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Foreword: Shape and topology optimization

• Shape optimization aims to minimize a function of the domain.

• Such problems can be traced back to the early human history...

• ... The needs to realize energy savings and get free from fossile
fuels have aroused much enthusiasm for the discipline.

• It finds applications in varied physical contexts, such as:

- Structure mechanics: Industrial components, civil engineer-
ing (buildings, beams),...

- Fluid mechanics: External aerodynamics (aircrafts), heat ex-
changers, ...

- Electromagnetism: Electric machines (motors), nanooptics
(photonic devices), ...

Hooke’s principle: “As hangs
the flexible chain, so but

inverted stands the rigid arch”.

Optimized design of a landing
gear (courtesy of Ansys).
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Foreword: optimal design and robustness

• The mathematical description of realistic systems in-
volves physical parameters, e.g.
- In structure mechanics: loads, elastic moduli.

- In fluid mechanics: viscosity, density of the fluid.

• These are often known imperfectly, because either

- They are measured or estimated,

- They become altered through use, or due to wear.

• The optimal character of a design is very sensitive to
the parameters describing its environment,

⇒ Need for “robust” optimal design formulations.

• All the formulations of this requirement suffer from
technical, or conceptual flaws.

• We present three robust optimal design paradigms,
depending on the knowledge about uncertainties.

Turbine blades operate under uncer-
tain load and temperature conditions.

The wavelength of the light injected
in a nanophotonic device is uncertain.
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A generic, abstract optimal design setting (I)

• The design h is sought within a set Uad:

• h : D → [0, 1] may be a “grayscale” density function, defined on a large “hold-all” domain D ⊂ Rd ;

• h may be a “black-and-white” shape Ω ⊂ D.

• The physical parameters are aggregated into an element ξ in a set Ξ,

When h is an elastic structure, ξ may represent the loads applied on h, or the material parameters (Young’s

modulus, Poisson’s ratio).

D D

⌦
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A generic, abstract optimal design setting (II)

• The cost of a design h when the parameters ξ are at play is C(h, ξ).
When h is a structure, C(h, ξ) may be the compliance of h.

• In applications, this cost is often of the form:

C(h, ξ) = S(ξ, uh,ξ),

where the state uh,ξ ∈ V is the solution to a ξ-dependent system, say, for
simplicity:

A(h)uh,ξ = b(ξ).

When h is an elastic structure, A(h) is the linear elasticity operator and uh,ξ is the displacement of h.
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A generic, abstract optimal design setting (III)

• The ideal optimal design problem, when ξ ≡ ξ0 is known perfectly, reads:

min
h∈Uad

C(h, ξ0),

where constraints are omitted for simplicity.

• The optimal character of a design is strongly dependent on the actual value of ξ.
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g + ⌘e1
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The elastic microstructure withstanding a vertical traction load ξ0 with minimum compliance C(h, ξ0) is also the
worst one when an arbitrarily small horizontal component is added to ξ0: C(h, ξ0 + ηe1) =∞ [CheChe].

⇒ Need for a means to incorporate “robustness” into the optimal design problem.
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The worst-case design approach (I)
Joint work with G. Allaire

• We assume minimal knowledge about the uncertain parameters ξ.

- The value ξ0 of ξ under ideal conditions.

- A maximum bound m on the difference between ξ and ξ0.

• Robustness with respect to ξ is then enforced via a worst-case formulation:

min
h∈Uad

Jwc(h), where Jwc(h) = sup
||ξ−ξ0||Ξ≤m

C(h, ξ).

• This difficult min-max bilevel program is intractable, except in a few, very
particular situations [AmCi, DeGAlJou].

• Assuming the amplitude m of the uncertainties to be “small”, it can be given
formal, approximate counterparts.
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The worst-case design approach (II)

Idea: Linearize the cost function around the ideal value ξ0 of the data:

For ξ = ξ0 + ξ̂, with “small” ξ̂, C(h, ξ) ≈ C(h, ξ0) +
∂C
∂ξ

(h, ξ0)(ξ̂).

• We then define a (formal) approximate worst-case functional J̃wc(h) by:

J̃wc(h) = sup
||ξ̂||Ξ≤m

(
C(h, ξ0) +

∂C
∂ξ

(h, ξ0)(ξ̂)

)
.

• The above supremum of an affine mapping over a ball rewrites:

J̃wc(h) = C(h, ξ0) + m

∣∣∣∣∣∣∣∣∂C∂ξ (h, ξ0)

∣∣∣∣∣∣∣∣
Ξ∗
,

where Ξ∗ is the dual space Ξ.

• This expression involves the awkward derivative of the mapping

ξ 7−→ C(h, ξ) = S(ξ, uh,ξ).

• This derivative can be calculated thanks to the adjoint method.
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The worst-case design approach (III)

• The chain rule yields:
∂C
∂ξ

(h, ξ0)(ξ̂) =
∂S

∂ξ
(ξ0, uh,ξ0)(ξ̂) +

〈
∂S

∂u
(ξ0, uh,ξ0), u1h,ξ0(ξ̂)

〉
V∗,V

,

where the derivative u1h,ξ0(ξ̂) :=
∂uh,ξ
∂ξ

∣∣∣
ξ=ξ0

(ξ̂) is the solution to:

A(h)u1h,ξ0(ξ̂) =
∂b

∂ξ
(ξ0)(ξ̂).

• We now define the adjoint state ph,ξ0 ∈ V as the solution to the problem:

A(h)Tph,ξ0 = −∂S
∂u

(ξ0, uh,ξ0).

• A classical adjoint-based computation yields:
∂
∂ξ

(S(ξ, uh,ξ))
∣∣∣
ξ=ξ0

(ξ̂) = ∂S
∂ξ

(ξ0, uh,ξ0)(ξ̂)−
〈
A(h)Tph,ξ0 , u

1
h,ξ0(ξ̂)

〉
V∗,V

,

= ∂S
∂ξ

(ξ0, uh,ξ0)(ξ̂)−
〈
∂b
∂ξ

(ξ0)Tph,ξ0 , ξ̂
〉

Ξ∗,Ξ
,

• Finally:
J̃wc(h) = C(h, ξ0) + m

∣∣∣∣∣∣∣∣∂S∂ξ (ξ0, uh,ξ0)− ∂b

∂ξ
(ξ0)Tph,ξ0

∣∣∣∣∣∣∣∣
Ξ∗
.
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A numerical example (I)

• We consider the optimization of the shape of a force inverter:

min
Ω
C(Ω, ξ), where C(Ω, ξ) =

∫
Ω

χ(x)|uΩ,ξ − uT |2 dx .

• The uncertain parameters ξ are the Lamé coefficients of the elastic material.

• The state uΩ,ξ is the elastic displacement of Ω.

<latexit sha1_base64="9TGLjd3+EnHQO1BmsbxuNBoLZn8="></latexit>g0
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(a) Setting of the problem; (b) Optimized shape without perturbations; (c) Displacement of this design.
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A numerical example (II)

m = 0.001 m = 0.002 m = 0.003 m = 0.0045

m = 0.0075 m = 0.01 m = 0.02 m = 0.1
Optimized shapes of the inverter.
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A numerical example (III)

m = 0.001 m = 0.002 m = 0.003 m = 0.0045

m = 0.0075 m = 0.01 m = 0.02 m = 0.1

Deformed configurations of the optimized inverter designs.
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The worst-case design approach: conclusions

Assets of this approach:

• It rests on minimal assumptions about the uncertain parameters ξ.

Drawbacks of this approach:

• The general bi-level optimization formulation is difficult and costly; it can often
be addressed only via a (coarse) approximation.

• Worst-case formulations often lead to “pessimistic” designs, showing poor
nominal performance for the sake of anticipating an unlikely worst-case scenario.
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Probabilistic optimal design (I)
Joint work with G. Allaire

• (For simplicity) the uncertain parameter ξ lies in a finite-dimensional set Ξ ⊂ Rk .

• Probabilistic approaches rest on the law of ξ, as a probability measure P ∈ P(Ξ):

∀A ⊂ Ξ, the probability that ξ belong to A is P
{
ξ ∈ A

}
=

∫
A

dP(ξ).

• The mean value ξ0 ∈ Rk of ξ is:

ξ0 =

∫
Ξ

ξ dP(ξ).

• The covariance matrix Σ0 ∈ Sk
+ of ξ is:

Σ0 =

∫
Ξ

(ξ − ξ0)⊗ (ξ − ξ0) dP(ξ).

• Assumption: The components of ξ are uncorrelated random variables:

Σ0
ij = 0 whenever i 6= j .

18 / 68



Probabilistic optimal design (II)

• Probabilistic optimal design problems feature a statistical quantity of C(h, ξ), e.g.

- The mean value of the cost C(h, ξ):

Jmean(h) :=

∫
Ξ

C(h, ξ) dP(ξ).

- Other statistical quantities of C(h, ξ) such as its variance:

Jvar(h) =

∫
Ξ

(C(h, ξ)− Jmean(h))2 dPtrue(ξ).

- A probability of failure:

Jfail(h) := P
{
ξ ∈ Ξ s.t. C(h, ξ) > CT

}
,

where CT is a safety threshold.

• These quantities and their derivatives are typically evaluated by very costly
Monte-Carlo methods, stochastic collocation algorithms, ...
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Probabilistic optimal design (III)

• Idea: Assuming that the discrepancy ξ − ξ0 is “small”, approximate quantities can
be obtained by linearization of ξ 7→ C(h, ξ):

C(h, ξ) ≈ C(h, ξ0) +
∂C
∂ξ

(h, ξ0)(ξ − ξ0) +
1
2
∂2C
∂ξ2

(h, ξ0)(h, ξ − ξ0, ξ − ξ0).

• For instance, Jmean(h) is approximated by:

J̃mean(h) ≈ C(h, ξ0) +
k∑

i=1

∂C
∂ξi

(ξ0)

∫
Ξ

(ξi − ξ0i ) dP(ξ)︸ ︷︷ ︸
=0

+
1
2

k∑
i,j=1

∂2C
∂ξi∂ξj

(ξ0)

∫
Ξ

(ξi − ξ0i )(ξj − ξ0j ) dP(ξ)︸ ︷︷ ︸
=Σ0

ij

.

• Such quantities can be handled by “standard” optimal design algorithms.
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Optimization of a bridge under random loads (I)

• The cost function is the compliance of shapes:

C(Ω, ξ) =

∫
Ω

ξ · uΩ,ξ dx =

∫
Ω

Ae(uΩ,ξ) : e(uΩ,ξ) dx .

• The law P of the uncertain loads reads:

P = δξ1 + δξ2 ,

where the two load scenarii ξ1, ξ2 = (0,−m) are supported in the blue spots.

• We solve the problem:

min
Ω

(
J̃mean(h) + δJ̃var(h)

)
s.t. Vol(Ω) = VT .

�D
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(a) The bridge test case; (b) optimal shape in the unperturbed situation.
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Optimization of a bridge under random loads (II)

Optimized shapes for δ = 0 and m = 1, 2, 5, 10.
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Optimization of a bridge under random loads (III)

Optimized shapes for δ = 3 and m = 1, 2, 5, 10.
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Comparison with the worst-case approach

Optimized shapes for the linearized worst-case design approach with m = 1, 2, 5, 10.
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Probabilistic optimal design: conclusions

Assets of this approach:

• The optimization of probabilistic functionals tends to produce optimized
designs with better nominal performances than their worst-case counterparts.

Drawbacks of this approach:

• The probability law Ptrue of ξ is assumed to be known, while often, this law is
only accessible through a set of samples ξi , i = 1, . . . ,N.
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The distributionally robust approach (I)
Joint work with F. Iutzeler, J. Prando and B. Thibert

• The recent idea of distributionally robustness alleviates the need for the knowledge
of the “true” law Ptrue of ξ;

• It solely relies on an “estimate” P of the latter.

Minimize the worst expectation of C(h, ξ) when the law Q of ξ is “close” to P.

sup
Q∈P(Ξ),

Q “close ” to P

∫
Ξ

C(h, ξ) dQ(ξ).

� D. Kuhn, S. Shafiee, and W. Wiesemann, Distributionally robust optimization, Acta
Numerica, 34, (2025), pp. 579–804.
� F. Lin, X. Fang, and Z. Gao, Distributionally robust optimization: A review on theory
and applications, Numerical Algebra, Control & Optimization, 12 (2022), p. 159.
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The distributionally robust approach (II)

• (For simplicity) the uncertain parameter ξ lies in a finite-dimensional set Ξ ⊂ Rk .

• The only available information about ξ ∈ Ξ is a (reconstructed) nominal law P.

Example: P is the empirical mean of observed samples ξi , i = 1, . . . ,N:

P :=
1
N

N∑
i=1

δξi .

• The distributionally robust optimal design problem reads:

min
h∈Uad

Jdr(h), where Jdr(h) = sup
Q∈A

∫
Ξ

C(h, ξ) dQ(ξ),

where the ambiguity set A ⊂ P(Ξ) contains the laws Q that are “close” to P.
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The distributionally robust approach (III)

We consider three types of distributionally robust problems:

¶ A ≡ AW is the set of probability measures which are “close” to P,

AW =
{
Q ∈ P(Ξ), d(P,Q) ≤ m

}
,

in terms of a certain “distance” d(·, ·) on P(Ξ): the Wasserstein distance.

· A ≡ AM is the set of probability measures on Ξ whose first- and second-order
moments are “close” to those of P:

AM =

{
Q ∈ P(Ξ) s.t. sup

|α|≤2

∣∣∣∣∫
Ξ

ξα dP(ξ)−
∫

Ξ

ξα dQ(ξ)

∣∣∣∣ ≤ m

}
.

¸ Another statistical quantity of the cost than its expectation is made robust: its
conditional value at risk.
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The Wasserstein distance (I)

• A coupling is a probability measure π ∈ P(Ξ× Ξ).

• The first and second marginals π1, π2 ∈ P(Ξ) of π ∈ P(Ξ× Ξ) are defined by:

∀ϕ ∈ C(Ξ),

∫
Ξ×Ξ

ϕ(ξ) dπ(ξ, ζ) =

∫
Ξ

ϕ(ξ) dπ1(ξ), and∫
Ξ×Ξ

ϕ(ζ) dπ(ξ, ζ) =

∫
Ξ

ϕ(ζ) dπ2(ζ).

• Interpretation: If π ∈ P(Ξ× Ξ) is a coupling with marginals P,Q ∈ P(Ξ),

π(ξ, ζ) ≈ amount of mass transferred from ξ to ζ.
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The Wasserstein distance (II)

Definition 1.
Let Ξ be a compact subset of Rk ; the Wasserstein distance W (P,Q) between two
probability measures P, Q ∈ P(Ξ) is

W (P,Q) = inf
π∈P(Ξ×Ξ)
π1=P, π2=Q

∫
Ξ×Ξ

c(ξ, ζ) dπ(ξ, ζ),

where the ground cost c(ξ, ζ) on Rk is chosen to be quadratic c(ξ, ζ) = |ξ − ζ|2.

• The Wasserstein distance “lifts” the ground cost c(ξ, ζ) on Ξ into a distance over
probability measures on Ξ.

• It is a flexible means to evaluate the distance between P and Q ∈ P(Ξ), which
smoothly appraises differences (e.g. translations) between the supports of P and Q.

� G. Peyré and M. Cuturi, Computational optimal transport: With applications to data
science, Foundations and Trends in Machine Learning, 11 (2019), pp. 355–607.
� F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, 2015.
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Entropy-regularization of the Wasserstein distance

• For a variety of reasons, the Wasserstein distance is often regularized [Cu]:

Wε(P,Q) = inf
π∈P(Ξ×Ξ)
π1=P, π2=Q

(∫
Ξ×Ξ

c(ξ, ζ) dπ(ξ, ζ) + εH(π)

)
,

where the entropy H(π) of a coupling π is:

H(π) =

{ ∫
Ξ×Ξ

log dπ
dπ0

dπ if π is absolutely continuous w.r.t. π0,
∞ otherwise.

• The fixed reference coupling π0 ∈ P(Ξ× Ξ) plays the role of a “prior”.

• A judicious choice about π0, with nice statistical guarantees, is

π0(ξ, ζ) = P(ξ)dνξ(ζ), with dνξ(ζ) := αξe
− c(ξ,ζ)

2σ2 1Ξ(ζ)dζ,

for some σ > 0 and a normalization factor αξ [AIMa]:

For all ϕ ∈ C(Ξ× Ξ),

∫
Ξ×Ξ

ϕ(ξ, ζ) dπ0(ξ, ζ) =

∫
Ξ

(∫
Ξ

ϕ(ξ, ζ) dνξ(ζ)

)
dP(ξ).

Intuition:

- π0 “spreads” the mass of P at ξ over a characteristic length scale σ.
- σ accounts for a “degree of confidence” in the nominal law P.

33 / 68



The distributionally robust optimal design problem

The entropy-regularized distributionally robust optimal design problem reads:

min
h∈Uad

Jdr,ε(h), where Jdr,ε(h) = sup
Q∈P(Ξ),

Wε(P,Q)≤m

∫
Ξ

C(h, ξ) dQ(ξ).

This bilevel min-max problem looks very difficult at first glance... but it can be given
a tractable reformulation up to the use of convex duality.
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A convex duality result (I)

Proposition 1 ([AIMa]).

Besides “mild” assumptions, suppose that:

• Ξ is a convex and compact subset of Rk ,

• f : Ξ→ R is a continuous function,

• P ∈ P(Ξ) is a probability measure.

For any m > 0, and for a sufficiently small value of σ, the following equality holds:

sup
Wε(P,Q)≤m

∫
Ξ

f (ζ) dQ(ζ) = inf
λ≥0

{
λm + λε

∫
Ξ

log

(∫
Ξ

e
f (ζ)−λc(ξ,ζ)

λε dνξ(ζ)

)
dP(ξ)

}
.

Hint of proof: We introduce a Lagrange multiplier λ for the constraint on Wε(P,Q):

sup
Wε(P,Q)≤m

∫
Ξ

f (ζ) dQ(ζ) = sup
Q∈P(Ξ)

inf
λ≥0

(∫
Ξ

f (ζ) dQ(ζ) + λ(m −Wε(P,Q))
)
,

= inf
λ≥0

sup
Q∈P(Ξ)

(∫
Ξ

f (ζ) dQ(ζ) + λ(m −Wε(P,Q))
)
,

where the exchange of the infimum and supremum proceeds from convex duality.
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A convex duality result (II)

Inserting the definition of Wε(P,Q), it follows:

sup
Wε(P,Q)≤m

∫
Ξ

f (ζ)dQ(ζ) = inf
λ≥0

sup
π∈P(Ξ×Ξ)
π1=P

{
λm +

∫
Ξ

(
f (ζ)− λc(ξ, ζ)− λεH(π)

)
dπ(ξ, ζ)

}
,

Given the definition of H(π), the maximization holds over couplings π of the form

π(ξ, ζ) = a(ξ, ζ)π0(ξ, ζ), for some function a ∈ L1(Ξ× Ξ; dπ0),

and so:

sup
Wε(P,Q)≤m

∫
Ξ

f (ζ) dQ(ζ) = inf
λ≥0

sup
α∈L1(Ξ×Ξ;dπ0)∫

Ξ α(ξ,ζ) dνξ(ζ)=1

{
λm

+

∫
Ξ

(
f (ζ)− λc(ξ, ζ)− λε logα(ξ, ζ)

)
α(ξ, ζ) dπ0(ξ, ζ)

}
.

Exploiting the Euler-Lagrange equation for the inner maximization, we obtain:

α(ξ, ζ) =

(∫
Ξ

e
f (ζ)−λc(ξ,ζ)

λε dνξ(ζ)

)−1
e

f (ζ)−λc(ξ,ζ)
λε ,

and the desired result follows.
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A convex duality result (III)

• The entropy-regularized distributionally robust optimization problem rewrites:

min
h∈Uad,
λ≥0

D(h, λ), where

D(h, λ) := λm + λε

∫
Ξ

log

(∫
Ξ

e
C(h,ζ)−λc(ξ,ζ)

λε dνξ(ζ)

)
dP(ξ).

• This problem can be solved by a standard optimization algorithm based on the
derivatives of the functional D(h, λ) with respect to h and λ.

• Constraints can be added to the problem without additional conceptual difficulty.
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Distributionally robust design of a T-shaped beam (I)

• We optimize the geometry of a 2d T-shaped beam Ω.

• The applied loads ξ ∈ R2 are uncertain, with ideal value ξ0 = (0,−1).

• The law of ξ is itself uncertain, with nominal approximation P = δξ0 .

• We minimize the total stress within Ω under a volume constraint:

min
Ω

Σ(Ω, ξ0) s.t. Vol(Ω) = VT , where VT = 0.3,

where the stress function is defined by

Σ(Ω, ξ) =

∫
Ω

χ(x)||σ(uΩ,ξ)||2 dx .

<latexit sha1_base64="FDh1713UaHM2Mxkjmuc9g5lys/k="></latexit>

�N
<latexit sha1_base64="FDh1713UaHM2Mxkjmuc9g5lys/k="></latexit>

�N

<latexit sha1_base64="9a7IF9W+DMDPzi6IA6+p5NqF7cs="></latexit>

⇠0
<latexit sha1_base64="9a7IF9W+DMDPzi6IA6+p5NqF7cs=">AAACyHicjVHLTsMwEBzCq5RXgSOXiAqJU+SUtrS3Ci6IE0i0RYKCktSA1byUOEBVceEHuMKXIf4A/oK1SSU4VOAoyXp2ZuzddWNfpJKx9yljemZ2br6wUFxcWl5ZLa2td9IoSzze9iI/Ss5cJ+W+CHlbCunzszjhTuD6vOsODlS+e8eTVEThqRzGvBc4N6G4Fp4jCWpfPIhLdlUqM6vZZFW7aTKrxlilUaeA7VYatZppW0yvMvJ1HJXecIE+InjIEIAjhKTYh4OUnnPYYIgJ62FEWEKR0HmORxRJmxGLE8MhdEDfG9qd52hIe+WZarVHp/j0JqQ0sU2aiHgJxeo0U+cz7azQSd4j7anuNqS/m3sFhErcEvqXbsz8r07VInGNhq5BUE2xRlR1Xu6S6a6om5s/qpLkEBOm4j7lE4o9rRz32dSaVNeueuvo/IdmKlTtvZyb4VPdkgY8nqI5OehULLtu1U+q5dZ+PuoCNrGFHZrnHlo4xDHa5C3wjBe8GkdGbNwbw2+qMZVrNvBrGU9f3qWRTw==</latexit>

⇠0

<latexit sha1_base64="f354hTTZbOEjpNVHsZHIpxoJ5VE=">AAACy3icjVHLSsNAFD3GV31XXboJFsFVSaO2dVdU0I1QwdqCljJJRw3mxcxEqNWlP+BW/0v8A/0L74wp6EJ0QpIz595zZu69XhoGUjnO25g1PjE5NV2YmZ2bX1hcKi6vnMkkEz5v+UmYiI7HJA+DmLdUoELeSQVnkRfytnezr+PtWy5kkMSnapDybsSu4uAy8JkiqnNxyKKI9Q56xZJT3q1X3R3XdsqOU3O3qhq4tW13y64Qo1cJ+WomxVdcoI8EPjJE4IihCIdgkPScowIHKXFdDIkThAIT53jALGkzyuKUwYi9oe8V7c5zNqa99pRG7dMpIb2ClDY2SJNQniCsT7NNPDPOmv3Ne2g89d0G9Pdyr4hYhWti/9KNMv+r07UoXKJuagioptQwujo/d8lMV/TN7W9VKXJIidO4T3FB2DfKUZ9to5Gmdt1bZuLvJlOzeu/nuRk+9C1pwKMp2r+DM7dcqZarJ9ulxl4+6gLWsI5NmmcNDRyhiZaZ4xOe8WIdW9K6s+6/Uq2xXLOKH8t6/ATayZJ8</latexit>

�D

<latexit sha1_base64="WjT/HzPHtrW/7EcmoPc30msuq0s="></latexit>

2

<latexit sha1_base64="b5alrj6RC49di3pF4ss7D58bTUM="></latexit>

0.1
<latexit sha1_base64="b5alrj6RC49di3pF4ss7D58bTUM="></latexit>

0.1

<latexit sha1_base64="aWdJh66dl9UDUuk1TVhVzPTUheQ="></latexit>

0.5

<latexit sha1_base64="2s++UCpvEDz6uOOR/1+mljNspvY="></latexit>

0.75

<latexit sha1_base64="+FVFJZONiiOscSw2p00Db7KNToI="></latexit>

0.5

a b c

(a) Setting of the minimization of stress within a T-shaped beam; (b) Mesh of the initial shape; (c) Optimized
shape Ω∗det assuming a perfect knowledge of the loads.

38 / 68



Distributionally robust design of a T-shaped beam (II)

m = 0 m = 1 m = 3

m = 0 m = 1 m = 3

m = 0 m = 1 m = 3
Distributionally robust optimized designs obtained in the T-shaped beam example, associated to various values
of σ2; (1st row) σ2 = 1e−0.5; (2nd row) σ2 = 1e−1; (3rd row) σ2 = 1e−3.
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1 Shape and topology optimization optimization under uncertainties

2 Worst-case optimal design

3 Probabilistic optimal design

4 Distributionally robust optimal design
Wasserstein ambiguity sets
Moment-based ambiguity sets
Distributionally robust CVaR

5 Conclusion and perspectives
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Moment-based ambiguity sets (I)

• We assume that only the first and second-order moments µ0 ∈ Rk and Σ0 ∈ Sk
+ of

the true law Ptrue have been reconstructed [DeYe]:

µ0 =

∫
Ξ

ξ dPtrue(ξ), and Σ0 =

∫
Ξ

(ξ − µ0)⊗ (ξ − µ0) dPtrue(ξ).

• The ambiguity set of interest is then:

AM =

{
Q ∈ P(Ξ),

∣∣∣∣∫
Ξ

ξ dQ(ξ)− µ0
∣∣∣∣ ≤ m1,

and
∫

Ξ

(ξ − µ0)⊗ (ξ − µ0) dQ(ξ) ≤ m2Σ0

}
,

where m1 > 0 and m2 > 0 are given bounds.
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Moment-based ambiguity sets (II)

• We define the entropy H(Q) of a probability measure Q ∈ P(Ξ) by:

H(Q) =


∫

Ξ

log
dQ
dQ0

dQ if Q is absolutely continuous w.r.t. Q0,

+∞ otherwise,

where Q0 ∈ P(Ξ) is a given reference law.

Ex: Q0 is the k-variate Gaussian law with mean value µ0 and covariance matrix Σ0.

• This leads to the moment-based distributionally robust optimal design problem:

min
h∈Uad

JM(h), where JM(h) := sup
Q∈AM

(∫
Ξ

C(h, ξ) dQ(ξ)−εH(Q)

)
.
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Moment-based ambiguity sets (III)

Proposition 2.

Let Ξ ⊂ Rk be compact, and let f : Ξ→ R be a continuous function. It holds:

sup
Q∈AM

(∫
Ξ

f (ξ) dQ(ξ)− εH(Q)

)
= inf

λ≥0, |τ|≤1,
S∈Sk+

{
λm1 − λτ · µ0 + m2S : Σ0

+ ε log

(∫
Ξ

(
e

f (ξ)+λτ·ξ−S :(ξ−µ0)⊗(ξ−µ0)
ε

)
dQ0(ξ)

)}
.

The moment-based distributionally robust problem thus rewrites:

min
h∈Uad, |τ|≤1,
λ≥0, S∈Sk+

DM(h, λ, τ, S), where DM(h, λ, τ, S) :=

λm1−λτ ·µ0+m2S : Σ0+ε log

(∫
Ξ

(
e
C(h,ξ)+λτ·ξ−S :(ξ−µ0)⊗(ξ−µ0)

ε

)
dQ0(ξ)

)
.

This is a standard optimal design problem, posed over an augmented set of variables.
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Distributionally robust design of a 3d beam under moment ambiguity (I)

• We optimize the shape Ω of a 3d cantilever beam under uncertain loads ξ ∈ R3.

• In an ideal situation, the applied load ξ = ξ0 := (0, 0,−1) is known perfectly.

• We then consider the following compliance minimization problem:

min
Ω

C(Ω, ξ0) s.t. Vol(Ω) = VT , where VT = 0.45.
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D

a b c

(a) Setting of the shape optimization example of a 3d cantilever beam; (b,c) Optimized structure Ω∗det when the
applied load ξ ≡ ξ0 is perfectly known.
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Distributionally robust design of a 3d beam under moment ambiguity (II)

• We now assume that the applied load ξ is uncertain, with unknown probability law.

• The only pieces of information about Ptrue are:

- The mean value µ0 = ξ0;

- The covariance matrix Σ0 = σ2I, where σ2 = 0.01.

• We thus consider the distributionally robust version of the previous problem:

min
Ω

(
sup

Q∈AM

∫
Ξ

C(Ω, ξ) dQ(ξ)− εH(Q)

)
s.t. Vol(Ω) = VT

• ... or rather its tractable reformulation.
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Distributionally robust design of a 3d beam under moment ambiguity (III)

a b c d

a b c d

Optimized 3d cantilever beams under distributional uncertainties using a moment ambiguity set; front and back
views for the parameters (a) m1 = 0, m2 = 1; (b) m1 = 1, m2 = 1; (c) m1 = 2, m2 = 1, and (d) m1 = 5, m2 = 1.
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Distributionally robust design of a 3d beam under moment ambiguity (IV)

e f g

e f g

Optimized 3d cantilever beams under distributional uncertainties using a moment ambiguity set; front and back
views for the parameters (e) m1 = 0, m2 = 2; (f) m1 = 2, m2 = 1, and (g) m1 = 5, m2 = 5.
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1 Shape and topology optimization optimization under uncertainties

2 Worst-case optimal design

3 Probabilistic optimal design

4 Distributionally robust optimal design
Wasserstein ambiguity sets
Moment-based ambiguity sets
Distributionally robust CVaR

5 Conclusion and perspectives

48 / 68



Robustification of another statistical quantity of the cost

• The previous distributionally robust problems are of the form:

min
h∈Uad

sup
Q∈A

∫
Ξ

C(h, ξ) dQ(ξ),

i.e. the worst value of the expectation of C(h, ·) is minimized.

• We “robustify” another statistical quantity of C(h, ·): its conditional value at risk.

• This indicator better appraises “how much” C(h, ·) deviates from its mean value.

• In particular, it allows for a surrogate expression of failure probabilities.
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A glimpse of the notion of Conditional Value at Risk (I)

Let h ∈ Uad and P ∈ P(Ξ) be the (known) law of the uncertain parameter ξ ∈ Ξ.

• The cumulative distribution function t 7→ Ψ(h, t) of the cost C(h, ·) is:

∀t ∈ R, Ψ(h, t) = P
{
ξ ∈ Ξ, C(h, ξ) ≤ t

}
.

• This function is non decreasing, with limits:

lim
t→−∞

Ψ(h, t) = 0, and lim
t→+∞

Ψ(h, t) = 1.

• It is continuous from the right, but it may be discontinuous from the left at t ∈ R
if C(h, ·) = t on a subset of Ξ with positive measure.

• (For simplicity) We suppose that Ψ(h, ·) is continuous.
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A glimpse of the notion of Conditional Value at Risk (II)

Definition 2.
For a given threshold β ∈ (0, 1),
• The β-value at risk, or β-quantile VaRβ(C(h, ·)) of C(h, ·) is the smallest value

t ∈ R majorizing C(h, ·) with probability β:

VaRβ(C(h, ·)) = inf
{
t ∈ R, Ψ(h, t) ≥ β

}
.

• The β-conditional value at risk CVaRβ(C(h, ·)) is the average of C(h, ·) over the
events where it exceeds VaRβ(C(h, ·)):

CVaRβ(C(h, ·)) =
1

1− β

∫
{ξ∈Ξ, C(h,ξ)≥VaRβ (C(h,·))}

C(h, ξ) dP(ξ).
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A glimpse of the notion of Conditional Value at Risk (III)

The conditional value at risk can be expressed as a minimum value.

Theorem 3.

The following representation formula holds true:

CVaRβ(C(h, ·)) = inf
α∈R

{
α +

1
1− β

∫
Ξ

[C(h, ξ)− α]+ dP(ξ)

}
,

where [t]+ := max(t, 0).

The minimum in the above program is uniquely attained at α = VaRβ(C(h, ·)).

� R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,
Journal of banking & finance, 26 (2002), pp. 1443–1471.
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Conditional Value at Risk and probability of failure (I)

• The conditional value at risk allows for a convenient reformulation of failure
probability constraints, of the form

P
{
ξ ∈ Ξ, C(h, ξ) ≥ CT

}
≤ 1− β,

for a parameter β ∈ (0, 1) and a safety threshold CT ∈ R.

• Indeed, the definition of Ψ(h, t) implies that:

P
{
ξ ∈ Ξ, C(h, ξ) ≥ CT

}
≤ 1− β ⇐⇒ Ψ(h,CT ) ≥ β.

• Since VaRβ(C(h, ·)) is the smallest value t ∈ R such that C(h, ξ) ≤ t with
probability β, this is in turn equivalent to:

VaRβ(C(h, ·)) ≤ CT .

• A conservative surrogate for this requirement is:

CVaRβ(C(h, ·)) ≤ CT .
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Conditional Value at Risk and probability of failure (II)

• Let us consider an optimal design problem featuring an objective function J(h)
and a constraint on the probability that the cost C(h, ξ) exceed CT :

min
h∈Uad

J(h) s.t. P
{
ξ ∈ Ξ s.t. C(h, ξ) ≥ CT

}
≤ 1− β.

• A conservative surrogate for this problem is:

min
h∈Uad

J(h) s.t. CVaRβ(C(h, ·)) ≤ CT .

• Using Theorem 3, this rewrites as a “classical” optimization over the pair (h, α):

min
h∈Uad,
α∈R

J(h) s.t. α +
1

1− β

∫
ξ∈Ξ

[C(h, ξ)− α]+ dP(ξ) ≤ CT .
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Conditional Value at Risk and probability of failure (III)

• The law of ξ is now uncertain: only a nominal law P ∈ P(Ξ) is available.

• (For instance) Assuming an ambiguity set AW of Wasserstein type, the
distributionally robust counterpart of the previous problem reads:

min
h∈Uad

J(h) s.t. sup
Q∈AW

min
α∈R

(
α +

1
1− β

∫
ξ∈Ξ

[C(h, ξ)− α]+ dQ(ξ)

)
≤ CT .

• Using similar duality techniques as previously, this rewrites:

min
h∈Uad,
λ≥0,α∈R

J(h) s.t. DC(h, λ, α) ≤ CT , where

DC(h, λ, α) = α+
λm

1− β+
λε

1− β

∫
Ξ

log

(∫
Ξ

e
[C(h,ζ)−α]+−λc(ξ,ζ)

λε dνξ(ζ)

)
dP(ξ).

• This “classical” problem can be solved by standard numerical algorithms.
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Numerical example (I)

• We optimize a 2d bridge, accounted for by a density function h : D → [0, 1].

• It is clamped along the lower side ΓD of ∂D.

• A load ξ is applied on its upper boundary ΓN .

• At first, we optimize the compliance C(h, ξ0) of the structure under a volume
constraint, in the ideal situation where the load is ξ0 := (0,−1):

min
h∈Uad

C(h, ξ0) s.t. Vol(h) = VT , where VT = 0.245.

D �D

�N

<latexit sha1_base64="s8rvZirdksQHm953RxdgJ8Km0mk="></latexit>
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a b

(a) Setting of the bridge problem; (b) Optimized design h∗det in ideal conditions.
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Numerical example (II)

• We now assume that the load ξ ∈ Ξ ⊂ R2 is uncertain.

• Its (known) law P ∈ P(Ξ) is the Gaussian law centered at ξ0 with variance σ2.

• We solve the problem

min
h∈Uad

Vol(h) s.t. P
{
ξ ∈ Ξ s.t. C(h, ξ) ≥ CT

}
≤ 1− β,

where the threshold CT := 40 is close to C(h∗det, ξ
0).

• We replace this problem by the following conservative version:

min
h∈Uad,
α∈R

Vol(h) s.t. α +
1

1− β

∫
ξ∈Ξ

[C(h, ξ)− α]+ dP(ξ) ≤ CT .

• We solve this problem for several values of the variance σ2 of the law P for ξ and
the bound β.

57 / 68



Numerical example (III)

β = 0.01 β = 0.1 β = 0.5 β = 0.9 β = 0.99

β = 0.01 β = 0.1 β = 0.5 β = 0.9 β = 0.99

Optimized designs of the bridge under a safety constraint; (Upper row) σ2 = 1e−2.5; (Lower row) σ2 = 1e−2.
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Numerical example (IV)

• We now turn to the situation where the law P of ξ is uncertain.

• A nominal law P := δξ0 is reconstructed from the single ideal load.

• We consider the Wasserstein distributionally robust problem:

min
h∈Uad,
α∈R

Vol(h) s.t. sup
Q∈AW

min
α∈R

(
α +

1
1− β

∫
ξ∈Ξ

[C(h, ξ)− α]+ dQ(ξ)

)
≤ CT .

• This problem has the following equivalent formulation:

min
h∈Uad,
λ≥0,α∈R

Vol(h) s.t. DC(h, λ, α) ≤ CT , where

DC(h, λ, α) = α +
λm

1− β +
λε

1− β log

(∫
Ξ

e
[C(h,ζ)−α]+−λc(ξ0,ζ)

λε dνξ0(ζ)

)
.
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Numerical example (V)

β = 0.01 β = 0.1 β = 0.5 β = 0.9 β = 0.99

β = 0.01 β = 0.1 β = 0.5 β = 0.9 β = 0.99

Distributionally robust designs of the bridge for a Wasserstein radius m = 0.5, various values of the parameter β
and (top row) σ2 = 1e−3, (bottom row) σ2 = 1e−2.5.
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1 Shape and topology optimization optimization under uncertainties

2 Worst-case optimal design

3 Probabilistic optimal design

4 Distributionally robust optimal design
Wasserstein ambiguity sets
Moment-based ambiguity sets
Distributionally robust CVaR

5 Conclusion and perspectives
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Conclusion and perspectives

Conclusion:

• The distributionally robust designs systematically show:

- Worse performance than their “simple” probabilistic counterparts in
situations present in the nominal law;

- Better performance in “out-of-sample” situations.

• Infinite-dimensional uncertain parameters can be considered after approximation
(e.g. KL decomposition for a random field).

• Uncertainties over different data have been considered (material uncertainties,
geometric uncertainties).

Perspectives:

• Treatment of geometric uncertainties in a distributionally robust way, with an
optimal transport approach.
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A word of advertisement

• All the numerical realizations are based on open-source libraries.

• A webpage gathering lecture notes, slides, demonstration codes, etc.

https://dapogny.org/tutosto.html
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Thank you !

Thank you for your attention!
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