Optimization of the shape
and topology of regions

supporting boundary
conditions

Eric Bonnetier!, Carlos Brito-Pacheco?, Charles Dapognyz, Nicolas Lebbe?3,
Edouard Oudet?, Michael Vogelius*

1 Institut Fourier, Université Grenoble Alpes, Grenoble, France

2 Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Grenoble, France
3 CEA, Leti, Grenoble, France

4 Department of Mathematics, Rutgers University, USA

20" May, 2025

A
1/43



Foreword (I)

e Shape and topology optimization techniques are
ubiquitous in industry and academics.
e Usually in practice,

- A domain Q C R? is optimized, representing
e.g. a mechanical structure, a fluid device.

- The performance of Q is evaluated by an ob-
jective function J(Q).

- J(RQ) is expressed in terms of the solution uq  Optimization O; a sfai)rcase (courtesy
of Ansys).
to a boundary value problem posed on Q. Y

- The regions of 9Q supporting specific bound-
ary conditions are not subject to optimization.

e We investigate a variant of this setting, where not
only the shape Q, but also the subsets of 99 bearing
boundary conditions are optimized.

National Convention Center.
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Foreword (II)

Examples:
e In thermal conduction,

- The temperature ug : Q — R inside Q is the
solution to the conductivity equation;

- Dirichlet b.c. account for a known profile,
Optimization of the screws of a

- Neumann b.c. represent an imposed heat flux. mandibular prosthesis
o When Q is a mechanical structure,
- The displacement ug : Q — RY of Q is solution
to the linear elasticity system;

- Q is attached at the regions equipped with ho-
mogeneous Dirichlet b.c.

- Neumann b.c. represent applied surface loads.

e Other applications arise in acoustics, in fluid me- s2.40

Chanics etc. Optimized cooling process for a structure
! produced by molding
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e The considered shapes Q are smooth,
bounded domains in RY, with boundaries:

00 =TpuUlyuUT.
e We assume that [p NTy = 0 and denote
ZD = 8FD, and ZN = 8FN.

e The behavior of Q is encoded in the solution
u € H*(Q) to the conductivity equation:

—div(yVu) =f in Q,

u=0 on Ip,
fyg—: =0 onTl,
Von =8 on Ny,

e ~ is the conductivity of the medium
where o f ¢ [2(Q)is a source (or a sink),

o g [*(Ty)is a heat flux.
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e A ‘“classical’ shape optimization problem then reads:

inn J(Q)st. C(Q)<0.

Here, J(Q2) and C(£2) are objective and constraint functions of the domain, e.g.

5@) = [ i(us) ax.

where uq is the solution to the conductivity equation and j : R — R is smooth.

e In the present application, Q is fixed, and we consider problems of the form:

mi?QJ(G) st. C(G) <.

GCc¢

For instance, G = I'p or 'y in the conductivity equation, and:
J(G) = /j(u(;) dx.
Q
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We introduce notions of shape and topological derivatives for functions J(G)
depending on a region G of the boundary 0.

We propose “simple” mathematical methods to achieve their calculation.

We implement them in combination with:

e A constrained optimization algorithm to infer a descent direction

e A mesh evolution method to track the evolving region G

We apply these ideas in different physical situations:

e Thermal or electric conduction (conductivity equation);
e Structure mechanics (linear elasticity system);

e Acoustics (Helmholtz equation).
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© Presentation of the problem and background material

@ Shape and topological derivatives
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Shape derivatives (l): definition

The method of Hadamard relies on varia-
tions of a region G C 9 of the form

Go = (Id + 0)(G), 2.

where 0 is a “small” tangential vector field:

0-n=0on 09.
Tangential deformations modify G within 8.

Definition 1.

The shape derivative of a function J(G) is the Fréchet derivative at 6 = 0 of the
underlying mapping

60— J(Gp) €R.
The following expansion holds:

J(Gg) = J(G) + J(G)(0) + o(0), where o(0) is a “small” remainder.




e "Simple” functions of the region G are:

- lts surface area Area(G) :/ ds;
G

- The length Cont(G) = / de of its

. ny(z)

contour X.

e Their shape derivatives read, for any tangential deformation 6:
Area’(G)(0) = / 6 - ny d¢, and Cont'(G)(9) = / k(0 - ng) de,
by b

where k := divaq(ng) is the mean curvature of X.

e The derivative of a general function, involving a physical state ug is of the form:
J(6) = [ Wue,pc) (0 ms) .
b

where v(ug, pg) is a scalar quantity, depending on a suitable adjoint state pg.
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Topological derivatives

The notion of topological derivative fea- A
tures variations of G C 9% of the form

Gye = G Uwyp,

where wy e is the surface disk with center
x € 9Q\ G and radius e < 1.

LT
Definition 2.

The function J(G) has a topological derivative at x € 9Q\ G if there exist a function
p(e) == 0 and a number dJ7()(x) € R such that:

J(Gy.c) = J(G) + p(e)dIT(G)(x) + o(p(e)).

The rate p(g) of the expansion depends on the application.

=

DA
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© Shape derivatives involving deformations of regions bearing boundary conditions
@ Setting and preliminaries
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[Setting]

We address the “most difficult” case, where G = I'p in the conductivity equation.

We consider the model functional

H(6) = / j(ug) dx,

where ug € H*(Q) is the solution to the con-
ductivity equation.

We aim to calculate the shape derivative J'(G)(0).

The analysis is difficult because of the weakly singular character of ug near X...
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e The function ug is smooth except near X, where the b.c. change types.
e If d =2, let V be a neighborhood of xo € X such that:

x =0 QNV ={xeV, st. x2 >0}, and
GNV={xeV, st x2=0, x1 <0}.

1'. x

r

\y

G:F[) £L'U:0

Then ug is no more regular than H3/2="(V/) (for any 1 > 0), and

ug = ur + ¢,S on QN V, where u, is "regular’, ¢, € R and S(r,v) = r cos (%) .

e The shape derivative J'(G)(0) depends on the coefficients c,, ¢, of the state and
adjoint functions!

P. Grisvard, Elliptic problems in nonsmooth domains, SIAM,-(201L).
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[Remarks]

e A related phenomenon occurs in fracture mechanics:

- The weak singularity of the elastic displacement near the tip
of a crack defines the stress intensity factor;

- This determines the energy release rate, i.e. the derivative
of the energy w.r.t. the position of the crack.

e This dependence of J'(G)(6) on the singularities of ug and pc makes its numerical
evaluation awkward.

= Need to construct smooth approximations ug,. and J.(G) of ug and J(G) .
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© Shape derivatives involving deformations of regions bearing boundary conditions

@ Approximate shape derivatives for Dirichlet — Neumann transitions
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Let Q C RY be a smooth bounded domain.

o The geodesic distance d?®(x, y) on dQ between two points x,y € R is:

d(x,y) = inf (), where {(7) = /0 ' (8)] dt.

~:[0,1]— 09,
~7(0)=x, v(1)=y

e The geodesic distance d??(x, K) of x € 99 to a compact subset K C 9 is:
d®¥(x, K) = inf d%(x, ).
(x, K) = inf d™"(x,y)

e When the minimizer is unique in the above definition, it is denoted by pk(x) and
called the projection of x onto K.

e The geodesic signed distance function d2% to an open region G C 9Q is:

—-d%(x,0G) if x€ G,
Vx € 0Q, d¥(x) = 0 if x€0G,
d%(x,0G) if x€dQ\G.

“Many’ basic properties of d2% are mere adaptations of those of the
“usual” signed distance function to a domain of RY.
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Let the approximate conductivity equation:
—div(yVuee)=f inQ, g
,},02@".5 + hgeuce =0 onTUTlp, \
6“6,5 _ ha.e
Vi =8 on Ny. _ ] .
10193
hee(x) == 1h dGT(X) is made from a

smooth profile h: R — R such that:

h=1 on (—oo,—1],
0<h<1, { h0)>0,
h=0 on[1,00).

Intuitively,

- hg,e =0 well inside I' (= homogeneous Neumann b.c.),

- hge = % ~ oo well inside 'p (=~ homogeneous Dirichlet b.c.).

For a fixed £ > 0, standard elliptic regularity implies that ug e is smooth on Q.
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An approximation of the original shape optimization problem features the function:

1(G) = /Q J(ue.0) dx,

whose shape derivative can be computed by classical techniques.

The shape derivative of the functional J.(G) equals:

For all tangential 6

o0
260 = = [ (F) oon0) - melpr) (-0 a5
2 009 ne() v o(3) po.-(0 ().

where the adjoint state pg . is the unique solution in H*(Q) to the problem:

—div(yVpe,e) = —j(ug,e) inQ,

BPG,E

Y~5n =+ h575p6’5 =0 onlpU F,
agcn’E =0 on y.

i = = = ")
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The consistence of this approximation process holds true under “mild” assumptions:

e The function ug,. converges to ug strongly in H'(Q): for any 0 <'s < %,

l|ug,e — uG|lm )< Ce®l|fll ()

e As a result, for any given region G, the approximate shape functional J.(G)
converges to its exact counterpart J(G).

e Going further, the approximate shape derivative J.(G) converges to its exact
counterpart J'(G), i.e.:

sup 1J.(G)(8) — J'(G)(9)] = 0.
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|

We aim to calculate the topological derivative of J(G) = /j(uG) dx, when G =Tp.
Q

e Qisasmooth bounded domaininRY, d = 2, 3;

e Its boundary is the reunion of 3 disjoint parts:

N =TpUlNyUT.

e The subset wy, « is a surface disk, centered at
xo € ', with radius e.

The background and perturbed potentials ug and ug,, . € H'(Q) are solution to:

—div(yVug) = f in Q, —div(yVue, ) =f inQ,
uc =0 on p, UGy,e = 0 on I'p Uwsg.e,
due and UGg,e
’Yg,, =g on Iy, Y—n =& on Iy,
u du,
Ton =0 onT, 20 =0 on I\ @i =
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The calculation of the expansions of ug,, . and J(G,-) relies on asymptotic analysis.

The following asymptotic expansion holds, at any point x € Q, x ¢ T U {x0}:

s 1 i _
UGy . (x) = ue(x) — m'y(xo)uc(xo)N(x7 X0) + 0 <@) if d=2,

and
UG, .. (x) = ue(x) — dey(x0)uc(x0)N(x, x0) if d =3,

where N(x, y) is the Green's function of the background problem.

E. Bonnetier, C. Brito-Pacheco, C. Dapogny and R. Estevez, Numerical shape and
topology optimization of regions supporting the boundary conditions of a physical problem,
to appear in ESAIM: Control, Optimization, Calculus of Variations, (2025).
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Asymptotic formulas for a quantity of interest

The shape functional evaluated at the perturbed shape reads:

J(Ga.2) _/Q (., ) dx.

Corollary 3

The quantity J(Gy,,c) has the following asymptotic expansion at 0:
1
Ifd=2, J(Gg,)=J(G)+ log = l’y(xo)uc(xo)p(;(xo) +o (@> )
and
Ifd=3, J(Gx.c)=J(G)+4ev(x0)uc(x0)pc(x0) + o(e),
where pg is the unique solution in H*(Q) to the adjoint problem:
{ —div(yVpe) = —j'(uc) inQ,

pc =0 onTlp,
73""'—0 onTyUT.

e ——— m—t
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Numerical algorithm

At each iteration n =0, .. ., the fixed shape Q is equipped with a mesh 7.

Its surface part 8" contains a sub-triangulations S¢ for the optimized region G”.
The finite element computations for ugn and pgn are conducted on 7.

A descent direction 0" is obtained from J/(G"), C/(G").

The updates 7" — 7™ leverage a mesh evolution algorithm

Topological derivatives are periodically used to add small disks to G.
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Optimization of a micro-osmotic mixer (1)

e Electro-osmotic mixers achieve the mixture of two fluids inside a device Q by
maximizing the electric field induced by electrodes on 99.

e The boundary of Q is decomposed as:

N =TcUTAUT,
- ¢ is the cathode,

where _ s the anode,
- Qs insulated on T.

e The potential inside Q is the solution to:
—div(yVu) =0 in Q,

u=20 onlg,
u = Uin on rA,
7% =0 onTl.

e We aim to maximize the electric power inside Q with respect to ['4 and I'¢:
J(Ta,Te) = */|7VUFA,FC|2 dx,
Q

under constraints on the surface measures of ['4 and c.
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Optimization of a micro-osmotic mixer (I1)

Optimization of (left) the anode, (right) the cathode of a micro-osmotic mixer.
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During its construction, a mechanical structure Q C R? is stilled by a clamp-locator
system:

e Locators are regions of 9Q2 where the displacement is prevented;

e Clamps are regions where a surface load is applied to maintain the part.
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Optimization of a fixture system (1)

Let Q C R? be a fixed structure.

A load giool is applied on '+ C 9Q by
the machine tool.

Q is located on p.
Itis clamped on I'y: aload g is applied.
The remaining boundary I is free.

The displacement u of Q is solution to
the linear elasticity system.

We aim to minimize the displacement
of the structure,

J(p,Ty) = /|urD,rN|2dx,
Q

under constraints on the surfaces of I'p
and y.

Gtool
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Optimization of a fixture system (Il1)

Optimal design of clamps and locators on the boundary of a manufactured mechanical part.
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© Numerical examples

@ Optimal repartition of sound-soft and sound-hard materials on an aircraft
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Optimal repartition of sound-soft and sound-hard materials (1)

e The interaction of an incident wave ui, (e.g. sound) with an obstacle Q inside the
medium D induces a scattered wave u.

e This scattering effect can be used to detect or reconstruct €, which is either

e Desirable, as in medical imaging (tomography, etc.),
e Undesirable, e.g. when Q is a stealth military submarine or aircraft.

e We aim to optimize the repartition of a sound-soft and a sound-hard materials on
00 to cloak Q, i.e. make it invisible to measurements of the scattered wave.

N

T 1

N <>
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Optimal repartition of sound-soft and sound-hard materials (I1)

The obstacle € is an aircraft.

The incoming wave reads uin(x) = e fwex,

The boundary 0 is decomposed as 0Q =
'y UTg, where:
- 'y supports Neumann conditions;

- I'r bears Robin conditions.

The scattered wave u(x) is solution to the
Helmholtz equation:

—div(yVu) — w?u = in Q
du __ ous
Vo = —'78—8;1" on Ny,
5 . 2 )
Yoo+ U= "V, — Tl oOnTg,

+ radiation boundary conditions on 9D.

We optimize g to minimize the amplitude of the scattered wave:
ey = [ Jur,
D\Q

under a constraint on its surface.

37/43



Optimal repartition of sound-soft and sound-hard materials (lII)

Optimization of the repartition of a sound-soft and a sound-hard material on the body of an aircraft.
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\A word of advertisement

e All the numerical realizations are based on open-source libraries.

e A webpage gathering lecture notes, slides, demonstration codes, etc.

P

@a https://membres-1jk.imag.fr/Charles.Dapogny/tutosto.html

Y) Shape and topology optimization: online resources

fostered by W industrial achievements. Nowadays, problems.

techniques, and raise new, challenging fssues.

, with
umerical implementations. In particular, you wil find:

« Lecture notes and review articles.
.l s of radus

g from simple, educational toy codes, to more nvolved framewarks allowing to deal

Pedagogical articles and presentations

I I | e ]
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