Fig. 30; the source
code corresponding to this example is contained in the following folder:

https://github.com/dapogny/sotuto/constraints

A.10.4. A 3d implementation: optimization of a 3d cantilever beam

In this section, we briefly illustrate how our base implementation can be adapted to handle three-dimensional
problems.

The physical situation of interest is that of a 3d cantilever beam, which is sketched on Fig. 27 (d): the
shapes (2 are contained in a box D with size 2 x 1 x 1; they are clamped on their face lying in the plane
{z = (21,22,23) € D, x; = 0} and a unit vertical load g = (0,0, —1) is applied on a small disk I'y around
the middle of the opposite side. In this context, we aim to minimize the compliance C(2) of Q under a
volume constraint: problem (A.1) is solved with a volume target Vp = 0.45.

The main numerical strategy is very similar to the two-dimensional base implementation. The three-
dimensional version of FreeFem is used for the finite element calculation involved, which demands minor
adaptations of the scripts described in the main part of this tutorial; see the documentation of FreeFem for
further details. The external libraries mshdist and advect are called in exactly the same way as in the
previous two-dimensional cases, and the three-dimensional version mmg3d of the remeshing software mmg is
used in place of mmg2d.

Call for the executables of external codes
FREEFEM =

MSHDIST
ADVECT
MMG3D

The code mmg3d is called with the help of the python function

mmg3d (mesh,1ls,phi,hmin,hmax ,hausd,hgrad ,nr,out)

56

FIGURE 30. (From top to bottom) Iterations 0, 15 and 200 of the optimization of the shape
of a 2d bridge submitted to 7 constraints on its compliance in as many load situations, as
described in Appendixz A.10.5.

of the mshtools.py module, which operates in exactly the same way as the function mmg2d described in
Appendix A.7.

A few iterations of the resolution of problem (A.1) are represented on Fig. 31; the associated source code
is contained in the following folder:

https://github.com/dapogny/sotuto/base3d

REFERENCES

[1] R. ABGRALL, Numerical discretization of the first-order hamilton-jacobi equation on triangular meshes, Communications
on pure and applied mathematics, 49 (1996), pp. 1339-1373.

[2] R. A. ApAMSs AND J. J. FOURNIER, Sobolev spaces, vol. 140, Academic press, 2003.

[3] G. ALLAIRE, Shape optimization by the homogenization method, vol. 146, Springer Science & Business Media, 2002.

[4] G. ALLAIRE, E. BONNETIER, G. FRANCFORT, AND F. JOUVE, Shape optimization by the homogenization method, Nu-
merische Mathematik, 76 (1997), pp. 27-68.

[5] G. ALLAIRE, C. DAPOGNY, AND P. FREY, Topology and geometry optimization of elastic structures by exact deformation
of simplicial mesh, Comptes Rendus Mathematique, 349 (2011), pp. 999-1003.

[6] , A mesh evolution algorithm based on the level set method for geometry and topology optimization, Structural and
Multidisciplinary Optimization, 48 (2013), pp. 711-715.
7] , Shape optimization with a level set based mesh evolution method, Computer Methods in Applied Mechanics and

Engineering, 282 (2014), pp. 22-53.
[8] G. ALLAIRE, C. DAPOGNY, AND F. JOUVE, Shape and topology optimization, in Geometric partial differential equations,
part II, A. Bonito and R. Nochetto eds., Handbook of Numerical Analysis, vol. 22, (2021), pp. 1-132.
[9] G. ALLAIRE, F. DE GOURNAY, F. JOUVE, AND A.-M. TOADER, Structural optimization using topological and shape
sensitivity via a level set method, Control and cybernetics, 34 (2005), p. 59.
[10] G. ALLAIRE, F. JOUVE, AND G. MICHAILIDIS, Thickness control in structural optimization via a level set method, Structural
and Multidisciplinary Optimization, 53 (2016), pp. 1349-1382.

57

VANNE N vavivives
R AN v AT N RTAY RN

SRR BN <S5 S RSSO |
vV KA SN SAS A O s SRS Savavar,y |
) VA AT A A AT AN Yar I SSAVK
il e = AT oavaw I

R Y D Oy iy AYAVANL: S NN, 5]

Aqﬁ»«(} AR SN o A SN AVAY

NSNINE SN avaVy OISOV | OO T R S e ||
B S o SRS MK el
Nttt S SN OBk g —

R AVTAY 5 v S AR SR | I /

N\ A} ‘K" —_— /

N —

N/
Y

‘gggﬂm

%
Wi =

V'VIVVVA‘V =

A AAVAVAVAVAVAVAVS iy pue ! 5
...
AT YAV iy AT — el REE
A Aot 7 R T T |
/ : %“%:‘%gggﬂ%ggg%gﬁga I W&K#K#‘iﬁ%%ﬁﬁﬁﬁgm ™ (|
& <77 KR | w
i e N B RIS, ||
\ TAYAVAVAY 2] : -
l B 2\ : N/ SO |
A v
’ A V%Yé:"séw e &9 o
ISR iy RN
e SR s S s oy AV Oyt ravaS gy | X O E e 25
OO RRRP PRI RRISK et || e e O A R S S SRS s | |
RAROSHA O e OO0 || R s el sOL Ao |
S ATATAVA vk 0 s v e g AT A e |
e \ o [/ E— N = | ”‘
G E— /

" VAVravAYAVAVAY

FIGURE 31. TIterations (a) 0, (b) 50, (¢) 120 and (d) 200 (final) of the three-dimensional

cantilever example presented in Appendiz A.10.).

[11] G. ALLAIRE, F. JOUVE, AND A.-M. TOADER, Structural optimization using sensitivity analysis and a level-set method,

Journal of computational physics, 194 (2004), pp. 363-393.
[12] G. ALLAIRE AND O. PANTZ, Structural optimization with FreeFem++, Structural and Multidisciplinary Optimization, 32

(2006), pp. 173-181.
[13] G. ALLAIRE AND M. SCHOENAUER, Conception optimale de structures, vol. 58, Springer, 2007.

[14] S. AMSTUTZ AND H. ANDRA, A new algorithm for topology optimization using a level-set method, Journal of Computational

Physics, 216 (2006), pp. 573-588.

[15] H. AzEGAMI, Shape Optimization Problems, Springer, 2020.
[16] H. AzEGAMI AND Z. C. WU, Domain optimization analysis in linear elastic problems: approach using traction method,

JSME international journal. Ser. A, Mechanics and material engineering, 39 (1996), pp. 272-278.
[17] T. BAKER AND P. CAVALLO, Dynamic adaptation for deforming tetrahedral meshes, in 14th Computational Fluid Dy-

namics Conference, 1999, p. 3253.

[18] G. BALARAC, F. BASILE, P. BENARD, F. BORDEU, J.-B. CHAPELIER, L. CIRROTTOLA, G. CAUMON, C. DAPOGNY, P. FREY,
A. FROEHLY, ET AL., Tetrahedral remeshing in the context of large-scale numerical simulation and high performance
computing, to appear in Maths in Action, (2021).

[19] C. BARBAROSIE, S. LOPES, AND A.-M. TOADER, An algorithm for constrained optimization with applications to the design
of mechanical structures, in International Conference on Engineering Optimization, Springer, 2018, pp. 272-284.

[20] N. BARRAL AND F. ALAUZET, Three-dimensional cfd simulations with large displacement of the geometries using a
connectivity-change moving mesh approach, Engineering with Computers, 35 (2019), pp. 397-422.

[21] T. J. BARTH AND J. A. SETHIAN, Numerical schemes for the hamilton—jacobi and level set equations on triangulated

domains, Journal of Computational Physics, 145 (1998), pp. 1-40.
[22] M. P. BENDsoE AND N. KIKUCHI, Generating optimal topologies in structural design using a homogenization method,

Computer methods in applied mechanics and engineering, 71 (1988), pp. 197-224.
[23] M. P. BENDSOE AND O. SIGMUND, Topology optimization: theory, methods, and applications, Springer Science & Business

Media, 2013.
58

[24] L. BLANK, H. GARCKE, L. SARBU, T. SRISUPATTARAWANIT, V. STYLES, AND A. VOIGT, Phase-field approaches to structural
topology optimization, in Constrained optimization and optimal control for partial differential equations, Springer, 2012,
pp. 245-256.

[25] H. BOROUCHAKI AND P. L. GEORGE, Meshing, Geometric Modeling and Numerical Simulation 1: Form Functions,
Triangulations and Geometric Modeling, John Wiley & Sons, 2017.

[26] M. BotscH, L. KOBBELT, M. PAULY, P. ALLIEZ, AND B. LEVY, Polygon mesh processing, CRC press, 2010.

[27] B. BOURDIN AND A. CHAMBOLLE, Design-dependent loads in topology optimization, ESAIM: Control, Optimisation and
Calculus of Variations, 9 (2003), p. 19D48.

[28] B. BRAIDA, J. DALPHIN, C. DAPOGNY, P. FREY, AND Y. PRIVAT, Shape and topology optimization for maximum probability
domains in quantum chemistry, Numerische Mathematik, (2022), pp. 1-48.

[29] D. Bucur AND G. BuTTAZZ0, Variational methods in some shape optimization problems, Springer, 2002.

[30] C. Bui, C. DAPOGNY, AND P. FREY, An accurate anisotropic adaptation method for solving the level set advection
equation, International Journal for Numerical Methods in Fluids, 70 (2012), pp. 899-922.

[31] M. BURGER, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces
and Free boundaries, 5 (2003), pp. 301-329.

[32] E. BURMAN, D. ELFVERSON, P. HANSBO, M. G. LARSON, AND K. LARSSON, Shape optimization using the cut finite element
method, Computer Methods in Applied Mechanics and Engineering, 328 (2018), pp. 242-261.

[33] D. L. CHOPP, Computing minimal surfaces via level set curvature flow, Journal of Computational Physics, 106 (1993),
pp. 77-91.

[34] A. N. CHRISTIANSEN, J. A. BERENTZEN, M. NOBEL-JORGENSEN, N. AAGE, AND O. SIGMUND, Combined shape and topology
optimization of 3d structures, Computers & Graphics, 46 (2015), pp. 25-35.

[35] A. N. CHRISTIANSEN, M. NOBEL-JoRGENSEN, N. AAGE, O. SIGMUND, AND J. A. BERENTZEN, Topology optimization using
an ezplicit interface representation, Structural and Multidisciplinary Optimization, 49 (2014), pp. 387-399.

[36] P. G. CIARLET, The finite element method for elliptic problems, vol. 40, Siam, 2002.

[37] M. DAMBRINE AND D. KATEB, On the ersatz material approzimation in level-set methods, ESAIM: Control, Optimisation
and Calculus of Variations, 16 (2010), pp. 618-634.

[38] C. DAPOGNY, The topological ligament in shape optimization: an approach based on thin tubular inhomogeneities asymp-
totics, SMAI Journal of Computational Mathematics, (2021), pp. 185-266.

[39] C. DaroGNY, C. DOBRzYNSKI, AND P. FREY, Three-dimensional adaptive domain remeshing, implicit domain meshing,
and applications to free and moving boundary problems, Journal of computational physics, 262 (2014), pp. 358-378.

[40] C. DAPOGNY AND P. FREY, Computation of the signed distance function to a discrete contour on adapted triangulation,
Calcolo, 49 (2012), pp. 193-219.

[41] C. DAPOGNY, P. FREY, F. OMNES, AND Y. PRIVAT, Geometrical shape optimization in fluid mechanics using freefem-++,
Structural and Multidisciplinary Optimization, (2017), pp. 1-28.

[42] C. DAaPoOGNY, N. LEBBE, AND E. OUDET, Optimization of the shape of regions supporting boundary conditions, Numerische
Mathematik, 146 (2020), pp. 51-104.

[43] F. DE GOURNAY, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, STAM journal
on control and optimization, 45 (2006), pp. 343-367.

[44] L. DEDE, M. J. BORDEN, AND T. J. HUGHES, Isogeometric analysis for topology optimization with a phase field model,
Archives of Computational Methods in Engineering, 19 (2012), pp. 427-465.

[45] M. C. DELFOUR AND J.-P. ZOLESIO, Shapes and geometries: metrics, analysis, differential calculus, and optimization,
SIAM, 2011.

[46] J. DEsal, G. ALLAIRE, AND F. JOUVE, Topology optimization of structures undergoing brittle fracture, Journal of Com-
putational Physics, 458 (2022), p. 111048.

[47] J. DEsAI, G. ALLAIRE, F. JOUVE, AND C. MANG, Topology optimization in quasi-static plasticity with hardening using a
level-set method, Structural and Multidisciplinary Optimization, 64 (2021), pp. 3163-3191.

[48] A. Do1 AND A. KOIDE, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE TRANS-
ACTIONS on Information and Systems, 74 (1991), pp. 214-224.

[49] P. D. DUNNING AND H. A. KiM, Introducing the sequential linear programming level-set method for topology optimization,
Structural and Multidisciplinary Optimization, 51 (2015), pp. 631-643.

[50] P. Duysinx, L. V. MIEGROET, T. JAacoBs, AND C. FLEURY, Generalized shape optimization using z-fem and level set
methods, in TUTAM symposium on topological design optimization of structures, machines and materials, Springer, 2006,
pp. 23-32.

[51] B. EPSTEIN, A. JAMESON, S. PEIGIN, D. ROMAN, N. HARRISON, AND J. VASSBERG, Comparative study of three-dimensional
wing drag minimization by different optimization techniques, Journal of Aircraft, 46 (2009), pp. 526-541.

[52] A. ERN AND J.-L. GUERMOND, Discontinuous galerkin methods for friedrichs’ systems. i. general theory, SIAM journal
on numerical analysis, 44 (2006), pp. 753-778.

[53] H. A. ESCHENAUER AND N. OLHOFF, Topology optimization of continuum structures: a review, Appl. Mech. Rev., 54
(2001), pp. 331-390.

[54] L. C. EvaNs AND R. F. GARIEPY, Measure theory and fine properties of functions, CRC press, 2015.

F. FEPPON, Shape and topology optimization of multiphysics systems, PhD thesis, Université Paris-Saclay (ComUE),

2019.

ot
=

59

[56] F. FEPPON, G. ALLAIRE, F. BORDEU, J. CORTIAL, AND C. DAPOGNY, Shape optimization of a coupled thermal fluid—
structure problem in a level set mesh evolution framework, SeMA Journal, (2019), pp. 1-46.

[57] F. FEpPON, G. ALLAIRE, AND C. DAPOGNY, Null space gradient flows for constrained optimization with applications to
shape optimization, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), p. 90.

[58] F. FEPPON, G. ALLAIRE, C. DAPOGNY, AND P. JOLIVET, Topology optimization of thermal fluid—structure systems using
body-fitted meshes and parallel computing, Journal of Computational Physics, (2020), p. 109574.

, Body-fitted topology optimization of 2d and 3d fluid-to-fluid heat exchangers, Computer Methods in Applied
Mechanics and Engineering, 376 (2021), p. 113638.

[60] P. J. FREY AND P.-L. GEORGE, Mesh generation: application to finite elements, ISTE, 2007.

[61] S. GARREAU, P. GUILLAUME, AND M. MAsMouUDI1, The topological asymptotic for pde systems: the elasticity case, SIAM
journal on control and optimization, 39 (2001), pp. 1756-1778.

[62] Y. GiGA, Surface evolution equations, Springer, 2006.

[63] J. S. Gray, J. T. Hwang, J. R. R. A. MARTINS, K. T. MOORE, AND B. A. NAYLOR, OpenMDAOQO: an open-source
framework for multidisciplinary design, analysis, and optimization, Structural and Multidisciplinary Optimization, 59
(2019), pp. 1075-1104.

(64] J. HADAMARD, Mémoire sur le probléme d’analyse relatif a l’équilibre des plaques élastiques encastrées, vol. 33, Imprimerie
nationale, 1908.

[65] O. HassaN, K. SoRENSEN, K. MORGAN, AND N. WEATHERILL, A method for time accurate turbulent compressible fluid flow
simulation with moving boundary components employing local remeshing, International journal for numerical methods in
fluids, 53 (2007), pp. 1243-1266.

[66] F. HECHT, New development in freefem++, Journal of numerical mathematics, 20 (2012), pp. 251-266.

7] A. HENROT AND M. PIERRE, Shape Variation and Optimization, EMS Tracts in Mathematics Vol. 28, 2018.

8] A. HENROT AND Y. PRIVAT, What is the optimal shape of a pipe?, Archive for rational mechanics and analysis, 196 (2010),

pp. 281-302.

[69] R. HIPTMAIR, A. PAGANINI, AND S. SARGHEINI, Comparison of approzimate shape gradients, BIT Numerical Mathematics,
55 (2015), pp. 459-485.

[70] A. JAMESON, Aerodynamic design via control theory, in Recent advances in computational fluid dynamics (Princeton, NJ,
1988), vol. 43 of Lecture Notes in Engrg., Springer, Berlin, 1989, pp. 377—401.

, Computational algorithms for aerodynamic analysis and design, Applied Numerical Mathematics. An IMACS
Journal, 13 (1993), pp. 383—422.

[72] R. KIMMEL AND J. A. SETHIAN, Computing geodesic paths on manifolds, Proceedings of the national academy of Sciences,
95 (1998), pp. 8431-8435.

[73] M. H. KoBavasHi, R. A. CANFIELD, AND R. M. KOLONAY, On a cellular developmental method for layout optimization
via the two-point topological derivative, Structural and Multidisciplinary Optimization, 64 (2021), pp. 2343-2360.

[74] R. V. KOuN AND G. STRANG, Optimal design and relazation of variational problems, i, Communications on pure and
applied mathematics, 39 (1986), pp. 113-137.

[75] A. B. LAMBE AND J. R. R. A. MARTINS, Matriz-free aerostructural optimization of aircraft wings, Structural and Multi-
disciplinary Optimization, 53 (2016), pp. 589-603.

[76] A. LAURAIN, A level set-based structural optimization code using fenics, Structural and Multidisciplinary Optimization,
58 (2018), pp. 1311-1334.

[77] J. Lions, Optimal control of systems governed by partial differential equations, Grundlehren der mathematischen Wis-
senschaften, Springer-Verlag, 1971.

[78] W. E. LORENSEN AND H. E. CLINE, Marching cubes: A high resolution 3d surface construction algorithm, ACM siggraph

computer graphics, 21 (1987), pp. 163-169.

9] S. MAuCH, A fast algorithm for computing the closest point and distance transform, (2000).

0] B. MonAMMADI AND O. PIRONNEAU, Applied shape optimization for fluids, Oxford university press, 2010.

1] F. MURAT AND J. SIMON, Sur le contrdle par un domaine géométrique, Pré-publication du Laboratoire d’Analyse

Numérique,(76015), (1976).

[82] S. NAZAROV AND J. SOKOLOWSKI, The topological derivative of the dirichlet integral due to formation of a thin ligament,
Siberian Mathematical Journal, 45 (2004), pp. 341-355.

[83] J. NOCEDAL AND S. J. WRIGHT, Numerical optimization 2nd, Springer, 2006.

[84] A. A. NOVOTNY AND J. SOKOLOWSKI, Topological derivatives in shape optimization, Springer Science & Business Media,

2012.

S. OSHER AND R. FEDKIW, Level set methods and dynamic implicit surfaces, vol. 153, Springer Science & Business Media,

2006.

[86] S. OSHER AND J. A. SETHIAN, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi
formulations, Journal of computational physics, 79 (1988), pp. 12-49.

[87] S. J. OSHER AND F. SANTOSA, Level set methods for optimization problems involving geometry and constraints: I.
frequencies of a two-density inhomogeneous drum, Journal of Computational Physics, 171 (2001), pp. 272-288.

[88] O. PIRONNEAU, On optimum profiles in Stokes flow, Journal of Fluid Mechanics, 59 (1973), pp. 117-128.

9] ——, Optimal shape design for elliptic systems, Springer, 1982.

] , Finite element methods for fluids, Wiley Chichester, 1989.

[59]

85

)

©
S

60

[91]

92]
(93]

(94]

[99]
[100]
[101]
[102]
[103]

[104]

R.-E. PLESSIX, A review of the adjoint-state method for computing the gradient of a functional with geophysical applica-
tions, Geophysical Journal International, 167 (2006), pp. 495-503.

J. A. SETHIAN, Fast marching methods, SIAM review, 41 (1999), pp. 199-235.

J. A. SETHIAN, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid
mechanics, computer vision, and materials science, vol. 3, Cambridge university press, 1999.

J. A. SETHIAN AND A. WIEGMANN, Structural boundary design via level set and immersed interface methods, Journal of
computational physics, 163 (2000), pp. 489-528.

O. SIGMUND, A 99 line topology optimization code written in matlab, Structural and multidisciplinary optimization, 21
(2001), pp. 120-127.

J. SOKOLOWSKI AND J.-P. ZOLESIO, Introduction to shape optimization, Springer, 1992.

J. STRAIN, Semi-lagrangian methods for level set equations, Journal of Computational Physics, 151 (1999), pp. 498-533.
K. SVANBERG, The method of moving asymptotesNa new method for structural optimization, International journal for
numerical methods in engineering, 24 (1987), pp. 359-373.

A. TAKEZAWA, S. NISHIWAKI, AND M. KITAMURA, Shape and topology optimization based on the phase field method and
sensitivity analysis, Journal of Computational Physics, 229 (2010), pp. 2697-2718.

Y.-H. R. TsAl, Rapid and accurate computation of the distance function using grids, Journal of Computational Physics,
178 (2002), pp. 175-195.

C. WANG, Z. ZHAO, M. Znou, O. SIGMUND, AND X. S. ZHANG, A comprehensive review of educational articles on
structural and multidisciplinary optimization, Structural and Multidisciplinary Optimization, 64 (2021), pp. 2827-2880.
M. Y. WaANG, X. WANG, AND D. Guo, A level set method for structural topology optimization, Computer methods in
applied mechanics and engineering, 192 (2003), pp. 227-246.

Q. X1A AND M. Y. WANG, Topology optimization of thermoelastic structures using level set method, Computational
Mechanics, 42 (2008), pp. 837-857.

H. Zuao, A fast sweeping method for eikonal equations, Mathematics of computation, 74 (2005), pp. 603-627.

61

	1. Introduction
	2. Presentation of the shape optimization framework
	2.1. A model shape optimization problem in the context of structural mechanics
	2.2. The boundary variation method of Hadamard
	2.3. An abstract shape optimization algorithm

	3. Meshing aspects of shape optimization
	3.1. Basic notions about meshes
	3.2. ``Geometric'' shape optimization
	3.3. Level set methods for shape and topology optimization

	4. The level-set based mesh evolution method for shape and topology optimization
	4.1. General description of the method
	4.2. Calculation of the signed distance function
	4.3. Advection of the level set function
	4.4. Using remeshing to pass from a level set to a meshed representation of a shape
	4.5. Extension - regularization of shape derivatives via the Hilbertian method
	4.6. A null space algorithm for constrained optimization

	5. Numerical illustrations
	5.1. Optimization of the shape of a two-dimensional crane
	5.2. Minimum compliance problem in thermoelasticity
	5.3. Lift–drag topology optimization for three-dimensional aerodynamic design
	5.4. Optimal design of a three-dimensional fluid heating device

	6. Conclusion and perspectives
	Appendix A. Manual of the companion code
	A.1. Description of the 2d cantilever test-case
	A.2. Getting started: download and installation of the files
	A.3. Global architecture of the program
	A.4. Overview of the global strategy: description of the file main.py
	A.5. Description of the two files dedicated to the specification of the global variables and paths to executables
	A.6. Creation of the initial geometry and specification of the test case
	A.7. External calls to the libraries mshdist, advection and mmg
	A.8. Mechanical calculations
	A.9. Calculation of a descent direction
	A.10. Elaborations upon this code

	References

