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Foreword: “small” inhomogeneities ‘

Many analyses have been devoted to the ef-
fect of inhomogeneities occupying a “small”
subset w. of an ambient medium Q C R¢.

One typically looks for asymptotic formulas
of the "physical field” u. when w. vanishes:

ue = uo + |w5|() + o(Jwe ).

In practice, such formulas can be used to

- detect small defects inside €,

- optimize the placement of small bodies
made of a different material.

We investigate a variant of these problems,
where the boundary conditions on u. are per-
turbed on a “small” subset w. C 99Q.

Reconstruction of a “thin” electromagnetic

toroidal scatterer, from

Optimization of “thin” vertical pillars to sustain a

chair, from
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O Foreword
@ Foreword: generalities about “small” inhomogeneities
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To set ideas, let us consider a model problem in the conductivity setting.

e QO C R?is a smooth bounded domain, filled by a material with smooth
conductivity o € C*°(Q).

A smooth current g is applied on 0 such that faﬂg ds =0.

e The “background” voltage potential wup is the unique Hg(Q) solution such that
Jq to dx = 0 to the boundary-value problem

—div(7oVuw) =0 in Q,
Yo =g on 09Q.

In a perturbed situation,  contains inhomogeneities with conductivity
1 € C=(R?), occupying a “small” subset w. € Q.

The perturbed potential u. € H*(Q) satisfies Jq ue dx = 0 and

—div(y=Vu:) =0 in Q, _ m(x) ifx€we,
{ TG =g on 98, where 7. (x) := ~0(x) otherwise.
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e A general representation formula for u. in the low-volume limit |we| — 0 was
derived in : for x € 99, and a subsequence of the ¢,

U= (x) = uo(x) + |we| /Q (71 =) (Y)M(y)Vuo(y) - VyN(x,y) du(y) + o(|we),
where

- The probability measure p describes the “limiting” position of the subsets we.

- The polarization tensor M(y) accounts for the “limiting behavior” of a
rescaled version of the field wu. inside w..

- N(x,y) is the Neumann function of the background problem.

e The relevant quantity to measure the “smallness” of w. is the volume |w,|.

e This formula can be refined further when particular geometries are assumed for w..

Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary
voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,
ESAIM: M2AN, 37(1), (2003), pp. 159-173.
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Diametrically small inhomogeneities read:
We = Xo + EW,

where xo € Q and w is a bounded subset of R?.

e 1 is a multiple of dy,,

e M involves the solution to an exterior problem @
posed on w and RY \ @.

e References:

Thin inhomogeneities are of the form
We = {x € R, d(x,0) < 5},
where o € Q is a (open or closed) hypersurface.

e [ is the integration measure on o,

e M is diagonal in a local basis (71,...,7q4-1,n)
attached to o.

o References:
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e These questions have been considered in various more challenging physical
settings, such as

- that of the linearized elasticity equations ;

- that of the Maxwell system

e These asymptotic formulas pave the way to multiple numerical methods for the
detection or the reconstruction of small inhomogeneities

e They also allow for the optimization of the placement and shape of
inhomogeneities:

- Topological derivatives in shape optimization

- Optimization of the placement of tubular inhomogeneities
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We study a variant of the above framework: the boundary conditions attached to an
elliptic operator are modified on a “small” subset w. of the boundary 99.

Interpretation:

e When Q is a dielectric medium, this allows to study the impact of replacing a
region of 9Q where the domain is insulated by a “ground”, and vice-versa.

e When Q is an elastic structure, this accounts for the effect of adding a new
clamping zone within a traction-free region of 9 (or the other way around).
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Let Q C RY be a smooth bounded domain.

The boundary 99 is decomposed as
0 =TpUly, TpNly=0,

and ¥ = T'p N Ty denotes the interface between
FD and FN.

o Qs filled with a material with smooth conductivity v € C°°(R), satisfying:
Vx € Q, a<v(x) <, for some fixed constants 0 < a < .

e A smooth external source f € C*°(Q) is at play.

The “background” potential ug is then the unique H'(Q) solution to the problem

—div(yVuw) =f in Q,

u =20 on p, (

Oup __
'}/W = on rN.
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The perturbed setting: Dirichlet case

e w is a “small” Lipschitz subset of the Neumann
region y.

e w. is “well-separated” from Ip.

The “perturbed” voltage potential wu. is the unique H*(Q) solution to:

—div(yVu:) =f in Q,
Us = 0 on rD U We, ( )

Ous __ —
VHE = on Iy \ we.
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The perturbed setting: Neumann case

e w. is a “small" Lipschitz subset of the Dirichlet
region Ip.

e w. is “well-separated” from Iy.

The “perturbed” voltage potential u. is the unique H*(Q) solution to:

—div(yVu:) =f in Q,
ue =0 on Ip\ we, (N-)

Ous __
V5 = on Ny Uwe.
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[Foreword]

(Part I: C.D.) Find a general representation formula

Objectives of this work:

Ue = o + p(wa)(...> T o(p(w:))
under minimal assumptions on w., except that it be “small”.

= What is the relevant quantity p(w.) to measure the “smallness” of w.?

(Part II: Eric Bonnetier) Derive explicit representation formulas in specific
situations as regards the geometry of w..

A few related references:

e The case where I'p = () and w. is a “small disk” is referred to as the “Narrow
escape problem”, see for an overview and
for asymptotic formulas.

e The case where 'y = () and w. is a “small disk” has applications in the theory
of metasurfaces, see about the physical context and
for mathematical analyses.
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© Replacing Neumann conditions by Dirichlet conditions
@ Preliminaries and notation
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Let Q C RY be a smooth bounded domain; for any real number 0 < s < 1 ,

e The Sobolev space H*(9Q) is associated to the norm

2
ViX)—V
VBomy = IvIFscomy + [ / WG = v 5 as(y).
o0 Ja

0 |x — yld—1+2s

e The Sobolev space H*(99) is the topological dual of H*(9Q); it is equipped with
the norm
[|wllp-s s(0Q) — sup (w, v).
vEHS(09)
11V ks (a0 =1

W. C. H. MclLean, Strongly elliptic systems and boundary integral equations,
Cambridge university press, 2000.
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Let ' C 00 be a Lipschitz subset, i.e. a finite collection of disjoint open, Lipschitz
subdomains of 9.

For —1 < s < 1, we distinguish two different Sobolev spaces on I

e H*(I) is the space of the restrictions of H*(9Q) functions to I'. It is equipped by
the quotient norm induced by || - ||ns(a0)-

e H*(I') is the space of distributions in H*(9) with compact support inside T. It is
equipped with the norm || - ||1s(aq)-

For any such real number s, H=*(T') can be identified with the dual space of H*(I'):

Yu e H5(T), v e H(r),

(u, v),gfs(r),Hs(r) = u ) w ) H=5(09),H5 (69)-
Extension of u by 0 Any weHS(89Q)

from I to 8Q (€EH—5(89Q)) st w|p=v
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The background potential is the unique solution o € H*(2) to the mixed
boundary value problem

—div(yVuw) =f in Q,
up = 0 on |—D7
*y% =0 on Ny.

Its variational formulation reads:

Vv e HY(Q) st. v=0on p, /'quo -Vvdx = / fv dx.
Q Q

Owing to elliptic regularity, uo is smooth in a vicinity V of every point x € Q \ X:

Forall meN, uo€ H™?(Q), and |[uol|wmi2(@) < Cml|F||m(e)-

The trace of g vanishes on I'p, so that uo|r,€ H?(I'y).

Aug

The normal derivative 752 vanishes as an element in H=2(I'y) and so

v € H12(Tp).
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The fundamental solution N(x, y) to the background equation satisfies: for x € Q,
the function y — N(x, y) is the solution to

_ley(V()’)vyN(X7 y)) = 5y:x in Q 5
N(x,y)=0 foryeflp,
'Y(Y)%(X:,V):O foryefly.

Equivalently, x — N(x, y) satisfies the following "variational formulation”: for any
function p € Cl(Q,R) with ¢ =0 on Ip,

o(x) = / Y )Vely) - VyN(x.y) dy, x €T

It is symmetric in its arguments: N(x,y) = N(y, x) for x,y € Q, x # y.

N(x,y) can be constructed from the Green's function for the Laplace equation.
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© Replacing Neumann conditions by Dirichlet conditions

@ The capacity of a subset
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The relevant quantity to measure the “smallness” of w. when it accounts for the
replacement of Neumann B.C with Dirichlet B.C is that of capacity

The capacity cap(E) of an arbitrary subset E C R? is defined by:

cap(E) = inf {HVH2H1(]Rd)7 v(x) > 1 a.e. on an open neighborhood of E} .

Intuition: Loosely speaking, cap(E) is the energy of the function v such that

e vequals1lon E;
e v “decreases at o0”’;

e v is harmonic in R\ E.

A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts in
Mathematics, Vol. 28, 2018.

N. S. Landkof, Foundations of modern potential theory, vol.. 180,-Springer, 1972.
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Let the subset D. C RY be defined by: . De

De := {X = (Xl, . ,del,o) S Rd, |X| < 6} s [ 4'----5----->
i.e. el

D. when d =2

e D, is a segment with length 2¢ if d = 2;

e . is a planar disk with radius ¢ if d = 3.

D,
The capacity of D, satisfies:
o If d =2, cap(D.) < 12, e
o If d =3, cap(D.) < Gse, 162
€1

where (5 and Gz are universal constants. De when d = 3
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© Replacing Neumann conditions by Dirichlet conditions

@ The representation formula

22/59



The Dirichlet case: setting

e The w. are open Lipschitz subsets of 99.

e They are all contained in 'y, and stay well-
separated from X:

Jdhnin > 0st. Ve >0 dist(we, ) > dinin (5)

e The background and perturbed potentials up and u. € H*(Q) are the solutions to:

—div(yVuw) =f in Q, —div(yVu:) =f in Q,
up =0 onlp, and u.=20 on Np Uwe,

Oug __ Jues __ —
VH2 = on Iy, VHE = on Iy \ w-.
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Assume that cap(we) — 0. Then there exists a subsequence, still denoted by ¢, and a

Radon measure . on 992 such that:

ue(x) = uo(x) — cap(w:) /m uo(y)V(y)N(x, y) du(y) + ofcap(we)) for x € Q.

Here,

e The measure y is non trivial and non negative; it depends only on the
subsequence we, Q, and I'y;

e The support of p lies inside any compact subset K C 9Q containing all the w.
for ¢ > 0 small enough;

e The term o(cap(w.)) is uniform when x is confined on compact subsets of Q.
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Sketch of the proof.

The error
re := Uz — Ug

between the perturbed and the background potentials is the unique H*(Q) solution to

—div(yVr.) =0 inQ,

re = —Uup on we ,
r-=20 onlp,
Ore __ —_
T5e =0 on Iy \@w: .

The proof is divided into seven steps.
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Step 1: Construction of a suitable “capacity function”.

Let x. be the unique solution in H*(Q) to the problem:

—Ax.=0 inQ,
Xe =1 on w; ,
xXe =0 onlp,
%I onFN\oTE,

or, under variational form: y. € H*(Q) is such that xc =0 on I'p, xc = 1 on w. and

Vv € H'(Q) with v =0 on I'p Uwe, /VXE»VvdX:O.
Q

There exist two constants 0 < m < M which are independent of w. such that

m cap(we) < |[xellfn ) < M cap(w:) -
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Step 2: H' a priori estimates and improved L? estimates.

We now consider the solution v. € H'(Q) to the boundary value problem:

—div(yVv.) =0 in Q,

Ve =g on we,
ve =0 on p,
Ove __ [
T5e = ony\w:,

where g is a given function in C*(Q).

There exists a constant M which is independent of w. such that:

1
[[vellt2(@) < M|gllex@cap(ws)?.

In addition, v. satisfies the improved L? estimate

3
|[Velli2(@) < Mllgllcagmcap(we)?.
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The variational formulation for v, reads: v. = g on w., v. =0 on Ip, and:
Yw e H'(Q) s.t. w=0on Np Uw, /st -Vwdx = 0.
Q

Proof of the H* estimate: We simply remark that (v. — gx.) vanishes on w., and so

/ YVve - Vve dx = / YVve - V(gx:) dx.
Q Q

The result follows easily from the estimate m cap(w:) < ||XE||,2_,1(Q) < M cap(w:).

Proof of the improved L? estimate: We rely on the Aubin-Nitsche trick

o Let w. € Hl(Q) be the solution to

—div(yVwe) = v. in Q,
we =0 on [p,
736";5 =0 on y.

Let € C°(RY) be a smooth cutoff function such that

n =1 on all the w. and n = 0 on an open set U with ['p € U.
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The following estimate stems from elliptic regularity applied to w.:

nw. € H*(Q), with |[nwel[43(@) C Cl|ve|lma)-

/vszdx
Q

We then calculate

/ YVwe - Vv dx,
Q

/ ’YV(WXSWS) - Ve dx,
Q

where the last line uses the fact that (1 — nx-)w. =0 on 'p U w,.

Finally, using the Sobolev imbedding theorem,

Cllvellmr @l Il @ nwellea @)
CHVEHHl(Ql)HXSHH‘(Q)HnWS||H3(Q)
Ccap(wg)EvaHzHl(Q)

||Vs|ﬁ2(n)

INININA

and we conclude thanks to the H! estimate.
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Step 3: Representation of r. in terms of the fundamental solution N(x,y).

Introducing N(x, y) and integrating by parts twice, we obtain for any x € Q

() = [ )(div ()TN dy
N
= /Qv(y)Vrs(y)-VyN(X,y) dy—/aQ v(y)afny(x,y)re(y) ds(y)
= /agv(y)aar; (Y)N(x,y) Ols(y)—/aQ v(y)gflx(&y)re(y) ds(y) .
Since

ey g—x(x,y) vanishes on 'y (i.e. as an element in H=/2(y)),

e r. vanisheson I'p (i.e., r. € ﬁ1/2(r/\/)),

the second integral in the above right-hand side equals 0, and so

()= [ ANGEONE ). xeD
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Step 4: Compensated compactness. This step is inspired by

ars

e We evaluate the effect of integrating the normal derivative v
function ¢ € C*(0R), i.e. we transform the expression

against a general

/0 ROF O (y)oly) ds(y).

o Let 3 € C*(Q) be such that 1) = ¢ on 9Q and [Yller@ < ClIdller(on)-

e Since vy

. _ 1 onw .
ore __ 1/2 —_ _ =5 .
5o =0in H (FTnv \@z) and x. = { 0 onlp it holds:

or- or.
/ ¢ds = vafxaw ds.
! a0 n

Q 8”

Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary
voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,
ESAIM: M2AN, 37(1), (2003), pp. 159-173. .

F. Murat and L. Tartar, H-convergence, in Topics in the mathematical modelling of
composite materials, Springer, (2018), pp. 21-43.
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e An integration by parts yields:

O b ds = /’yszrg-sz dx+/y><5v@.v¢ dx
on Q Q

5
o

5
= / VPV re - Vxe dx 4 O(cap(we) * )| |f]|wm(@)l|9llc (a9),
Q

where we have used the H' estimate for r. and the improved [ estimate for y..
e By the same token,

Vare
0 8n

5
¢ds = / V(y¢re) - Vxe dx + O(cap(we ) *)||f[[m(@ 6]l 2 o0)-
Q

e By another integration by parts,

Ox

ore c 5
sds = [ X ds+ Ofcap(we) )l 16lcs on
o9 n

Y
a0 an
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85‘: = 0on Ny \ @s, we end up with the expression:

Since r. = —ugXe on N'p Uw, and

8r€ 8 £ 5
/ 25§ ds = —/ X Xeuoyd ds + O(cap(ws)®) |l |6l cx(om) -
aq  On oa O

n
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Step 5: Definition of the limiting distribution .

e Let us recall the following estimates over the “capacity function” xe:

m cap(w:) < |[xel[f(rey < M cap(w:)-

o It follows that, for any ¢ € C*(9Q)

1 8)(5
cap(we) Jon

X5¢ ‘ =

/ Vxe - V(xe) dy| < Cllélleron -
cap Ws)

e From the Banach-Alaoglu theorem, up to a subsequence (still labelled by ¢), there
exists a bounded linear functional p on C*(9Q) such that:

1 OXe

e—0
Cap(ws) 20 8" Xf(bds u(¢) -

Vo € CH(09),

e For now, p is only a distribution of order 1 on 99.
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Step 6: Conclusion

Let n € C2°(RY) be a smooth cut-off function such that

n=0on {X, dist(x,p) < drgm} andn=1on {X, dist(x,p) > d';m } .

We return to the representation formula for r.(x) in terms of N(x,y), and use the
above result with the smooth function ¢(-) = N(x, - )n(-):

) = [ )Gy dsly),
Zﬁ v(y)%(y)N(&y)n(y) ds(y),

) 86)25 V)xe()uwo(y)v(y)N(x, y)n(y) ds(y)

5
+0(cap(we) ) [[fllum@IN(x, - )n(-)ll c2a0) -

Finally, we obtain the representation formula

re(x) = —cap(we )y [n(y)uo(y)v(y)N(x, y)] 4 o(cap(we)) -
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Step 7: Refined properties of the limiting distribution .

e The distribution p is defined by the limit:

1 8)(5 e—0
Cap(wg) 20 8[7 Xf(yb dS .u‘(¢) .

Vo € C1(89),

A priori, 11 is only a distribution of order 1 on 9Q: it may depend on the
derivatives of ¢.

e Using again the estimates over .
m cap(we) < ||Xellf@ey < M cap(we).

we obtain that:

(1) = lim Oxe

—_— ds>m
=0 cap(we) Joq On Xe =

and so p is non-trivial.
IXe

e Since x. =0on I'p and =¥ =0 on Iy \ @e, the support of y is included in any
compact subset K C 09 containing all the w.
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We now prove that y is actually a non negative Radon measure on 0.

e Since Q is smooth, there exists an extension operator E : C*(dQ) — C*(Q):
V¢ € C1(0Q), E(¢)=¢ on 9Q, and IE(®)l|co@y = ll¢llcoqon)-
e We use Green's formula to transform the defining expression for u:

Oxe
aa On

e ds / (Ve - Vo )E(6) dx + / (Vx- - V(E(6)))xe dx .

Using the improved [? estimate over x., we obtain:

/Q (Vxe - V(E(#)))x= dx =0,

i
=% cap(w.)

and as a consequence:

Vo € CH0Q), wu(¢) = lim

T cap(er)

/Q (Vxe - Ve )E(6) dx.
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e On the other hand, using the estimate \|XEH2,_,1(Q) < M cap(we), it holds

vy € C°(Q), < M|l com

(VXe - Vxe ) dx
Q

cap(we)

The Banach-Alaoglu theorem implies that there exists a subsequence of the €'s
and a non negative Radon measure v on  such that

vy € C°(Q), /(vxs Vxe zlzdx—>/z/;dy.

cap(we)

e By uniqueness of the limit, we conclude that, for any ¢ € C*(99),

M@:Aa@w

and so

MW=MH@®SMMwM@=Mme-

Hence, p is a Radon measure on 92, whose non negativity follows from that of v.

O
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The representation formula allows to appraise the asymptotic behavior of the
compliance (or power consumption) of €,

/ fu. dx.
Q

Indeed, assuming for simplicity that f has compact support inside €, it holds:

/qugdx = /Q fuodx—cap(wg)/ﬂf(x) /an uo(y)f(y)N(x,y) du(y)dx—+o(cap(we)) .

Due to the symmetry of the fundamental solution N(x,y), it follows:
(y) = [ Nexy)f() dx
Q
and so

/Q fur. dx = /Q futo dx — cap(ws.) /a 0 (x) dpu() +ofcap(we))

As expected, the emergence of a small Dirichlet region within the homogeneous
Neumann zone Iy always decreases the value of the compliance.
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© Replacing Dirichlet conditions by Neumann conditions
@ The “Neumann capacity”
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The Neumann case: setting

e The w. are open Lipschitz subsets of 9Q;

e They are all contained in I'p, and stay well-
separated from [y:

Fdmin > 0s.t. Ve >0  dist(we, X) > dmin. (5)

e The background and perturbed potentials up and u. € H'(Q) are the solutions to:

—div(yVuw) =f in Q, —div(yVu:) =f in Q,
u =0 onlp, and u-=0 on I'p \ w:,

’7% =0 on [y, ’7%”; =0 on My Uwe.
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The relevant means to quantify the “smallness” of w. is a sort of “Neumann capacity”.
Let w C R? be a finite collection of disjoint Lipschitz hypersurfaces; we define:

e(w) = max { / (22 +|Vz]?) dx,
KRECZO(RY), R
k(x)==%1 for x€@
_ _ . d\ —
ze 'R\ @) s.t. { Az+z=0 inR7\D, }

%:FL on w

In the above expression,
e nis any smooth unit normal vector field on each connected component of w.

e e(w) does not depend on the choice of an orientation for n, due to the presence of
the maximum in its definition.
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Interpretation:

e When w has only one connected component, e(w) is the Dirichlet energy of the
unique H*(R9 \ @) solution z to the equation
{ —Az+z=0 inR\w,
oz __
==1 on w.
The orientation choice for n only affects the sign of z and not the value of e(w).

e When w has several connected components, an orientation for n can be set
independently on each such component. The possible choices are indexed by & in

the maximum and e(w) captures the maximum energy of all associated functions z.

D P

Two different orientations for n in the case where w is not connected, leading to non proportional functions z.
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The “Neumann capacity” can be compared to more explicit quantities, involving only
the geometry of w.

Let w be an open Lipschitz subset of I'p, which is well-separated from Ty, i.e. (5)
holds. There exists a constant C > 0, depending only on Q, I'p and dmin such that

ew) < € D). where D)= | ——

ds(x)

and p.,(x) denotes the weight function defined by

1

oo Ty 500

Vx €w, puw(x) ::/
d
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In turn, D(w) can be estimated by more explicit quantities in some important cases.

Let w be a geodesically convex, open Lipschitz subset of Q. Then

c / dist(x, dw) ds(x) < D(w) < C / dist(x, dw) ds(x) |

where the positive constants ¢ and C depend only on 0RQ.

Example: The Neumann capacity of the set oQ

D. := {X =(x1,...,%x4-1,0) € R?, |x| < 6}

satisfies
d
e(D.) < Ce°.
A geodesically convex subset w C 9 is such that any

minimizing geodesic segment between any two points

p, q € w lies entirely inside w.
a5 /59



© Replacing Dirichlet conditions by Neumann conditions

@ The representation formula
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Let w. be such that e(w.) — 0 as € — 0. Then there exists a subsequence, still
denoted by e, and a Radon measure p on OS2 such that:

ue(x) = wo(x) + e(we) | 22 )v(y)g—n’Z(x,y) duly) + o(e(w.)) for x € Q.

a0 On
Here,
e The measure p is non negative and non trivial; it depends only on the
subsequence we, L, and Ty;
e The support of i lies inside any compact subset K C 02 containing the w. for
€ > 0 small enough;

e The term o(e(w)) is uniform when x is confined in compact subsets of Q.

The proof of this result is fairly similar to that in the Dirichlet case.
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We now consider an interesting particular case as regards the definition of w..

e w. is a small “surfacic ball” around a point
Xo € 0.

e It is contained either in Ty ( )
orinTlp ( )-

The perturbed potential u is the unique H*(Q) solution to

—div(yVu:) =f in Q, —div(yVu:) =f in Q,
u-=0 on N'p U we, u-=0 on p\ s,
788“; = on Iy \ We, 7%”: = on Ny Uwe.

(D2 « ) (N2) « )

We search for an explicit asymptotic expansion of u..
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The Dirichlet case when w; is a surfacic ball

The result of interest in the case where Neumann boundary conditions are replaced
by Dirichlet boundary conditions on the “small” surfacic ball w. C 'y is:

The following asymptotic expansion holds at any point x € Q, x ¢ ¥ U {0}:
ue(x) = uo(x) —

[lo
and:

g€|fy(xo)u(xo)N(x,xo) +o0 (

L ) =2
[loge| )’ 7

Us(x) = wo(x) — dey(x0)u(x0)N(x, x0) + o(e), ifd = 3.

DA
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The Neumann case when w; is a surfacic ball

The result of interest in the case where Dirichlet boundary conditions are replaced by
Neumann boundary conditions on the “small” surface ball w. C I'p is:

Theorem 8.

Letd =2 or3 and let x € Q, x ¢ (XU {0}). The following asymptotic expansion
holds:

1) = 10(x) + 2057 (10) G2 (10) 1 (x:0) + (=)

|

where the constant aq equals:

ifd =2,
ifd = 3.

Wl N[y

=} = = £ DA
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For a proof of these results... be sure to attend the next presentation by Eric
Bonnetier!
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T Fedowy

Thank you for your attention!

«Or «F»
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