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Abstract. This note addresses the following shape matching problem: given a ‘template’ shape, numerically

described by means of a computational mesh, and a ‘target’ shape, known only via a signed distance function

to its boundary, we aim at deforming iteratively the mesh of the template shape into a computational mesh
of the target shape. To achieve this goal, we rely on techniques from shape optimization. Under the sole

assumption that both shapes share the same topology, the desired transformation is realized as a sequence of

elastic displacements, which are obtained by minimizing an energy functional based on the distance between
the two shapes. The proposed method has been implemented in a finite elements setting and numerical

examples in two and three dimensions are presented to illustrate its efficiency.
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1. Résumé

Dans cette note, nous nous intéressons au problème d’appariement de formes suivant : étant donné
une forme de référence, représentée numériquement par un maillage de calcul, et une forme cible, connue
seulement par l’intermédiaire de la fonction de distance signée à celle-ci, notre objectif consiste à déformer
itérativement le maillage de la forme de référence en un maillage de la forme cible. Pour ce faire, nous nous
appuyons sur des techniques d’optimisation de formes. Sous l’hypothèse que les deux formes ont la même
topologie, la transformation cherchée s’obtient comme une suite de déplacements élastiques, solutions d’un
problème de minimisation d’une énergie basée sur la distance entre les formes. La méthode a été implémentée
en deux et trois dimensions d’espace et nous présentons des exemples numériques permettant d’apprécier
son efficacité.
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2. Introduction

Shape morphing or matching arises in a wide variety of situations in areas from biomedical engineering
to computer graphics and scientific computing. Beyond the specific stakes to each particular application,
the general issue is to find one transformation from a given ‘template’ shape Ω0 into a ‘target’ ΩT . Such
a transformation may be used as a means to appraise how much Ω0 and ΩT differ from one another - for
instance in shape retrieval, classification or recognition - or to achieve physically the transformation from
Ω0 to ΩT (in shape registration, reconstruction, or shape simplification). See for instance [15] and references
therein for an overview of several related applications.

Understandably enough, a great deal of work has been devoted to shape matching, and we limit ourselves
to mentioning a few approaches. In [5], the authors start by distributing sample points on the contour
of both shapes, that will be matched according to their ‘shape context’. They eventually infer a global
transformation from this point-to-point correspondance. In the field of computational anatomy, a series of
articles (see e.g. [4, 8, 11]) have suggested to describe a sought diffeomorphism between Ω0 and ΩT as the
flow of a velocity field v, and to cast the search for v as an optimal control problem. The resulting mapping
is used to study features of organs, detect anomalies, etc. More recently, in the field of Computer Graphics,
the optimal transport point of view has been used to displace an input tetrahedral mesh onto a given object
[13].

This note addresses the following problem: given a ‘template’ shape Ω0, numerically described by means
of a (conforming) computational mesh, and a ‘target’ shape ΩT , known only via the signed distance function
to its boundary, we aim at deforming (iteratively) the mesh of Ω0 into a computational mesh of ΩT . Such
a technique could be applied, for instance, to the reconstruction of a computational mesh ΩT from invalid
data, to transport quantities of interest from Ω0 to ΩT , etc. The precise range of applications we have in
mind will be described in a forthcoming, longer article.

To achieve our purpose, we rely on a method which has much in common with that of [2], borrowing
techniques from shape optimization, and more generally optimal control. Under the assumption that Ω0 and
ΩT share the same topology, the desired transformation from Ω0 to ΩT is realized as a sequence of elastic
displacements, which are obtained by minimizing an energy functional based on the distance between Ω0

and ΩT . In doing so, it is expected that the deformation will be easier to achieve in numerical practice, and
in particular by limiting the troubles due to mesh tangling.

3. Presentation of the method

Let Ω0,ΩT ⊂ Rd, d = 2, 3 be respectively ‘template’ and ‘target’ shapes, i.e. bounded Lipschitz domains.
We assume that they share the same topology but are not necessarily close one from another. Our purpose
is to map Ω0 onto ΩT , which we achieve numerically by deforming a mesh T0 of Ω0 into one for ΩT . For this
purpose, we rely on the shape optimization setting.

3.1. Shape matching as a shape optimization problem.

The discrepancy between a reference shape Ω and a target shape ΩT is measured by the following functional
J(Ω) of the domain:

(1) J(Ω) =

∫
Ω

dΩT
(x)dx,

which involves the Euclidean signed distance function dΩT
to ΩT , defined as:

∀x ∈ Rd, dΩT
(x) =


−d(x, ∂ΩT ) if x ∈ ΩT ,

0 if x ∈ ∂ΩT ,
d(x, ∂ΩT ) if x ∈ cΩT .

In the above formula, d(·, ∂ΩT ) denotes the usual Euclidean distance function to ∂ΩT .
In order to decrease the value of J(Ω), the domain Ω must expand in the regions of the ambient space

Rd where dΩT
is negative (that is, in the regions comprised in ΩT ), and to retract in those where it is

positive. Note that the functional J(Ω) has a unique, global minimizer Ω = ΩT , and no extra local minimum
point provided ΩT is connected. It is then expected that an iterative (e.g. gradient-based) algorithm for
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Figure 1. (a) Variation Ωθ of a shape Ω according to Hadamard’s method; (b)Target and
template shapes sharing a common fixed subset ω.

minimizing J(Ω), starting from Ω0, will lead to an interesting way to transform Ω0 into ΩT .

3.2. Shape derivative of the functional J(Ω).

Several notions of differentiation with respect to the domain are available in the literature. One which is
very-well tailored for our purpose is Hadamard’s boundary variation method (see e.g. [1, 12, 14]), whereby
variations of a bounded, Lipschitz domain Ω ⊂ Rd are considered under the form (see Figure 1, left):

Ωθ = (I + θ)(Ω), θ ∈W 1,∞(Rd,Rd).
Accordingly, a function F (Ω) of the domain is said to be shape differentiable at Ω if the mapping θ 7→

F (Ωθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable at θ = 0. The associated Fréchet differential is
denoted as θ 7→ F ′(Ω)(θ) and called the shape derivative of F ; the following expansion then holds:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0.

By a classical calculation, the shape derivative of the function J(Ω) defined in (1) reads:

∀θ ∈W 1,∞(Rd,Rd), J ′(Ω)(θ) =

∫
∂Ω

dΩT
θ · n ds.

This paves the way for an iterative algorithm, producing a sequence (Ωk)k=0,... of shapes (and correspond-

ing meshes Tk), which are ‘closer and closer’ to ΩT : at each step, Ωk is updated according to

(2) Ωk+1 = (I + θk)(Ωk), where θk is (an extension to Ωk of) − dΩT
nΩk

,

and nΩk
stands for the unit normal vector to ∂Ωk, pointing outward Ωk. The mesh Tk is updated as:

(3) ∀x vertex of Tk, x 7→ x+ θk(x).

3.3. Parametrization by elastic displacements.

The formal procedure summarized in (2) boils down to deforming a shape Ω in the negative direction of
the L2(∂Ω)d gradient of the differential θ 7→ J ′(Ω)(θ). Unfortunately, this reveals unsuited when it comes
to deforming a mesh T of Ω by moving its vertices. Indeed, the vector field θ = −dΩT

n featured in (2) is
defined only on the boundary of Ω; it has therefore to be extended to Ω as a whole so that it can be a guide
for displacing the vertices of T . Moreover, if no particular attention is paid to this extension, the extended
displacement field may impose an important stretching in Ω, making the motion of the vertices of T via (3)
impossible to achieve without invalidating the mesh.

These difficulties can be alleviated by using the gradient of θ 7→ J ′(Ω)(θ) associated to another inner
product. This velocity extension - regularization issue is quite classical in shape optimization (see [10] and
references therein), and can be thought of as an efficient preconditioning of the naive procedure (2).
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In the present context, imagine that all the considered shapes Ω are filled with a linear elastic material.
Also, assume that any such shape Ω contains a given subset ω b Ω on which it is clamped. We now obtain
a descent direction for J(Ωk) as the unique solution uΩ belonging to H1

ω(Ω)d := {v ∈ H1(Ω)d, v = 0 in ω}
of the linearized elasticity system (hereafter written in variational form)

(4) ∀v ∈ H1
ω(Ω)d,

∫
Ω

σ(uΩ) : ε(v) dx = −J ′(Ω)(v) = −
∫
∂Ω

dΩT
v · n ds,

where ε(u) = 1
2 (∇u+∇uT ) is the linearized strain tensor and σ is the associated stress tensor via the Hooke’s

law with Lamé coefficients λ, µ:

σ(u) = 2µε(u) + λ tr(ε(u))I.

This vector field uΩ is naturally a descent direction for J(Ω) since J ′(Ω)(uΩ) ≤ 0 thanks to (4), and its
advantages over the ‘natural’ deformation field θ defined in (2) are twofold:

(1) uΩ is defined on the whole shape Ω; owing to the regularizing effect of elliptic equations, it is
intrinsically smoother than θ = −dΩT

n (see for instance [7]),
(2) Owing to the mechanical features of elastic displacements (notably their ‘rigidity’), it is expected

that uΩ will be more amenable to the displacement of the mesh T into a valid mesh via (3); see e.g.
[3] for an example of use of elastic displacements in the context of mesh displacement.

Remark 1. From the numerical point of view, the choice of a subset ω corresponds to a global alignment
of shapes (cf. Figure 1). This restriction we used to guarantee the well-posedness of Problem (4) could be
replaced by adding a 0th-order term.

4. Numerical issues

As far as the numerical setting is concerned, the template shape Ω0 is discretized as a simplicial mesh (i.e.
a triangulation), and the target shape ΩT is supplied through its signed distance function, e.g. as a P1

piecewise affine function on the fixed mesh TD of a large computational domain D.
Starting from the template shape Ω0 we perform a gradient descent algorithm with adaptive step size in

order to get a sequence of pairs (Ωk, Tk) of domains and their corresponding meshes with decreasing values
of J(Ωk). The algorithm stops when the step size is smaller than a fixed tolerance ε.

Remark 2. (1) The only information required about the target shape ΩT is the datum of its signed dis-
tance function which can be defined on a possibly non-conforming mesh (e.g. showing small gaps,
overlapping entities, etc.).

(2) The global mapping from Ω0 to ΩT is easily recovered by the composition of the different displacements
between each iteration.

(3) The computational meshes used to perform the calculation are non uniform; they are refined in the
vicinity of the boundaries according to a curvature based sizing function and coarsened in the interior
of the domain. This has proven to prevent severe distorsion/tangling of the elements (avoiding the
need to remesh the domain) and hence to increase the efficiency of the overall algorithm.

4.1. Numerical examples.

In the proposed examples, the calculation of the signed distance function to ΩT is performed using the
algorithm described in [9]. At first, Figure 2 depicts a 2d test case. Both target and template meshes are
embedded in a unit computational box with dimensions [0, 1]2. The set ω chosen for aligning Ω0 and ΩT is
a small disk located in the interior of both shapes.

The template mesh T0 has about 1 200 edges, and the convergence of the gradient descent procedure is
obtained in 2 100 iterations for a tolerance ε = 1.e−6. The L2 norm of the distance dΩT

calculated on the
boundary of the resulting shape Ω2100 equals 5.73e−4 (much smaller than the minimal mesh size), revealing
an excellent matching of ΩT .

Next, we consider a 3d example; see Figure 3. Both the target and the template meshes are embedded
in a unit computational box D = [0, 1]3. The shapes Ω0 and ΩT are aligned by choosing a small ball ω in
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Figure 2. An example in 2D: (a) Template shape Ω0. (b) Deformed shape Ωk for k = 90.
(c) Deformed shape Ωk for k = 2100. (d) Isovalues of the signed distance function to the
target shape ΩT defined on the fixed mesh TD. (e) Discrepancy between ΩT and Ω2100.

Ω0 ∩ ΩT as for the subset ω. The template mesh T0 has about 9 000 triangles, and 2 250 iterations of the
gradient descent algorithm have been performed to achieve convergence for a tolerance ε = 1.e−6, running in
a few minutes on a standard laptop computer. The L2 norm of the distance dΩT

calculated on the boundary
of the final shape Ω2250 is 5.04e−4 (again, much smaller than the minimal mesh size).
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