Optimization of the shape and topology of regions supporting boundary conditions

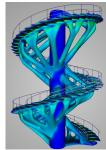
Eric Bonnetier¹, Carlos Brito-Pacheco², Charles Dapogny², Nicolas Lebbe^{2,3}, Edouard Oudet², Michael Vogelius⁴

Institut Fourier, Université Grenoble Alpes, Grenoble, France
 Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Grenoble, France
 CEA, Leti, Grenoble, France
 Department of Mathematics. Rutgers University. USA

20th May, 2025

Foreword (I)

- Shape and topology optimization techniques are ubiquitous in industry and academics.
- · Usually in practice,
 - A domain $\Omega \subset \mathbb{R}^d$ is optimized, representing e.g. a mechanical structure, a fluid device.
 - The performance of Ω is evaluated by an objective function $J(\Omega)$.
 - $J(\Omega)$ is expressed in terms of the solution u_{Ω} to a boundary value problem posed on Ω .
 - The regions of $\partial\Omega$ supporting specific boundary conditions are not subject to optimization.
- We investigate a variant of this setting, where not only the shape Ω , but also the subsets of $\partial\Omega$ bearing boundary conditions are optimized.



Optimization of a staircase (courtesy of Ansys).

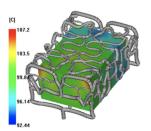
"Optimized" front-end of the Qatar

Foreword (II)

Examples:

- In thermal conduction,
 - The temperature $u_{\Omega}:\Omega\to\mathbb{R}$ inside Ω is the solution to the conductivity equation;
 - Dirichlet b.c. account for a known profile,
 - Neumann b.c. represent an imposed heat flux.
- When Ω is a mechanical structure,
 - The displacement u_Ω: Ω → ℝ^d of Ω is solution to the linear elasticity system;
 - Ω is attached at the regions equipped with homogeneous Dirichlet b.c.
 - Neumann b.c. represent applied surface loads.
- Other applications arise in acoustics, in fluid mechanics, etc.

Optimization of the screws of a mandibular prosthesis [LaBa].



Optimized cooling process for a structure produced by molding [WeWuShi].

Contents

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

A model shape optimization problem (I)

• The considered shapes Ω are smooth, bounded domains in \mathbb{R}^d , with boundaries:

$$\partial\Omega=\overline{\Gamma_D}\cup\overline{\Gamma_N}\cup\overline{\Gamma}.$$

• We assume that $\overline{\Gamma_D} \cap \overline{\Gamma_N} = \emptyset$ and denote

$$\Sigma_D = \partial \Gamma_D, \text{ and } \Sigma_N = \partial \Gamma_N.$$

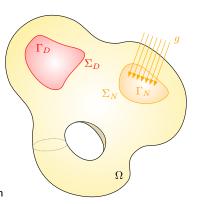
• The behavior of Ω is encoded in the solution $u \in H^1(\Omega)$ to the conductivity equation:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_D, \\ \gamma \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma, \\ \gamma \frac{\partial u}{\partial n} = g & \text{on } \Gamma_N, \end{array} \right.$$

ullet γ is the conductivity of the medium

where • $f \in L^2(\Omega)$ is a source (or a sink),

• $g \in L^2(\Gamma_N)$ is a heat flux.



A model shape optimization problem (II)

• A "classical" shape optimization problem then reads:

$$\min_{\Omega} J(\Omega) \text{ s.t. } C(\Omega) \leq 0.$$

Here, $J(\Omega)$ and $C(\Omega)$ are objective and constraint functions of the domain, e.g.

$$J(\Omega) := \int_{\Omega} j(u_{\Omega}) dx,$$

where u_{Ω} is the solution to the conductivity equation and $j: \mathbb{R} \to \mathbb{R}$ is smooth.

• In the present application, Ω is fixed, and we consider problems of the form:

$$\min_{\mathbf{G}\subset\partial\Omega}J(\mathbf{G})\text{ s.t. }C(\mathbf{G})\leq0.$$

For instance, $G = \Gamma_D$ or Γ_N in the conductivity equation, and:

$$J(G) = \int_{\Omega} j(u_G) \, \mathrm{d}x.$$

Aims of this work

- We introduce notions of shape and topological derivatives for functions J(G) depending on a region G of the boundary $\partial\Omega$.
- We propose "simple" mathematical methods to achieve their calculation.
- We implement them in combination with:
 - A constrained optimization algorithm to infer a descent direction [FeAIDa];
 - A mesh evolution method to track the evolving region G [BriDa, AlDaFre].
- We apply these ideas in different physical situations:
 - Thermal or electric conduction (conductivity equation);
 - Structure mechanics (linear elasticity system);
 - Acoustics (Helmholtz equation).

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

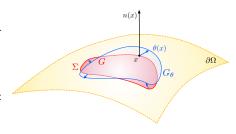
Shape derivatives (I): definition

The method of Hadamard relies on variations of a region $G \subset \partial \Omega$ of the form

$$G_{\theta} := (\mathrm{Id} + \theta)(G),$$

where θ is a "small" tangential vector field:

$$\theta \cdot n = 0$$
 on $\partial \Omega$.



Tangential deformations modify G within $\partial\Omega$.

Definition 1.

The shape derivative of a function J(G) is the Fréchet derivative at $\theta=0$ of the underlying mapping

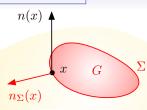
$$\theta \longmapsto J(G_{\theta}) \in \mathbb{R}$$
.

The following expansion holds:

$$J(G_{\theta}) = J(G) + J'(G)(\theta) + o(\theta)$$
, where $o(\theta)$ is a "small" remainder.

Shape derivatives (II): Examples

- "Simple" functions of the region G are:
 - Its surface area $Area(G) = \int_G ds$;
 - The length $\operatorname{Cont}(G) = \int_{\Sigma} \, \mathrm{d} \ell$ of its contour Σ .



• Their shape derivatives read, for any tangential deformation θ :

$$\operatorname{Area}'(G)(\theta) = \int_{\Sigma} \theta \cdot n_{\Sigma} \, d\ell, \text{ and } \operatorname{Cont}'(G)(\theta) = \int_{\Sigma} \kappa(\theta \cdot n_{\Sigma}) \, d\ell,$$

where $\kappa := \operatorname{div}_{\partial\Omega}(n_{\Sigma})$ is the mean curvature of Σ .

• The derivative of a general function, involving a physical state u_G is of the form:

$$J'(G) = \int_{\Sigma} v(u_G, p_G) (\theta \cdot n_{\Sigma}) d\ell,$$

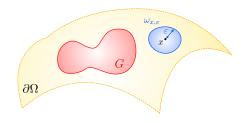
where $v(u_G, p_G)$ is a scalar quantity, depending on a suitable adjoint state p_G .

Topological derivatives

The notion of topological derivative features variations of $G \subset \partial \Omega$ of the form

$$G_{x,\varepsilon} := G \cup \omega_{x,\varepsilon}$$

where $\omega_{\mathsf{x},\varepsilon}$ is the surface disk with center $\mathsf{x} \in \partial \Omega \setminus \overline{\mathsf{G}}$ and radius $\varepsilon \ll 1$.



Definition 2.

The function J(G) has a topological derivative at $x \in \partial \Omega \setminus \overline{G}$ if there exist a function $\rho(\varepsilon) \xrightarrow{\varepsilon \to} 0$ and a number $\mathrm{d} J_T(\Omega)(x) \in \mathbb{R}$ such that:

$$J(G_{x,\varepsilon}) = J(G) + \rho(\varepsilon) dJ_T(G)(x) + o(\rho(\varepsilon)).$$

Remark The rate $\rho(\varepsilon)$ of the expansion depends on the application.

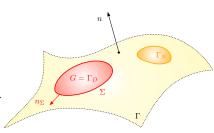
- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

Setting

- We address the "most difficult" case, where $G = \Gamma_D$ in the conductivity equation.
- We consider the model functional

$$J(G)=\int_{\Omega}j(u_G)\,\mathrm{d}x,$$

where $u_G \in H^1(\Omega)$ is the solution to the conductivity equation.



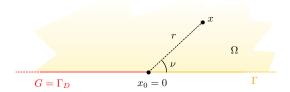
- We aim to calculate the shape derivative $J'(G)(\theta)$.
- For notational simplicity, $\theta \equiv 0$ on Γ_N .
- The analysis is difficult because of the weakly singular character of u_G near Σ ...

A taste of the regularity of u_G

- The function u_G is smooth except near Σ , where the b.c. change types.
- If d=2, let V be a neighborhood of $x_0=0\in\Sigma$ such that:

$$x_0=0, \ \Omega\cap V=\left\{x\in V, \ \text{s.t.} \ x_2>0\right\}, \ \text{and}$$

$$G\cap V=\left\{x\in V, \ \text{s.t.} \ x_2=0, \ x_1<0\right\}.$$



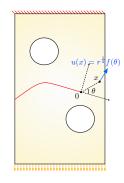
Then u_G is no more regular than $H^{3/2-\eta}(V)$ (for any $\eta > 0$), and

$$u_G=u_r+c_uS$$
 on $\Omega\cap V$, where u_r is "regular", $c_u\in\mathbb{R}$ and $S(r,\nu)=rac{1}{2}\cos\left(rac{
u}{2}
ight)$.

• The shape derivative $J'(G)(\theta)$ depends on the coefficients c_u , c_p of the state and adjoint functions!

Remarks

- A related phenomenon occurs in fracture mechanics:
 - The weak singularity of the elastic displacement near the tip of a crack defines the stress intensity factor;
 - This determines the energy release rate, i.e. the derivative of the energy w.r.t. the position of the crack.



- This dependence of $J'(G)(\theta)$ on the singularities of u_G and p_G makes its numerical evaluation awkward.
 - \Rightarrow Need to construct smooth approximations $u_{G,\varepsilon}$ and $J_{\varepsilon}(G)$ of u_G and J(G).

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

The geodesic signed distance function

Let $\Omega \subset \mathbb{R}^d$ be a smooth bounded domain.

• The geodesic distance $d^{\partial\Omega}(x,y)$ on $\partial\Omega$ between two points $x,y\in\partial\Omega$ is:

$$d^{\partial\Omega}(x,y) = \inf_{\substack{\gamma: [\mathbf{0},\mathbf{1}] \to \partial\Omega, \\ \gamma(\mathbf{0}) = x, \ \gamma(\mathbf{1}) = y}} \ell(\gamma), \text{ where } \ell(\gamma) = \int_{\mathbf{0}}^{\mathbf{1}} |\gamma'(t)| \, \mathrm{d}t.$$

• The geodesic distance $d^{\partial\Omega}(x,K)$ of $x\in\partial\Omega$ to a compact subset $K\subset\partial\Omega$ is:

$$d^{\partial\Omega}(x,K)=\inf_{y\in K}d^{\partial\Omega}(x,y).$$

- When the minimizer is unique in the above definition, it is denoted by $p_K(x)$ and called the projection of x onto K.
- The geodesic signed distance function $d_G^{\partial\Omega}$ to an open region $G\subset\partial\Omega$ is:

$$\forall x \in \partial \Omega, \quad d^{\partial \Omega}(x) = \left\{ \begin{array}{ll} -d^{\partial \Omega}(x, \partial G) & \text{if } x \in G, \\ 0 & \text{if } x \in \partial G, \\ d^{\partial \Omega}(x, \partial G) & \text{if } x \in \partial \Omega \setminus \overline{G}. \end{array} \right.$$

Remark "Many" basic properties of $d_G^{\partial\Omega}$ are mere adaptations of those of the "usual" signed distance function to a domain of \mathbb{R}^d .

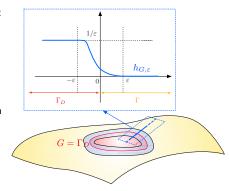
An approximate optimization problem (I)

• Let the approximate conductivity equation:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_{G,\varepsilon}) = f & \text{in } \Omega, \\ \gamma \frac{\partial u_{G,\varepsilon}}{\partial n} + \underset{G,\varepsilon}{h_{G,\varepsilon}} \underline{u_{G,\varepsilon}} = 0 & \text{on } \Gamma \cup \Gamma_D, \\ \gamma \frac{\partial u_{G,\varepsilon}}{\partial n} = g & \text{on } \Gamma_N. \end{array} \right.$$

• $h_{G,\varepsilon}(x) := \frac{1}{\varepsilon} h\left(\frac{d_G^{\partial\Omega}(x)}{\varepsilon}\right)$ is made from a smooth profile $h: \mathbb{R} \to \mathbb{R}$ such that:

$$0 \leq h \leq 1, \quad \left\{ \begin{array}{ll} h \equiv 1 & \text{on } (-\infty, -1], \\ h(0) > 0, \\ h \equiv 0 & \text{on } [1, \infty). \end{array} \right.$$



- Intuitively,
 - $h_{G,\varepsilon} = 0$ well inside Γ (\approx homogeneous Neumann b.c.),
 - $h_{G,\varepsilon}=rac{1}{arepsilon}pprox\infty$ well inside Γ_D (pprox homogeneous Dirichlet b.c.).
- For a fixed $\varepsilon > 0$, standard elliptic regularity implies that $u_{G,\varepsilon}$ is smooth on $\overline{\Omega}$.

An approximate optimization problem (II)

An approximation of the original shape optimization problem features the function:

$$J_{\varepsilon}(G) = \int_{\Omega} j(\mathbf{u}_{G,\varepsilon}) \, \mathrm{d}x,$$

whose shape derivative can be computed by classical techniques.

Proposition 1.

The shape derivative of the functional $J_{\varepsilon}(G)$ equals:

For all tangential θ s.t. $\theta = 0$ on Γ_N ,

$$J'_{\varepsilon}(G)(\theta) = -\frac{1}{\varepsilon^{2}} \int_{\Gamma \cup \Gamma_{D}} h'\left(\frac{d_{G}^{\partial\Omega}(x)}{\varepsilon}\right) \theta(p_{\Sigma}(x)) \cdot n_{\Sigma}(p_{\Sigma}(x)) u_{G,\varepsilon}(x) p_{G,\varepsilon}(x) ds(x)$$

$$\approx -\frac{1}{\varepsilon} \int_{\Gamma} \theta(x) \cdot n_{\Sigma}(x) u_{G,\varepsilon}(x) p_{G,\varepsilon}(x) d\ell(x),$$

where the adjoint state $p_{G,\varepsilon}$ is the unique solution in $H^1(\Omega)$ to the problem:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma\nabla p_{G,\varepsilon}) = -j(u_{G,\varepsilon}) & \text{in } \Omega, \\ \gamma\frac{\partial p_{G,\varepsilon}}{\partial n} + h_{G,\varepsilon}p_{G,\varepsilon} = 0 & \text{on } \Gamma_D \cup \Gamma, \\ \gamma\frac{\partial p_{G,\varepsilon}}{\partial n} = 0 & \text{on } \Gamma_N. \end{array} \right.$$

An approximate optimization problem (III)

The consistence of this approximation process holds true under "mild" assumptions:

• The function $u_{G,\varepsilon}$ converges to u_G strongly in $H^1(\Omega)$: for any $0 < s < \frac{1}{4}$,

$$||u_{G,\varepsilon}-u_G||_{H^1(\Omega)}\leq C_s\varepsilon^s||f||_{L^2(\Omega)}.$$

- As a result, for any given region G, the approximate shape functional $J_{\varepsilon}(G)$ converges to its exact counterpart J(G).
- Going further, the approximate shape derivative $J'_{\varepsilon}(G)$ converges to its exact counterpart J'(G), i.e.:

$$\sup_{||\theta|| \le 1} |J_{\varepsilon}'(G)(\theta) - J'(G)(\theta)| \xrightarrow{\varepsilon \to 0} 0.$$

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

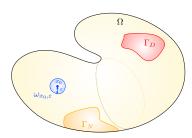
The model setting

We aim to calculate the topological derivative of $J(G) = \int_{\Omega} j(u_G) dx$, when $G = \Gamma_D$.

- Ω is a smooth bounded domain in \mathbb{R}^d , d=2,3;
- Its boundary is the reunion of 3 disjoint parts:

$$\partial\Omega=\overline{\Gamma_D}\cup\overline{\Gamma_N}\cup\overline{\Gamma}.$$

 The subset ω_{x0,ε} is a surface disk, centered at x₀ ∈ Γ, with radius ε.



The background and perturbed potentials u_G and $u_{G_{x_0,\varepsilon}} \in H^1(\Omega)$ are solution to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_G) = f & \text{in } \Omega, \\ u_G = 0 & \text{on } \Gamma_D, \\ \gamma \frac{\partial u_G}{\partial n} = g & \text{on } \Gamma_N, \\ \gamma \frac{\partial u_G}{\partial n} = 0 & \text{on } \Gamma, \end{array} \right. \text{ and } \left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_{G_{X_0,\varepsilon}}) = f & \text{in } \Omega, \\ u_{G_{X_0,\varepsilon}} = 0 & \text{on } \Gamma_D \cup \omega_{X_0,\varepsilon}, \\ \gamma \frac{\partial u_{G_{X_0,\varepsilon}}}{\partial n} = g & \text{on } \Gamma_N, \\ \gamma \frac{\partial u_{G_{X_0,\varepsilon}}}{\partial n} = 0 & \text{on } \Gamma \setminus \overline{\omega_{X_0,\varepsilon}}. \end{array} \right.$$

Asymptotic formulas for the potential

The calculation of the expansions of $u_{G_{x_0,\varepsilon}}$ and $J(G_{x_0,\varepsilon})$ relies on asymptotic analysis.

Theorem 2.

The following asymptotic expansion holds, at any point $x \in \overline{\Omega}$, $x \notin \Sigma \cup \{x_0\}$:

$$u_{G_{x_0,\varepsilon}}(x) = u_G(x) - \frac{\pi}{|\log \varepsilon|} \gamma(x_0) u_G(x_0) N(x,x_0) + \operatorname{o}\left(\frac{1}{|\log \varepsilon|}\right) \ \text{if} \ d = 2,$$

and

$$u_{G_{x_0,\varepsilon}}(x) = u_G(x) - 4\varepsilon\gamma(x_0)u_G(x_0)N(x,x_0)$$
 if $d = 3$,

where N(x, y) is the Green's function of the background problem.

■ E. Bonnetier, C. Brito-Pacheco, C. Dapogny and R. Estevez, Numerical shape and topology optimization of regions supporting the boundary conditions of a physical problem, to appear in ESAIM: Control, Optimization, Calculus of Variations, (2025).

Asymptotic formulas for a quantity of interest

The shape functional evaluated at the perturbed shape reads:

$$J(G_{x_{\mathbf{0}},\varepsilon}) = \int_{\Omega} j(\mathbf{u}_{G_{x_{\mathbf{0}},\varepsilon}}) \, \mathrm{d}x.$$

Corollary 3.

The quantity $J(G_{x_0,\varepsilon})$ has the following asymptotic expansion at 0:

If
$$d=2$$
, $J(G_{x_0,\varepsilon})=J(G)+\frac{\pi}{|\log \varepsilon|}\gamma(x_0)u_G(x_0)p_G(x_0)+o\left(\frac{1}{|\log \varepsilon|}\right)$,

and

If
$$d = 3$$
, $J(G_{x_0,\varepsilon}) = J(G) + 4\varepsilon\gamma(x_0)u_G(x_0)p_G(x_0) + o(\varepsilon)$,

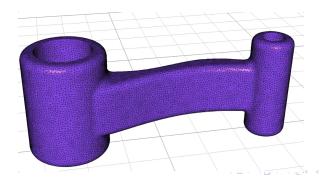
where p_G is the unique solution in $H^1(\Omega)$ to the adjoint problem:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma\nabla p_G) = -j'(u_G) & \text{in } \Omega, \\ p_G = 0 & \text{on } \Gamma_D, \\ \gamma\frac{\partial p_G}{\partial n} = 0 & \text{on } \Gamma_N \cup \Gamma. \end{array} \right.$$

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

Numerical algorithm

- At each iteration n = 0, ..., the fixed shape Ω is equipped with a mesh \mathcal{T}^n .
- Its surface part S^n contains a sub-triangulations S_G^n for the optimized region G^n .
- The finite element computations for u_{G^n} and p_{G^n} are conducted on \mathcal{T}^n .
- A descent direction θ^n is obtained from $J'_{\varepsilon}(G^n)$, $C'_{\varepsilon}(G^n)$.
- The updates $\mathcal{T}^n \to \mathcal{T}^{n+1}$ leverage a mesh evolution algorithm [BriDa, AlDaFre].
- Topological derivatives are periodically used to add small disks to G.



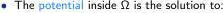
- Foreword
- 2 Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

Optimization of a micro-osmotic mixer (I)

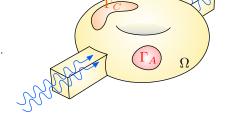
- Electro-osmotic mixers achieve the mixture of two fluids inside a device Ω by maximizing the electric field induced by electrodes on $\partial\Omega$.
- The boundary of Ω is decomposed as:

$$\partial\Omega = \overline{\Gamma_C} \cup \overline{\Gamma_A} \cup \overline{\Gamma},$$
 - Γ_C is the cathode, where - Γ_A is the anode, - Ω is insulated on Γ .

• The potential inside Ω is the solution to:



$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_C, \\ u = u_{\text{in}} & \text{on } \Gamma_A, \\ \gamma \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma. \end{array} \right.$$

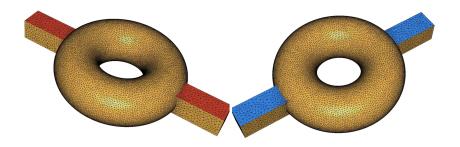


• We aim to maximize the electric power inside Ω with respect to Γ_A and Γ_C :

$$J(\Gamma_A,\Gamma_C) = -\int_{\Omega} \! |\gamma \nabla u_{\Gamma_A,\Gamma_C}|^2 \; \mathrm{d}x,$$

under constraints on the surface measures of Γ_A and Γ_C .

Optimization of a micro-osmotic mixer (II)



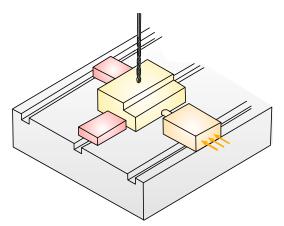
Optimization of (left) the anode, (right) the cathode of a micro-osmotic mixer.

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

Optimization of a fixture system (I)

During its construction, a mechanical structure $\Omega \subset \mathbb{R}^3$ is stilled by a clamp-locator system:

- Locators are regions of $\partial\Omega$ where the displacement is prevented;
- Clamps are regions where a surface load is applied to maintain the part.

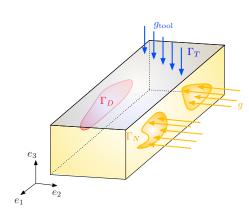


Optimization of a fixture system (II)

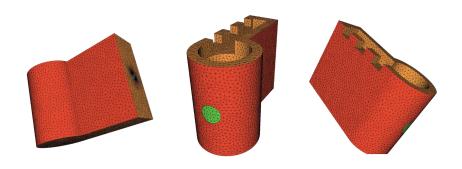
- Let $\Omega \subset \mathbb{R}^3$ be a fixed structure.
- A load g_{tool} is applied on $\Gamma_{\mathcal{T}} \subset \partial \Omega$ by the machine tool.
- Ω is located on Γ_D .
- It is clamped on Γ_N : a load g is applied.
- The remaining boundary Γ is free.
- The displacement u of Ω is solution to the linear elasticity system.
- We aim to minimize the displacement of the structure,

$$J(\Gamma_D,\Gamma_N)=\int_{\Omega}|u_{\Gamma_D,\Gamma_N}|^2\,\mathrm{d}x,$$

under constraints on the surfaces of Γ_D and Γ_N .



Optimization of a fixture system (III)

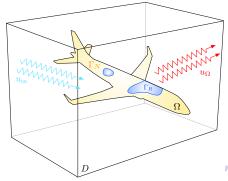


Optimal design of clamps and locators on the boundary of a manufactured mechanical part.

- Foreword
- Presentation of the problem and background material
 - A model problem
 - Shape and topological derivatives
- Shape derivatives involving deformations of regions bearing boundary conditions
 - Setting and preliminaries
 - Approximate shape derivatives for Dirichlet Neumann transitions
- Sensitivity with respect to topological perturbations of boundary conditions
- Numerical examples
 - The numerical algorithm
 - Optimization of a micro-osmotic mixer
 - Optimization of a fixture system
 - Optimal repartition of sound-soft and sound-hard materials on an aircraft

Optimal repartition of sound-soft and sound-hard materials (I)

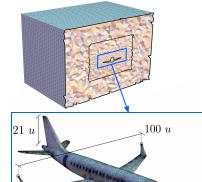
- The interaction of an incident wave u_{in} (e.g. sound) with an obstacle Ω inside the medium D induces a scattered wave u.
- This scattering effect can be used to detect or reconstruct Ω , which is either
 - Desirable, as in medical imaging (tomography, etc.),
 - ullet Undesirable, e.g. when Ω is a stealth military submarine or aircraft.
- We aim to optimize the repartition of a sound-soft and a sound-hard materials on $\partial\Omega$ to cloak Ω , i.e. make it invisible to measurements of the scattered wave.



Optimal repartition of sound-soft and sound-hard materials (II)

- The obstacle Ω is an aircraft.
- The incoming wave reads $u_{in}(x) = e^{-i\omega\xi \cdot x}$.
- The boundary $\partial\Omega$ is decomposed as $\partial\Omega=\overline{\Gamma_N}\cup\overline{\Gamma_R}$, where:
 - Γ_N supports Neumann conditions;
 - Γ_R bears Robin conditions.
- The scattered wave u(x) is solution to the Helmholtz equation:

$$\begin{array}{ll} -\mathrm{div}(\gamma\nabla u)-\omega^2 u=0 & \text{in }\Omega\\ \gamma\frac{\partial u}{\partial n}=-\gamma\frac{\partial u_{\text{in}}}{\partial n} & \text{on }\Gamma_N,\\ \gamma\frac{\partial u}{\partial n}+\frac{i\omega}{z}u=-\gamma\frac{\partial u_{\text{in}}}{\partial n}-\frac{i\omega}{z}u_{\text{in}} & \text{on }\Gamma_R,\\ + \text{ radiation boundary conditions} & \text{on }\partial D. \end{array}$$



• We optimize Γ_R to minimize the amplitude of the scattered wave:

$$J(\Gamma_R) = \int_{D\setminus\overline{\Omega}} |u_{\Gamma_R}|^2 dx,$$

under a constraint on its surface.

Optimal repartition of sound-soft and sound-hard materials (III)

Optimization of the repartition of a sound-soft and a sound-hard material on the body of an aircraft.

A word of advertisement

- All the numerical realizations are based on open-source libraries.
- A webpage gathering lecture notes, slides, demonstration codes, etc.

https://membres-ljk.imag.fr/Charles.Dapogny/tutosto.html

Thank you!

Thank you for your attention!

References I

- [AlDaFre] G. Allaire, C. Dapogny, and P. Frey, *Shape optimization with a level set based mesh evolution method*, Computer Methods in Applied Mechanics and Engineering, 282 (2014), pp. 22–53.
- [BonDaVo] E. Bonnetier, C. Dapogny, and M. S. Vogelius, *Small perturbations* in the type of boundary conditions for an elliptic operator, Journal de Mathématiques Pures et Appliquées, 167 (2022), pp. 101–174.
- [BonBri] E. Bonnetier, C. Brito-Pacheco, C. Dapogny and R. Estevez, Numerical shape and topology optimization of regions supporting the boundary conditions of a physical problem, to appear in ESAIM: Control, Optimization, Calculus of Variations, (2025).
- [BriDa] C. Brito-Pacheco and C. Dapogny, *Body-fitted tracking within a surface via a level set based mesh evolution method*, J. Sci. Comput, 102:73, (2025).
- [DaLeOu] C. Dapogny, N. Lebbe and E. Oudet, *Optimization of the shape of regions supporting boundary conditions*, Numer. Math., 146, (2020), pp. 51–104.

References II

- [FeAlDa] F. Feppon, G. Allaire and C. Dapogny, Null space gradient flows for constrained optimization with applications to shape optimization, ESAIM: Control, Optimization and Calculus of Variations, 26, (2020).
- [FreSo] G. Fremiot and J. Sokolowski, *Shape sensitivity analysis of problems with singularities*, Lecture notes in pure and applied mathematics, (2001), pp. 255–276.
- [Gri] P. Grisvard, Elliptic problems in nonsmooth domains, SIAM, (2011).
- [HenPi] A. Henrot and M. Pierre, *Shape Variation and Optimization*, EMS Tracts in Mathematics, Vol. 28, (2018).
- [LaBa] J. J. Lang, M. Bastian, P. Foehr, M. Seebach, et al, *Improving mandibular reconstruction by using topology optimization, patient specific design and additive manufacturing?—A biomechanical comparison against miniplates on human specimen.* Plos one, 16(6),(2021), e0253002.

References III

- [RaAlOr] L. Rakotondrainibe, G. Allaire and P. Orval, *Topology optimization of connections in mechanical systems*, Struct. and Multidisc. Optim., 61(6), (2020), pp. 2253–2269.
- [WeWuShi] Z. Wei, J. Wu, N. Shi et al, Review of conformal cooling system design and additive manufacturing for injection molds, Math. Biosci. Eng, 17(5), (2020), pp. 5414–5431.