Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011)
Liege, Belgium, 14-17 November 2011
(c)University of Liege, 2011

Shape optimization of elastic structures using a level-set based
mesh evolution method

Grégoire Allaire!, Charles Dapogny?® and Pascal Frey?

! Centre de Mathématiques Appliquées (UMR 7641), Ecole Polytechnique, Palaiseau, France
2 UPMC Univ Paris 06, UMR 7598, Laboratoire J.L.. Lions, Paris, France
3 RENAULT, Direction de la recherche et des études avancées, 78280 Guyancourt, France

e-mails: gregoire.allaire@polytechnique.fr, {dapogny, frey} @ann.jussieu.fr

Abstract

We propose a method for structural optimization that combines two different ways of depicting
shapes : the considered domain is exactly meshed at each iteration when it comes to performing
shape or topological sensitivity analysis of the considered cost functional (which often requires one
or several finite element computations), while we resort to a level-set description of the domain for
describing its evolution along the derived gradient velocity field. The cornerstone of this method is
a meshing algorithm for building a mesh, suitable for mechanical computations, out of a piecewise
linear level-set function on an unstructured mesh. The proposed method thus enjoys an accurate
description of the shapes at hand, and still allows for topological changes thanks to the versatility of
level-set methods.

1 Introduction

Since the seminal papers [2] [3] and [20], the level-set method of Osher and Sethian [14] has proved
to be a very versatile tool in the context of structural optimization. Working on a large computational
domain D C R? endowed with a fixed Cartesian grid, the authors used a consistant approximation of
the mechanical problem at stake - namely the ersatz material approach - then applied classical shape
sensitivity techniques (the so-called Hadamard method [1], [13], [18]) and described the evolution of the
shape 2 C D by a Hamilton-Jacobi equation for the associated level-set function. Here, we propose a
new approach where the shape (2 is exactly meshed at each iteration and no ersatz material is necessary
in the void region D \ Q. We still rely on a larger computational domain D which is no longer meshed
with a fixed Cartesian grid, but rather is endowed with an unstructured mesh that is notably changed
at each iteration of the optimization process (using local mesh modification/adaptation techniques [9])
so that the shape (2 is precisely captured, i.e. its boundary is a collection of internal edges (in 2d) or
faces (in 3d) of the mesh. The level-set method is still a key ingredient for mesh deformation and, as
such, allows for topology changes from one iteration to the next. However, this approach rises several
technical points : we are inherently working on unstructured meshes, and thus can no longer rely on
classical numerical schemes for the ’standard’ level set operations : distancing/redistancing algorithm,
method for solving the Hamilton-Jacobi equation,...

This paper is organized as follows. Section 2 introduces the linear elasticity model that will be at
stake in the following, and sets some notations. Then, section 3 describes the two different standpoints
from which shapes will be considered, as well as their relationship. Section 4 is meant to recall the sensi-
tivity analysis tools which allow to infer descent velocity fields for the considered objective functionals,
and section 5 briefly explains how the evolution of the shape is described in the level-set context. Even-
tually, section 6 sums up the various steps of the proposed method, and some examples are provided in
section 8.



We emphasize that, whilst all our numerical examples here are presented in the 2d setting, the whole
method has been devised with the 3d case in mind : no subsequent theoretical difficulty should arise in
this context.

2 A model problem in linear elasticity

In this paper, we are interested in the optimization of a shape (2, that is, a bounded domain of R<, made
of a linear isotropic material, subjected to Hooke’s law A. Such a shape is clamped on a part I'p of its
boundary 952, and submitted to surface loads g € H?(R?%)? on the complementary part 'y = 92\ I'p,
with I'p and T'y being of positive (d — 1)-measure in 0€). For the sake of simplicity, we neglect body
forces and restrict ourselves to linearized elasticity. In this context, the displacement field u = ugq of the
shape is the unique solution in H'(Q)¢ of the linear elasticity system

—div(Ade(u)) = 0 in{,
u = 0 onlp (D)
Ae(u)-n = g only,

where e(u) = % ((Vu)t + Vu) is the strain tensor and n is the outer unit normal to 92. We aim at
finding a shape (2 that minimizes a given objective function J(2) among a set U, of admissible shapes
which may involve geometric constraints such as 2 C D and a fixed total volume V' (£2). Common inter-
esting choices of such functional are the compliance J;(€2) of structure €2, or a least-square discrepancy
criterion Jo(€2) between the displacement field ug and a target displacement ug € H'(R%)? (with a
weight coefficient k(x)), for v > 2:

J1(2) —/F guads ; Jo(Q2) = (/Qk\uQ - ud“dm) " (2)

In all our examples, a constraint on the total volume of the structure is added and incorporated by a
simple penalization method, with a fixed positive Lagrange multiplier £, so that the optimization problem
becomes

inf (J(Q) e V(Q)). 3)

As explained in [3], there are no difficulties to extend our approach to more general objective functions,
to additional constraints and to non-linear elasticity.

3 Two complementary ways for representing shapes

We alternatively represent a shape 2 C D as a mesh 7q of the whole computational domain D in which
Q is explicitly discretized (so that a mesh of €) is included in 7T, as a submesh - see figure 1) and as a
level-set function 1), defined on D (in numerical practice it is a P*-Lagrange finite element function on
an unstructured mesh), enjoying the properties

Q={xeD\vYalz) <0} ; N={zeD\vg(x)=0}. 4

Both representations are used at different steps of our method: thus, a crucial ingredient is an efficient
tool for switching from one characterization to the other.

3.1 Generating a level-set function associated to a shape

Let Q C D be a subdomain, explicitly discretized in the mesh 7 of D (even though the method straight-
forwardly extends to the case of a non-discretized interface). It is classical to generate a corresponding
level-set function by computing the signed distance function to €2, at least near the interface OS2 [6]. To
this end, we use a numerical scheme for unstructured (simplicial) meshes, based on some properties of
the unique viscosity solution of the time-dependent Eikonal equation, which is described in detail in a
previous work [7] (see e.g. [16] for an alternative).



3.2 Meshing the negative subdomain of a level set function, ensuring conformity with
the positive subdomain

Given an initial triangular mesh 7 of D, the 0 level-set of a P! finite element function ) is a piecewise
affine curve (surface in 3d). To obtain a (new) mesh of the shape €2, corresponding to ¢ through (4), we
proceed in two, or three, steps (see figurel) :

1. Each simplex K € T, crossed by the 0 level-set of function ¢ is split in such a way that K" N 92
belongs to the resulting mesh 7, which has to remain conformal. To this end, a pattern which
enumerates the various possible configurations is used [9]. Unfortunately, the intersections of 952
with the mesh 7 are not controlled at this stage and the resulting mesh T is bound to be of very
poor quality as far as finite element computations are concerned (ill-shaped elements, e.g. very
flat or small, are likely to appear).

2. A local mesh improvement is performed, so that a new improved quality mesh 7 is created. This
step relies on local mesh modification operators (collapse of close points, points relocations,...)
described in [9].

3. (Optional) The mesh 7" is smoothed, especially near the boundary 952, with a mesh regularization
procedure [9] to remove small angles or bumps on 0f2 that could impair the accuracy of the finite
element computations to come.

4 Shape and topological sensitivity analysis

4.1 Shape sensitivity analysis

This is the so-called Hadamard’s method, which has been described on the theoretical side in [13] (see
also [18] [12]) and successfully used in [3] in the context of level-set methods.

Given a reference bounded domain Qg, for § € WH*°(R? RY) small enough, (I + 6) is a Lipschitz
diffeomorphism of R¢, with Lipschitz inverse and we consider variations of the form O, > 6 +— (I +
) € RY, where 4 is a subset of W1 (R4, R) corresponding to admissible variations of the shape
(see [3] again). An objective function J(£2) is said to be shape-differentiable at Q) if the application
0 — J((I + 0)Q) is Fréchet-differentiable at 0 and the associated Fréchet differential d.J(€2)(0) is
the shape derivative of J at 2y. The following theorem accounts for the shape differentiability of the
objective functions J; and J, of interest (see [3] for considerations in a more general case) :

Theorem 4.1 Q C R? being a smooth bounded domain, the compliance J, as well as the least-square
criterion Jo are shape-differentiable at ), with shape derivatives

V0 € Ouy,  dJ1(Q)(0) = /F i (2 (8%;‘”) + Rg.uﬂ> ~ Ae(ug) : e(UQ)) 0.n ds

+/ Ae(ugq) : e(ug) 0.n ds,
I'p

)

VO € Ouq, dJ2(Q2)(0) = / (C[)k\u — up|® + Ae(ugq) : e(pq) — 8(9859) — ng.pg) 0.nds
r

v Lo
—|-/ <C0k:]u —up|® — Ae(ugq) : e(pg)> f.n ds,

I'p \ &
(0)
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where k is the mean curvature of 90, Cy = (/ klu — uolo‘dac> is a constant, and po, € H'(Q2)?
Q

is the adjoint state to the system, unique solution to the system :

—div(4e(p)) = —Coklu—uo|*2(u—wug) inQ,
p = 0 onT'p @)
Ae(p)-n = 0 onTp,

Theorem 4.1 yields a velocity field, a priori defined on the boundary 02, according to which this bound-
ary has to be deformed so as to decrease the objective function under consideration.

Note that this velocity field is relevant only on the boundary 02, while it should be defined on the
whole computational domain because the deformation is accounted for by level set methods. It has then
to be extended to this domain, and several consistant methods are available to achieve this. See [5] [11]
for a complete discussion over this topic.

4.2 Topological sensitivity analysis

The previous method produces a deformation of the boundary 02 that allows a decrease of J(£2), and in
particular forbids topological changes (at least theoretically), making the resulting shape strongly depen-
dent on the initialization of the algorithm. As highlighted by [4] or [10], the coupling with a mechanism
that evaluates the benefit of the formation of a small hole in the structure partially overcomes this draw-
back.

Given a domain (2, an objective function J is said to admit a topological derivative DrJ(zg) at zo € €2
if, for p > 0 sufficiently small, there exists a function f(p) — 0 as p — 0, such that the following
asymptotic expansion holds :

J(Q\ (zo + pw)) = J() + f(p) DrJ(x0) + o(p), ®)
where w is the unit ball of R% and lim 2%} — 0.
p—0 P

We then recall a topological derivability result in the case of the compliance function .J; although anal-
ogous statements hold in far more general cases [10].

Theorem 4.2 The compliance functional Ji admits a topological derivative at any point xo € (2 :

T(A+2p)
2u(A + )

where \, p are the Lamé coefficients of the material at stake.

DrJi(zo) = (dpAe(uq) : e(uq) + (A — p)trAe(ug)tre(uq)) (zo) )

According to the result of Theorem 4.2, the objective functional can then be decreased by nucleating a
small hole centered at points where the topological derivative is negative.

S Deformation of the shape

Given a domain Q(t) € R?, 0 < t < T evolving in time according to a normal velocity field V = vn
(n(t,.) being the unit normal to J§2()) , an associated level-set function (¢, x), i.e. such that (4) holds,



is solution to the Hamilton-Jacobi equation :

{?f(t,xwv(t,mnwt,x)r =0 o OT)xR! 00

¥(0,z) = o(z) on R¢

where ) is a level-set function associated to domain Q° := Q(0).

Numerous ways to solve numerically such equations have been proposed [14], unfortunately most
of them being finite difference schemes that inherently rely on a structured computational grid, whereas
we need to deal with it in the unstructured context. To this end, we rely on a semi-lagrangian approach
[19], which mainly consists in rewriting (10) as a standard linear advection equation

o d
E(t,x) +V(t,x).Vy(t,z) = 0 on (0,7)xR
¥(0,2) = o(z) on R?

The latter equation is then numerically solved by the method of characteristics [15] ; assuming enough
regularity for the data vg and V/, the unique smooth solution to (11) reads : for all 0 < ¢t < T and every
r € RE (t,x) = ¥o(X(0,t,2)), where the characteristic curve emerging from x s — X(s,t,x) is
the unique solution to the ODE (which is numerically discretized by a 4" order Runge-Kutta method) :

(11)

ds (12)

{dX(s,t,x) = V(s,X(s,t,x)) for se(0,t)
X(t,t,z) = =

This recasting of the problem can be interpreted as a linearly implicit scheme for the true nonlinear
Hamilton-Jacobi equation.

6 Numerical algorithm

Starting from an initial shape Q° (e.g. the full computational domain D), we get a decreasing sequence
QF of shapes with respect to function .J by applying a shape-sensitivity analysis (section 4) on the actual
domain discretized under the form of a computational mesh, and evolve it with respect to the inferred
shape derivative resorting to a level-set description (section 5). From times to times (say, every ki, step),
we perform a topological sensitivity analysis instead of a shape sensitivity analysis so as to change the
topology of the shape if need be. The proposed steepest-descent algorithm reads as follows (for clarity,
we reported only the steps related to shape-sensitivity analysis, the other ones being easier) :

For k& > 0, until convergence, start with a shape Q¥ C D, the latter being equipped with a mesh 7%
which encloses a mesh of F.

1. Consider only the part related to ¥ in the mesh 7%, and compute the solution u, to the elasticity
system (1) on this submesh.

2. Generate the signed distance function 1 associated to ¥, on mesh 7*.
3. Infer from (6) the vector-valued velocity field 6 for the advection of the shape to come.

4. Solve the following level set advection equation on the time interval [0,7%] (7 > 0 being a
descent step for the gradient algorithm)

{%f(t,x)+ek(m).v¢(t,x ~ 0 i (0,75 x D

)
$(0,2) = You(e) in D (13)

to get the level set function 1/ (7%, .) which corresponds to the new shape Q*+1.



5. Discretize the 0-level set of 1qr+1 = (7%, .) in the mesh 7 as in section 3, to get the new mesh
T*+1 of D, the interior part of which yields a mesh of Q1

Note that while this algorithm is quite similar to a mesh adaptation technique, it does not require any
interpolation whatsoever between two successive iterations, and consequently, no subsequent error is
introduced.

Figure 1 depicts several steps of the above algorithm.

i
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1l

Shape QF and some isovalues of the associated

level-set function Yo, on mesh Tk 0-level set of Yqr+1 (red line) on mesh Tk,

Mesh obtained after discretization of the 0 level Zoom on this mesh ; numerous ill-shaped
set of Yqr+1 in mesh TE, elements are to be noted.
Final mesh T*+1 after optimization. Zoom on this mesh.

Figure 1: Various steps of the proposed algorithm.

7 Numerical examples

All the further numerical results were obtained using an the same isotropic linear material, with normal-
ized Young modulus E' = 1 and Poisson ratio v = 0.3. Computations are held on a MacBook Pro, with
processor Intel Core Duo 2,66 Ghz, 4 Go RAM.

The first considered example is the benchmark cantilever test-case (see figure 2 for a description) :
a cantilever lies in a 2 x 1 box, is clamped on its left boundary, and submitted to a unit vertical load
g = 1 on a small part of its right boundary. The Lagrange multiplier is taken as ! = 3 and we perform



200 iterations of the algorithm described in section 6, without any topological derivative computation.
The whole computation takes about 3 minutes and each mesh 7 enjoys around 1500 vertices (=~ 3000
triangles). Convergence history is reported in figure 3.

27 4V Y

Figure 2: Initial (top,left), intermediate (top,right) and final (bottom) iterations of the optimization of a
2d cantilever.

! Convergence histo‘ry of the 2d-canl||evér problem

6.8

6.6

6.4 |

6.2

58

5.6 Y

5.4

5.2

— A\J\‘/\/\V‘/\’\J,'\rk_(
0 50 100 150 200 250

Figure 3: Convergence history for the 2d cantilever problem.

We then turn to another classical example, namely the so-called optimal bridge problem (see figure
4). Here, the computational domain is 2 x 1,2 and the Lagrange multiplier is set to 0, 1. We perform
200 iterations of the proposed algorithm, with topological derivative computation every k., = 10 step.

Eventually, we consider an example associated to the minimization of the least-square criterion J
(see section 2) : a grip lying in a 5 x 4 box is fixed on two small rivets, and a small force g of intensity
0.01 is applied on parts of both upper and lower boundary. The aim is to achieve a structure such that the
displacement ug, of the jaws of the grip is as close as possible to ug = +0.5 (see figure 5). The localizing
weight factor £ is chosen equal to 1 in a vicinity of the jaws of the mechanism, and to O elsewhere. A
small volume constraint [ = 0, 001 is added, and we perform 100 iterations of the above algorithm.
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Figure 4: Initial (top,left), intermediate (top,right) and final (bottom) iterations of the optimization of a
2d bridge.

8 Conclusion and future work

We proposed a numerical method for structural optimization that combines the accuracy of a sensitivity
analysis held on a well-defined domain, equipped with a computational mesh at each iteration with
the versatility of level-set methods when it comes to parameterizing its evolution through the produced
vector field. Several examples where presented in two space dimensions, but the method has been
devised with the three-dimensional case in mind, and we believe its extension to this case should not pose
any additional theoretical difficulty (even though, of course, implementation is bound to be more tedious,
especially as regards meshing issues which may require additional mesh operators to be implemented).
What is more, we are interested in several other objective functions, associated to various models (von
Mises stress,...) ; as well, several different numerical models could be investigated with this method
because the boundary of shapes is well-defined at each iteration, which is crucial, e.g. for fluid-structure
interactions.
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