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Foreword: Shape and topology optimization‘

Shape optimization aims to minimize a function of the domain.

Such problems can be traced back to the early human history...

... The needs to realize energy savings and get free from fossile
fuels have aroused much enthusiasm for the discipline.

It finds applications in varied physical contexts, such as:

- Structure mechanics: Industrial components, civil engineer-
ing (buildings, beams),...

- Fluid mechanics: External aerodynamics (aircrafts), heat ex-
changers, ...

- Electromagnetism: Electric machines (motors), nanooptics
(photonic devices), ...

Hooke's principle: “As hangs
the flexible chain, so but
inverted stands the rigid arch”.

Optimized design of a landing
gear (courtesy of Ansys).
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Foreword: optimal design and robustness‘

The mathematical description of realistic systems in-
volves physical parameters, e.g.

- In structure mechanics: loads, elastic moduli.

- In fluid mechanics: viscosity, density of the fluid.

These are often known imperfectly, because either

- They are measured or estimated,

- They become altered through use, or due to wear.

i ) ) . Turbine blades operate under uncer-
The optimal character of a design is very sensitive to  tain load and temperature conditions.

the parameters describing its environment,

= Need for “robust” optimal design formulations.

All the formulations of this requirement suffer from
technical, or conceptual flaws.

We present three robust optimal design paradigms,

depending on the knowledge about uncertainties. The wavelength of the light injected
in a nanophotonic device is uncertain.
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The design h is sought within a set U,gq:

® hH:D — [0,1] may be a “grayscale” density function, defined on a large “hold-all" domain D C

® h may be a “black-and-white” shape Q C D

The physical parameters are aggregated into an element £ in a set =,

When h is an elastic structure, £ may represent the loads applied on h, or the material parameters (Young's

modulus, Poisson’s ratio)
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A generic, abstract optimal design setting (II)

e The cost of a design h when the parameters ¢ are at play is C(h, &).
When h is a structure, C(h, £) may be the compliance of h.
e In applications, this cost is often of the form:

simplicity:

C(h, &) = S(&, une),

where the state uy ¢ € V is the solution to a {-dependent system, say, for

A(h)une = b(¢).

When h is an elastic structure, A(h) is the linear elasticity operator and u, ¢ is the displacement of h




A generic, abstract optimal design setting (lII)

e The ideal optimal design problem, when & = £° is known perfectly, reads:
in C(h,€&°
,min C(h, &%),
where constraints are omitted for simplicity.

e The optimal character of a design is strongly dependent on the actual value of &.
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The elastic microstructure withstanding a vertical traction load £° with minimum compliance C(h, £°) is also the
worst one when an arbitrarily small horizontal component is added to £°: C(h, £° + ne,) = oo

= Need for a means to incorporate "“robustness” into the optimal design problem.
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We assume minimal knowledge about the uncertain parameters &.

- The value £° of £ under ideal conditions.

- A maximum bound m on the difference between ¢ and £°.

Robustness with respect to £ is then enforced via a worst-case formulation:

min Juc(h), where Juc(h) = sup  C(h,§).
heltaa llg—¢0ll=<m

This difficult min-max bilevel program is intractable, except in a few, very
particular situations

Assuming the amplitude m of the uncertainties to be “small”, it can be given
formal, approximate counterparts.
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Idea: Linearize the cost function around the ideal value £° of the data:

For £ = &% + &, with “small’ £, C(h,&) ~C(h, &%) + ‘;—g(h, £0)(8).

e We then define a (formal) approximate worst-case functional j;;(h) by:

Thy = s (e(ne) + G h€@).

lIEll=<m

The above supremum of an affine mapping over a ball rewrites:

Jwc(h) = C(h, %) H— h,€°)

*

where =* is the dual space =.

This expression involves the awkward derivative of the mapping

§r—C(h, &) = S(& une)-

This derivative can be calculated thanks to the adjoint method.
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The chain rule yields:
oS ~
T €@ = T )@+ ( Gl ) thes@)

vV

where the derivative u;’go(f) =

Oup ¢ ’

5 | (o (&) is the solution to:

~

Al s (§) = FE)E).
We now define the adjoint state p, ;o € V as the solution to the problem:
A(h) pheo = _%(io’ Up,g0)-
A classical adjoint-based computation yields:
FeSEma)|_,© = FE 0@~ (AR P ko ©) -
- %&%w®—@&VnNQ ,

Finally: —
Juwe(h) = C(h, €°) +

=
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e We consider the optimization of the shape of a force inverter:
mnin C(,&), where C(Q,&) = / x(X)|ug,e — ur|* dx.
Q

e The uncertain parameters £ are the Lamé coefficients of the elastic material.

e The state ug,¢ is the elastic displacement of Q.

Jo
o
[a] ‘D%’

(a) Setting of the problem; (b) Optimized shape without perturbations; (c) Displacement of this design.
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Optimized shapes of the inverter.

14 /68



Deformed configurations of the optimized inverter designs.
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Assets of this approach:

e It rests on minimal assumptions about the uncertain parameters .

Drawbacks of this approach:

e The general bi-level optimization formulation is difficult and costly; it can often
be addressed only via a (coarse) approximation.

e Worst-case formulations often lead to “pessimistic” designs, showing poor
nominal performance for the sake of anticipating an unlikely worst-case scenario.
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the uncertain parameter ¢ lies in a finite-dimensional set = C R¥.

Probabilistic approaches rest on the law of £, as a probability measure P € P(Z):

VA C =, the probability that ¢ belong to A is P{g e A} — /A dB(¢).
The mean value £° € R¥ of ¢ is:
e = [ eazo.
The covariance matrix % € S of ¢ is:
2= (- o E- )R,

Assumption: The components of £ are uncorrelated random variables:

Zg- = 0 whenever i # j.
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e Probabilistic optimal design problems feature a statistical quantity of C(h, &), e.g.

- The mean value of the cost C(h,§):
() 1= [ €(.€) dP(E)
- Other statistical quantities of C(h,&) such as its variance:

Juar(h) = / (C(h, ) — Jmean(h))? AP (€).

- A probability of failure:
Ja(h) = P{g €=st C(h€) > cT},
where Cr is a safety threshold.

e These quantities and their derivatives are typically evaluated by very costly
Monte-Carlo methods, stochastic collocation algorithms, ...
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o ldea: Assuming that the discrepancy ¢ — £° is “small”, approximate quantities can
be obtained by linearization of £ — C(h, £):

C(h) ~ C(h, &) + S~ ) + 3 TSN n e - €6~ ),

e For instance, Jmecan(h) is approximated by:

Jmmean(h) = C(h,€°) + Z (&) [(6 - ar(e)

2

5eae ) (6 =6 — ) ar(©).

=39
i

1 &
t3 2%

e Such quantities can be handled by “standard” optimal design algorithms.
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e The cost function is the compliance of shapes:
C(Q,¢) = / € ugedx = / Ae(ua,e) : e(uq,e) dx.
Q Q
e The law P of the uncertain loads reads:
IP = 551 + (5£2,
where the two load scenarii £, &% = (0, —m) are supported in the blue spots.
e We solve the problem:

min (I;;(h) +5Tv;(h)) st. Vol(Q) = V7.
2

(a) The bridge test case; (b) optimal shape in the unperturbed situation.
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Optimized shapes for 6 =0 and m = 1,2,5, 10.
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Pa's Weiry

Optimized shapes for 6 = 3 and m = 1,2,5,10.
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Optimized shapes for the linearized worst-case design approach with m = 1,2,5,10.
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Assets of this approach:

e The optimization of probabilistic functionals tends to produce optimized
designs with better nominal performances than their worst-case counterparts.

Drawbacks of this approach:

e The probability law Pie of & is assumed to be known, while often, this law is
only accessible through a set of samples &', i=1,... N.
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e The recent idea of distributionally robustness alleviates the need for the knowledge
of the “true” law Piye of &;

e It solely relies on an “estimate” PP of the latter.

Minimize the worst expectation of C(h, &) when the law Q of £ is “close” to P.

sup / C(h,€) d(E).

D. Kuhn, S. Shafiee, and W. Wiesemann, Distributionally robust optimization, Acta
Numerica, 34, (2025), pp. 579-804.

F. Lin, X. Fang, and Z. Gao, Distributionally robust optimization: A review on theory
and applications, Numerical Algebra, Control & Optimization, 12 (2022), p: 159.
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° the uncertain parameter ¢ lies in a finite-dimensional set = C R¥.

e The only available information about £ € = is a nominal law P.

Example: P is the empirical mean of observed samples ¢/, i =1,..., N:

1 N
P.= 255‘.
i=1

=

e The distributionally robust optimal design problem reads:

min Jg,(h), where Jg.(h) = sup /C(h,ﬁ) dQ(¢),
QeAJ=

heUyq

where the ambiguity set A C P(Z) contains the laws Q that are “close” to P.
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We consider three types of distributionally robust problems:

A = Aw is the set of probability measures which are “close” to P,
Aw={QeP@E), dP.Q) <m],

in terms of a certain “distance” d(-,-) on P(=Z): the Wasserstein distance.

A = A is the set of probability measures on = whose first- and second-order

moments are “close” to those of P:
JIGEG )—/_5‘*d@(§)‘ <m}.

Another statistical quantity of the cost than its expectation is made robust: its
conditional value at risk.

AMZ{QGP( t. sup

|| <2
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e A coupling is a probability measure m € P(= x Z).

e The first and second marginals 71, m2 € P(=Z) of m € P(= x =) are defined by:

oec@. [ w00 = [p©dn (), and

[ A0ante) = [o(0 dn)

e Interpretation: If m € P(= x =) is a coupling with marginals P,Q € P(Z),

m(&,¢) = amount of mass transferred from & to (.

(& )
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Let = be a compact subset of R*; the Wasserstein distance W (P, Q) between two
probability measures P, Q € P(Z) is

we= o, [ _ceqantco.

where the ground cost c(€,¢) on R is chosen to be quadratic c(€,¢) = |€ — ¢

e The Wasserstein distance "lifts” the ground cost ¢(&,¢) on = into a distance over
probability measures on =.

e It is a flexible means to evaluate the distance between P and Q € P(Z), which
smoothly appraises differences (e.g. translations) between the supports of P’ and Q.

G. Peyré and M. Cuturi, Computational optimal transport: With applications to data
science, Foundations and Trends in Machine Learning, 11 (2019), pp. 355-607.

F. Santambrogio, Optimal transport for applied mathematicians, Birkauser, 2015.
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e For a variety of reasons, the Wasserstein distance is often regularized

we@= it ([ _eleqineo+enn),
7y=P, T30 =X=

where the entropy H(7) of a coupling 7 is:

H(r) = { Jo - log so=dm if m is absolutely continuous w.r.t. mo,

=X=
00 otherwise.
e The fixed reference coupling mo € P(= x =) plays the role of a “prior”.
e A judicious choice about 7, with nice statistical guarantees, is

7o(€,¢) = P(€)dve(C), with dve(C) = age™ 2% 1=(C)dC,

for some o > 0 and a normalization factor a;¢

Forall e 0(=x=), [ wle.an(e. = [ ([ ote.0)an@)) aro).

Intuition:

- mo “spreads” the mass of P at £ over a characteristic length scale o.
- o accounts for a “degree of confidence” in the nominal law P.
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The distributionally robust optimal design problem

The entropy-regularized distributionally robust optimal design problem reads:

min Jgr -(h), where Jyg,.(h) = sup /C(h,f) dQ(¢).
h€laq QeP(=), J=
We (B,Q)<m

This bilevel min-max problem looks very difficult at first glance... but it can be given
a tractable reformulation up to the use of convex duality.
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Besides “mild” assumptions, suppose that:

e = is a convex and compact subset of R,
e f:= — R is a continuous function,

e P € P(Z) is a probability measure.

For any m > 0, and for a sufficiently small value of o, the following equality holds:

. f(O)=Ac(€,0)
L [0 = inf, {am - xe f1og ([ “455 (o)) are) |

Hint of proof: We introduce a Lagrange multiplier A for the constraint on W, (P, Q):

Lo [ = s (000 +Am - W.(2.0))
= nf, ([ a0(@) + Mm - w.(e.0))).

where the exchange of the infimum and supremum proceeds from convex duality:
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Inserting the definition of W.(P,Q), it follows:

L [ 00 = o e {am+ (70 = rete ) = retit) an(e.0)}.

Given the definition of H(7), the maximization holds over couplings 7 of the form
7(&,¢) = a(&, {)mo (€, ¢), for some function a € L*(= x =; dmo),

and so:
sup f(¢)dQ(¢) = inf sup m
We (P,Q)<m J = AZ0 aELl( X dmg)

Jz a(€.¢) dve(¢)=1

+/: (f(() —Xc(€,¢) — Ae |oga(§,<))oc(£,<) dﬂo(i,C)}-

Exploiting the Euler-Lagrange equation for the inner maximization, we obtain:

1
a(g,o:(/_ 1O duao) R

and the desired result follows.
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e The entropy-regularized distributionally robust optimization problem rewrites:

min D(h, A), where
heUpy,
A>0

A
e

C(h,9)—
D(h,/\)::)\m+)\s/log</e X

e st(C)) aB(e).

e This problem can be solved by a standard optimization algorithm based on the

derivatives of the functional D(h, A) with respect to h and .

e Constraints can be added to the problem without additional conceptual difficulty.
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Distributionally robust design of a T-shaped beam (1)

e We optimize the geometry of a 2d T-shaped beam Q.

The applied loads & € R? are uncertain, with ideal value £° = (0, —1).
o The law of ¢ is itself uncertain, with nominal approximation P = do.
e \We minimize the total stress within Q under a volume constraint:

min (2, %) s.t. Vol() = V7, where V7 = 0.3,

where the stress function is defined by

T(Q,6) = / ()l (un.e)1? dx.

I'p

0.75

FH Ty [y P

W i

(a) Setting of the minimization of stress within a T-shaped beam; (b) Mesh of the initial shape; (c) Optimized
shape Q:et assuming a perfect knowledge of the loads.
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Distributionally robust design of a T-shaped beam (I1)

Distributionally robust optimized designs obtained in the T-shaped beam example, associated to various values
of 02; (1 row) o® = 1e—0.5; (2" row) o® = le—1; (3" row) 0* = le—3.
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@ Distributionally robust optimal design

o Moment-based ambiguity sets
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e We assume that only the first and second-order moments u® € R* and X° € SK of
the true law Pyue have been reconstructed

#0 = /_fd]?true(f), and ¥° = /(5 _ NO) ® (- MO) APerue(€).

e The ambiguity set of interest is then:

/ £dQ(e) —

< my,

Am = {@ e P(=2),

and /:(5 — 1)@ (€ - p°)dQ(¢) < m220}7

where m;y > 0 and mz2 > 0 are given bounds.
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Moment-based ambiguity sets (I1)

e We define the entropy H(Q) of a probability measure Q € P(Z) by:

dQ PP .
log —— d f bsolutel t r.t. Qo,
H(Q) = /E og a00 Q if Q is absolutely continuous w.r.t. Qo
400 otherwise,

where Qo € P(Z) is a given reference law.

Ex: Qo is the k-variate Gaussian law with mean value ° and covariance matrix ¥°.

e This leads to the moment-based distributionally robust optimal design problem:

min Ai(h), where Ji(h) :== sup </EC(h,§) dQ(g)sz(@)).

h€EUaq QeANm
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Moment-based ambiguity sets (I11)

Let = C R* be compact, and let f : = — R be a continuous function. It holds:

sup (/ f(£) dQ(¢) — 6H(Q)> inf {/\ml — M- ‘uo + mS:Y°
QeAn = A>o0, |7]<1,

k
S€S+

+elog </: <er(£)+>\r-6—5:(§5—u°)®(§—uo)> on(§)> }

The moment-based distributionally robust problem thus rewrites:

Dwm(h, N, 7,S), where Dm(h, A, 7, S) =

min
h€Uyq, |TI<1,
A>0, sesk

Ch,€)+AT-E=5:(6—p®)@(E—10)
Amy—Ar-p°4maS - ¥4 log (/ <e = e ) on(f))-

This is a standard optimal design problem, posed over an augmented set of variables.

=} = = E £ DA
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Distributionally robust design of a 3d beam under moment ambiguity (I)‘

e We optimize the shape Q of a 3d cantilever beam under uncertain loads & € R3.
e In an ideal situation, the applied load ¢ = ¢° := (0,0, —1) is known perfectly.

e We then consider the following compliance minimization problem:

mrin C(Q,€°) st Vol(Q) = V7, where V7 = 0.45.

(a) Setting of the shape optimization example of a 3d cantilever beam; (b,c) Optimized structure Q7 when the
applied load ¢ = €° is perfectly known.
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Distributionally robust design of a 3d beam under moment ambiguity (II)‘

e We now assume that the applied load ¢ is uncertain, with unknown probability law.

The only pieces of information about Piyye are:

- The mean value p° = ¢°;

- The covariance matrix £° = oI, where ¢? = 0.01.

We thus consider the distributionally robust version of the previous problem:

mf;n (Qseupm/ C(2,£)dQ(¢) — sH(Q)) s.t. Vol(Q) =

e ... or rather its tractable reformulation.
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Distributionally robust design of a 3d beam under moment ambiguity (III){

Optimized 3d cantilever beams under distributional uncertainties using a moment ambiguity set; front and back
views for the parameters (a) my =0, my =1; (b)) my =1, my =1; (¢) my =2, my =1, and (d) my =5, my = 1.
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Distributionally robust design of a 3d beam under moment ambiguity (1V)

KERTEK
TSR
SRS
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e
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T

Optimized 3d cantilever beams under distributional uncertainties using a moment ambiguity set; front and back
views for the parameters (e) my =0, my = 2; (f) my =2, my =1, and (g) my =5, my = 5.
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@ Distributionally robust optimal design

o Distributionally robust CVaR
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Robustification of another statistical quantity of the cost

The previous distributionally robust problems are of the form:

min sup/ C(h, &) dQ(¢),

heUyq Qe A

i.e. the worst value of the expectation of C(h,-) is minimized.

We "“robustify” another statistical quantity of C(h,-): its conditional value at risk.

This indicator better appraises “how much” C(h,-) deviates from its mean value.

In particular, it allows for a surrogate expression of failure probabilities.
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Let h € U.qa and P € P(Z) be the law of the uncertain parameter £ € =.

e The cumulative distribution function t — W(h, t) of the cost C(h, ) is:
VtER, W(ht)= P{g €=, C(he) < t},

e This function is non decreasing, with limits:
lim W(h,t) = lim W(h,t)=1.
tJToo ( 7t) 07 and tJToo ( ’t)
e It is continuous from the right, but it may be discontinuous from the left at t € R
if C(h,-) =t on a subset of = with positive measure.

° We suppose that W(h,-) is continuous.

A

1 W(h,t)
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A glimpse of the notion of Conditional Value at Risk (II)
Definition 2.
For a given threshold 3 € (0,1),

t € R majorizing C(h, -) with probability 3:

e The -value at risk, or B-quantile VaRg(C(h,-)) of C(h,-) is the smallest value

VaRs(C(h, ) = inf {¢ € R, W(h,e) > B},
e The [-conditional value at risk CVaRg(C(h,-)) is the average of C(h,-) over the
events where it exceeds VaRg(C(h, -)):
cvaRs(C(h, ) = -

1 =B J{cez, cihey>vars(c(h,)
A

}C(h7 §) dP(¢).

1

B

W(h.t)

VaRg

C(h,-))

DA
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The conditional value at risk can be expressed as a minimum value.

The following representation formula holds true:

ﬁ / [C(h,€&) —al., dP(é)}’

where [t]4 := max(t, 0).

CVaRg(C(h,-)) = clngna {a +

The minimum in the above program is uniquely attained at a = VaRg(C(h, -)).

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,
Journal of banking & finance, 26 (2002), pp. 1443-1471.
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e The conditional value at risk allows for a convenient reformulation of failure
probability constraints, of the form

]P’{f e =, C(h¢)> CT} <1-4,

for a parameter 8 € (0,1) and a safety threshold Cr € R.

e Indeed, the definition of W(h, t) implies that:
P{g e =, C(h¢)> CT} <1-B — W(hCr)> 8.

e Since VaRg(C(h,-)) is the smallest value t € R such that C(h, &) < t with
probability 3, this is in turn equivalent to:

VaRg(C(h,-)) < Cr.

e A conservative surrogate for this requirement is:

CVaRg(C(h,-)) < Cr.
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e Let us consider an optimal design problem featuring an objective function J(h)
and a constraint on the probability that the cost C(h, &) exceed Cr:

min J(h) st. P{¢€Z st C(h&)>Crf<1-p.

hEUqq

e A conservative surrogate for this problem is:

: t. ) < Cr.
min J(h) s.t. CVaRg(C(h,)) < Cr

e Using Theorem 3, this rewrites as a “classical” optimization over the pair (h, «):

,min  J(h) s.t. a-i—ﬁ/{ [C(h, &) — o], dP(¢) < Cr.
ad> €=z

a€R
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e The law of £ is now uncertain: only a nominal law P € P(=Z) is available.

° Assuming an ambiguity set Aw of Wasserstein type, the
distributionally robust counterpart of the previous problem reads:

h?z,i{Zd J(h) st QseLjpr min (a+ 1—,6’/ C(h,&) —al, d@(f)) < Cr.

e Using similar duality techniques as previously, this rewrites:

min  J(h) s.t. Dc(h, A\, ) < Cr, where
heUyq
A>0,a€R

[C(h,O)—aly —Ac(€,€)
Dc(h,)\,a)—a—kl)\_imﬂ—&—l)\eﬁ/log (/ e du5(§)> dP(¢).

e This “classical” problem can be solved by standard numerical algorithms.
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We optimize a 2d bridge, accounted for by a density function h: D — [0, 1].
It is clamped along the lower side I'p of 9D.
A load ¢ is applied on its upper boundary I'y.

At first, we optimize the compliance C(h, &%) of the structure under a volume
constraint, in the ideal situation where the load is ¢° := (0, —1):

min C(h,&°%) s.t. Vol(h) = V7, where V7 = 0.245.

hEUng

D >—<0'1 I'p

2] [b]

(a) Setting of the bridge problem; (b) Optimized design h

5

1ot in ideal conditions.
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We now assume that the load £ € = C R? is uncertain.

Its law P € P(Z) is the Gaussian law centered at £° with variance o°.

We solve the problem

min Vol(h) s.. ]P{§ €=st C(h¢) > CT} <1-8,

where the threshold Cr := 40 is close to C(hj, £°).

We replace this problem by the following conservative version:

hg&in Vol(h) st. a+ m/g C(h,€) —a], dP(¢) < Cr.
ad>» €=

acl

We solve this problem for several values of the variance o2 of the law P for ¢ and
the bound 8.
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We now turn to the situation where the law P of £ is uncertain.
A nominal law P := d¢0 is reconstructed from the single ideal load.

We consider the Wasserstein distributionally robust problem:

min  Vol(h) s.t. sup min (a—i— 7/ C(h,&) — o], dQ(§)> < Cr.

hez’éadv QeAw “€R 1-3

This problem has the following equivalent formulation:

hg;in Vol(h) s.t. Dc(h, A\, a) < Cr, where
Azo,zdek

[C(h,¢Q)—aly —Ac(€2,¢)
D(hAa)_aJrl’\—mﬂJr Aﬂlog(/ e dl/go(C))
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Distributionally robust designs of the bridge for a Wasserstein radius m = 0.5, various values of the parameter 3
and (top row) o? = le—3, (bottom row) o? = 1le—2.5.
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Conclusion:
e The distributionally robust designs systematically show:

- Worse performance than their “simple” probabilistic counterparts in
situations present in the nominal law;

- Better performance in “out-of-sample” situations.

e Infinite-dimensional uncertain parameters can be considered after approximation
(e.g. KL decomposition for a random field).

e Uncertainties over different data have been considered (material uncertainties,
geometric uncertainties).

Perspectives:

e Treatment of geometric uncertainties in a distributionally robust way, with an
optimal transport approach.
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\A word of advertisement

e All the numerical realizations are based on open-source libraries.

e A webpage gathering lecture notes, slides, demonstration codes, etc.

P
&

https://dapogny.org/tutosto.html

L
~r

V) Shape and topology optimization: online resources

fostered by d industrial achievements. Nowadays, problems.

techniques, and raise new, challenging fssues.

, with
umerical implementations. In particular, you wil find:

« Lecture notes and review articles.
.l s of radus "

pl, educationa toy codes, to more involved framewarks allowing o deal

Pedagogical articles and presentations

I I | e ]
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T Fedowy

Thank you for your attention!
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