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Foreword (I)

e Meshes are one of the prominent formats for
representing a domain  in scientific com-
puting.

e A substantial endeavour has long been de-
voted to mesh processing issues.

e Among these, remeshing aims at modifying
an existing mesh so as to

- Increase the quality of its elements; Mesh of a car.

- Improve the approximation of the continuous
domain.

e Remeshing has various applications:

- Optimal adaptation of the local mesh size to
the simulation of a physical phenomenon;

- Robust description of the motion of a domain;

- Mesh generation! Numerical simulation of a burner (Coria).
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{A word of advertisement

. .
»
Mmg PLATFORM
Robust, Open-source & Multidisciplinary . .
Software for Remeshing J 3 bpgrade
- Uour meshes

Most of the features discussed in this presentation are integrated in the free,
open-source environment Mmg.

@ https://www.mmgtools.org

https://github.com/MmgTools/mmg
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@ Basic theory of remeshing
@ A few definitions and key concepts
@ Why remeshing?
@ Remeshing in practice

© Applications of remeshing

o Adaptation to a user-defined size prescription

@ Isosurface discretization and volume mesh generation
@ Lagrangian motion of a domain
@ Body-fitted interface tracking

© A glimpse on a recent challenge: parallel remeshing
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A few definitions about meshes (1)

Let Q € R? (d = 2 or 3) be a polyhedral domain.

A simplicial mesh T of Q is a collection {Ti},_; . of open simplices (triangles in
2d, tetrahedra in 3d) such that
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Most often, the mesh 7 is often required to be
e Valid: the open simplices T; are mutually disjoint: T; N T; = () when i # j;

e Conforming: each intersection T; N T}, i # j is reduced to either a vertex, an
edge, or a face of the mesh.

Overlapping elements in an invalid A non conforming mesh A valid, conforming mesh
mesh



A few definitions about meshes (lII)

e The mesh T naturally comprises a sur-
face mesh Sy associated to the bound-

ary 0Q:
- In 2d, St is a collection of segments;

- In 3d, St is a surface triangulation.

e In practice, the meshed domain Q is
not polyhedral and S is meant to be
an approximation of 9.

Tetrahedral mesh 7 (in green) and associated surface
triangulation S (in yellow).
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The accuracy of most numerical methods using
T as computational support (e.g. finite element
computations) crucially depends on the quality of
the simplices T € T.

The latter is measured by a quality factor Q(T):

- Q(T)~ 1 when T is close to regular;
- Q(T) ~ 0 when T is nearly flat.

In practice, Q(T) should “smoothly” discriminate

“good”, “bad” and “not so good” simplices T.

A popular quality factor is for instance:

Vol(T)

d(d+1)/2 §
Zl |eil?
iz

oT) =«

A regular tetrahedron (Q(T) ~ 1)

A nearly degenerate tetrahedron (Q(T)

~ 0)
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Quality of the geometric approximation (1)

The surface mesh St should be a close approximation of 9Q:

d"(Sr,00) <e,
Definition 2.

where ¢ is a user-defined threshold and d"(-,-) stands for e.g. the Hausdorff distance

The HausdorfF distance d"(Ku1, Kz) between two compact subsets K1, K» C R? is:

d" (K1, Kz2) = max(p(K1, K2), p(K2, K1)), where p(Ki, Ka) := max d(x, K2).
xEKy

The Hausdorff distance between K; and K, measures the “maximum gap'“between both sets

DA
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Quality of the geometric approximation (I1)

(Left) Rough approximation of a domain Q C R?; (right) fine geometric approximation of Q.
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e Meshing starts from the datum of a (line or surface) mesh S of the boundary 99.

e It aims to fill the volume Q with simplices, i.e. to construct a mesh T of Q with

surface part S+ = S.

Meshing vs. remeshing (I)
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Meshing vs. remeshing (II)

e Remeshing assumes the input of a valid, conforming mesh 7 of Q.

e It aims to modify 7T into a "better’ mesh T of Q.
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@ Basic theory of remeshing
o A few definitions and key concepts
@ Why remeshing?
@ Remeshing in practice

© Applications of remeshing

o Adaptation to a user-defined size prescription

@ Isosurface discretization and volume mesh generation
@ Lagrangian motion of a domain
@ Body-fitted interface tracking

© A glimpse on a recent challenge: parallel remeshing
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Why remeshing? (1)

@ The supplied mesh 7 may contain low-quality, nearly degenerate elements.
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Why remeshing? (I1)

® The mesh T may be a rough geometric representation of the continuous domain Q.

The mesh 7 on the right is a very coarse approximation of the continuous geometry Q on the left.
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Why remeshing? (I11)

® The mesh 7 may be composed of an unnecessarily large number of elements,

impeding the speed of mechanical computations.

R
YIS
R

O] AVAN .
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ST

Decimation of the oversampled mesh 7 (left) into a suitably sampled mesh 7 (right) of the same domain Q.
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Why remeshing? (1V)

@ The mesh T may have to be adapted to a user-defined size prescription resulting,
e.g. from an a posteriori error analysis.

Adaptation of the mesh to a user-defined size prescription.
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@ Basic theory of remeshing
o A few definitions and key concepts
@ Why remeshing?
@ Remeshing in practice

© Applications of remeshing

o Adaptation to a user-defined size prescription

@ Isosurface discretization and volume mesh generation
@ Lagrangian motion of a domain
@ Body-fitted interface tracking

© A glimpse on a recent challenge: parallel remeshing
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The remeshing issue

Let Q c R® be a bounded domain.

(Similar considerations hold as regards remeshing of a 2d domain or a 3d

surface)

The continuous domain Q is known solely via the datum
of a discrete, simplicial mesh 7.

The mesh 7 is unsuitable because

- It is made of low-quality elements;

- It is a poor geometric description of €.

We wish to modify 7 into a new mesh T

- With fine element quality;
- Which is an accurate geometric approximation of Q;

- Whose elements comply with a user-
defined size prescription.
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e In practice, the domain Q is unknown: the only information at hand is that of the
input, discrete mesh 7.

e A key ingredient in the practice of remeshing is the reconstruction of a continuous,
“ideal” domain Q.
e This task may be conducted in two different manners:

- A whole continuous representation Q is calculated from the initial datum 7~
at the beginning of the remeshing process and it is set once and for all.

Or

- Whenever needed, a piece of 9%, corresponding e.g. to a processed surface
triangle T € S7, is calculated from the current state of the mesh 7.

e The continuous counterpart Q of T serves for instance

- To predict the local element size for an accurate geometric description of Q

(many small elements have to be placed in high curvature regions, while just a few large ones are

needed in flat areas).
- To detect when T deviates “too much” from the continuous geometry Q.
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e A size map h: T — R is defined:

For all vertex x € T, h(x) = desired size for edges near x.

e Remeshing rests upon the combination of 4 local operators:

Edge split: a “long” edge in the mesh is split into two.
Edge collapse: the endpoints of a “short” edge are merged.
Edge swap: an edge is removed, and the leftover cavity is suitably reconnected.

Vertex relocation: one vertex is moved, while all connections are unchanged.

e Each of these operators is available in two versions, depending on whether it is
applied to a surface or a volume configuration.

e Each operation has to be carefully controlled:

- It may create invalid configurations (e.g. overlapping elements).

- It may degrade too much the geometric approximation of Q.
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Iscrete to a continuous geometry
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Step 2: Reconstruct first-order information about the ideal surface 0Q2:

e The normal vector at a smooth vertex
x € T is approximated from the normal
vectors nt to the neighboring triangles:

n(x) = ﬁ Z arnr,
TéBry | TEBK)
with the weights ar given by, e.g.
ar =|T|.
e One vertex x on a ridge naturally bears

- Two normal vectors ni, na,

- One tangent vector 7,

which are reconstructed analogously.
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From the discrete to a continuous geometry (lll)

Step 3: Generate a parametrization (e.g. a cubic Bézier patch) of a piece of “ideal”
surface S C 0N associated to T:

~ I o
Y(u,v) € T CR? o(u,v) = Z %b;jk(l —u—v) v

i,j,k=0,...,3,

(170) a9 = boog

ag = b300

(0,0) 0,1)

24/75



From the discrete to a continuous geometry (IV)

This local parametrization allows to:

@ Give a close estimate of the Hausdorff distance d"( T, S);

® Predict which size is desirable for entities near ag, a1, a» so that

d"(T,S8) <e.

df(

Q

N
=

The Hausdorff distance dH(T, S) can be estimated by looking at the control polygon of S.
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size map h: Q — R is defined on (the mesh 7 of) Q:
For each vertex x € T, h(x) is the desired size for edges around x.

When x is an internal vertex, h(x) is calculated from the requirements of the user:

- A minimum size for the edges in T;
- A maximum size for these edges;
- (Optionally) A desired local size, stemming e.g. from a priori or a posteriori

finite element analyses.

When x € St is a surface vertex, the size h(x) should additionally be adapted to
the maximum imposed bound on the distance d"(S7, 9Q).

The size map h(x) should be “smooth”: the ratio between the lengths of adjacent
edges must be controlled to ensure a good element quality.
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Calculation of a size map (1)

The size prescription may be anisotropic, encoded in a tensor field M : 7 — RY*¢:

For all vertex x € T, for all direction v € SY7%,

(M(x)v, v) is (related to) the desired size for edges near x oriented along v;

Anisotropic adaptation of the mesh for the simulation of a supersonic flow (from ).
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If an edge pq is “too long”, insert its midpoint m, then split it into two.

e If pg belongs to a surface triangle T € S7, m lies on the piece of 9Q computed
from T. Else, it is merely inserted as the midpoint of p and q.

e An edge may be deemed "“too long” when compared to the prescribed size, or
because it entails a bad geometric approximation of 9.

g

Splitting of one (left) or three (right) edges of triangle T, positioning the new points on the ideal surface S
(dotted).
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If an edge pq is “too short”, merge its two endpoints.

e Careful checks are in order to ensure the validity of the resulting configuration:

- This operation may invalidate some tetrahedra (i.e. create overlappings).

- When it is applied to a surface configuration, it may deteriorate the
geometric approximation of 9€;

e An edge may be “too short” when compared to the prescribed size, or because it is
unnecessarily short for a fine geometric approximation of 9.

— \ _~ — \ ~

Collapse of point p over q in a surface configuration.
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In 2d, collapsing p over q (left) invalidates the resulting mesh (right): both greyed triangles end up inverted.
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Suppress and edge pg from the mesh and reconnect the leftover cavity adequately.

This operator is key in improving the quality of the elements of the mesh.

p

In 2d the edge pq is removed from the mesh, and the edge ab corresponding to the alternate configuration is
added.
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Local mesh operators: edge swap (II)

p p

The 3d edge swap operator is much more involved than its 2d counterpart.
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Slightly move a point p in the mesh, while leaving all connectivities unchanged.

This operator is the main ingredient in the fine-quality tuning of the mesh

p

Relocation of node p to p, along the surface.
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The mmg library relies on the input of a .mesh file for the mesh 7 (input.mesh), and
a few parameters, passed on the command line:

e -hmin: Minimum value for the length of an edge in the mesh.
e -hmax: Maximum value for the length of an edge in the mesh.

e -hausd: Maximum gap between the mesh and the continuous geometry

-hgrad: Maximum ratio between the lengths of two adjacent edges.

e -nr: Deactivates the detection of sharp features in the mesh.

Optionally, the user may provide a size map (or an anisotropic metric field) as a .sol
file, with the same name as the mesh (input.sol).
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Remeshing using mmg (1)

mmg3d input.mesh -hmin 0.001 -hmax 0.01 -hausd 0.005 -hgrad 1.3 |

(Left) initial, bad-quality mesh; (right) modified, good-quality mesh.
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© Applications of remeshing
o Adaptation to a user-defined size prescription
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One key application of remeshing consists in adapting the size of the mesh with
respect to a user-defined size map.

This allows to enforce “small” elements in regions of particular interest, and
coarser elements elsewhere.

Hence, the total size of the mesh is reasonable, while a particular focus is put on
regions of interest.

Depending on the purpose, this size prescription may be guided by:

- The wish to enforce “small” elements in the vicinity of a moving front.

- An a posteriori error estimate, attached to the resolution of a physical
phenomenon by the finite element method;
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’Adaptation to a size map

T[K]

2200.0
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1800.0

-~ 1600.0
— 1400.0
— 1200.0
— 1000.0
800.0
600.0

300.0

PRECCINSTA burner

BFER scheme - DTFLES model - non-adiabatic walls
Dynamic mesh adaptation with surface based on flame sensor

Nt =40M — A, ,,;,, =300m

P. Benard, G. Lartigue, V. Moureau - CORIA

Qp [Wan 2]
— 5.0e+09
—4.5e+9
— 4.0e+9
- 3.5e+9

3.0e+9
2.5e+9
2.0e+9
1.5e+9
1.0e+9
5.0e+8
0.0e+00

Numerical simulation of an aeronautical burner using the Yales2 library
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preccinsta-burner.mov
Media File (video/quicktime)


© Applications of remeshing

@ Isosurface discretization and volume mesh generation
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Isosurface discretization (1)

In many applications of interest, a hold-all domain D is equipped with a
computational, simplicial mesh 7.

A scalar “level set” function ¢ : D — R is defined at the vertices of T.

Of particular interest is an isosurface I of ¢ (say, that associated to the value 0),
or the corresponding negative subdomain €,

MN={xeDb, ¢(x)=0}, Q:={xeD, ¢(x)<0}.

We wish to construct a mesh of Q (or a surface triangulation of T).

(Left) Isolines of a level set function ¢ defined at the vertices of a mesh T of a computational box D (right). . .
40/75



Isosurface discretization (I1)
Definition 3.

The level set function ¢ for Q C D is often chosen as the signed distance function.
The signed distance function dq : R? — R to a bounded domain Q C RY is given by:
—d(x,0Q) if xeQ,
dQ(X) = 0 if x € 89,
d(x,090)  otherwise,
where d(x,09) := rgggz |x — p| is the usual Euclidean distance from x to 0.
P

OW 0\/1
Two level set functions for the domain Q = (0,1) C R
o

=

DA
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e Efficient algorithms exist to calculate dg, such as the Fast Marching algorithm
, the Fast Sweeping algorithm , etc.

e A free, open-source implementation: mshdist
. https://github.com/ISCDtoolbox/Mshdist

< C /github.cor

O Search or jump to... Pull requests Issues Marketplace ~Explore

& 1SCDtoolbox / Mshdist ' Pubiic & pin

<> Code Issues 1 Pull requests 1 Actions Projects Security Insights Settings

# master + ¥ 3branc © 0tags Go to file Code ~

@ capogny Redistancing in surface context seems to work ¢53b5 7 D 58 commits
M documentation Change mesh file in the documentation

B sources

O gitignore

D travisyml

(3 CMakeLists.txt xe: s and small errors
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Isosurface discretization (IV)

A two-step solution:
@ Discretize explicitly the 0 level set of ¢ into T by using patterns.

= a new valid, conforming mesh Ttemp is obtained, which is of very low quality.

@ Improve the quality of Ttemp by remeshing, to obtain T.
= A high-quality mesh T is obtained, where Q and D\ Q are explicitly discretized.

|

(Left) One level set function ¢ defined at the vertices of T; (middle) low-quality mesh Tiep, obtained from the
discretization of the 0 level set of ¢ into T ; (right) high-quality mesh T obtained after remeshing Ttemp- .



Isosurface discretization using mmg

mmg3d input.mesh -1s -sol lsfunc.sol -hmin 0.001 -hmax 0.01
-hausd 0.001 -hgrad 1.3

-5 0000E-02 50000€-02

T — T ——
~1.0000E-01 00000E+00 T.0000E-01 !I

(Left) some isosurfaces of an implicit function defined in a cube, (right) result after discretization in the
ambient mesh and local remeshing.
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Volume mesh generation from an invalid surface triangulation (1)

e Let Q C RY be a domain, supplied only via a surface mesh S of its boundary 99Q.
e The mesh S may be invalid (i.e. show intersecting elements, small gaps, etc.).

e We wish to construct a mesh of Q from this datum.

An invalid surface mesh of a domain Q.
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Volume mesh generation from an invalid surface triangulation (II)

One possible solution:
© Calculate the signed distance function dqo to , at the vertices of a mesh 7 of a

larger, computational box D.
e This calculation is possible even if the surface mesh S is invalid.
e The mesh 7 may be adapted so that this calculation is accurate.

@ Apply the isosurface discretization operation to obtain a new mesh T of D in
which Q is explicitly discretized.

New mesh 7 of D, enclosing Q
as a submesh.
o F = E E

Isolines of dy at the vertices of a
Mesh S of the contour 9. mesh 7 of a bounding box D.
DA

46 /75



Volume mesh generation from an invalid surface triangulation (lIl)

%

(Left) isosurfaces of the signed distance function to the “Sagrada Familia”, calculated at the vertices of an
adapted mesh (right).

DA
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Volume mesh generation from an invalid surface triangulation (1V)

[m]

=

Reconstructed mesh by using the isosurface discretization operation from the signed distance function to Q




© Basic theory of remeshing

o A few definitions and key concepts
@ Why remeshing?

@ Remeshing in practice

© Applications of remeshing

o Adaptation to a user-defined size prescription

@ Isosurface discretization and volume mesh generation
@ Lagrangian motion of a domain

@ Body-fitted interface tracking

© A glimpse on a recent challenge: parallel remeshing
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Many physical phenomena occur on a moving domain Q(t).

VAN
N/
goes

N
i

Accurate simulations rely on an exact discretization of Q(t) at
all times.

N

AVAVAY
.5%}%“ oV

N,
AVAVAVAV'

Simple “Lagrangian strategies’ involve the deformation of a

vaY

A%

KK

K0
ATAYAV, v, ray
. . . A Davavs %ﬂ'éﬂ
mesh T according to a velocity field V(x)...

. which is a notoriously difficult operation!

—>

Moving the vertices of a mesh according to a velocity field V(x) is prone to produce
overlapping elements.

A Rayleigh-Taylor instability

in computational fluid-dynamics
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One deformation strategy of a mesh 7 along a vector field V/(x) over (0, T) reads:

Find the largest time 7 such that moving each vertex x € T to x + 7V/(x)
results in a valid mesh;

Apply remeshing to improve the quality of the resulting mesh;

If = T, the motion is complete. Else, return to @ for the remaining time.

(Left) initial shape and associated deformation field; (middle) the mesh has become very stretched, nearly
invalid; (right) after quality-oriented remeshing, the deformation process can resume.
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]Tracking domain evolution (I11)
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Rotation of a blade by Lagrangian motion using the library Yales2
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vertifloat.mp4
Media File (video/mp4)


Tracking domain evolution (IV)‘

Even though “clever’ heuristics may improve their efficiency, such Lagrangian
procedures are usually reserved to relatively mild deformations.

(Left) As the evolving shape gets very stretched, the quality of the mesh tends to degenerate; (right) example of
a motion involving topological changes, which is typically difficult to realize by mesh deformation.
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© Basic theory of remeshing
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@ Why remeshing?

@ Remeshing in practice

© Applications of remeshing
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@ Isosurface discretization and volume mesh generation
@ Lagrangian motion of a domain

@ Body-fitted interface tracking
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A short digression: the level set method (I)
way.

A paradigm: the motion of an evolving domain is conveniently described in an implicit

A domain Q C R? is equivalently defined by a function ¢ : RY — R such that:
d(x) <0

ifxeQ

7 P(x)=0 if x €

Po9(x)>0

if x€°Q

One domain Q C R? (left), graph of an associated level set function (right).
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A short digression: the level set method (II)‘

Let Q(t) C RY be a domain moving according
to a velocity field v(t,x) € RY.

Let ¢(t, x) be a level set function for Q(t).

The motion of Q(t) translates in terms of ¢ as
the level set advection equation:

¢ B
E(t, x)+ v(t,x).Vé(t,x) =0

If v(t, x) is normal to the boundary 0(t), i.e.:

v(t,x) = V(t, x)%,

this rewrites as a Hamilton-Jacobi equation: Q(t +dt) = [p(t + dt,.) < 0]

99 (6,5 + V() Vo(t, )| = 0
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In its “classical” implementation, the level set method is conducted on a fixed mesh
T of the computational domain D:

e The time interval (0, T) is discretized as 0 =to < t; < ... < ty = T.

e Forall n=0,..., N, the domain Q(t") is solely known as the negative subdomain

Q(t") = {x €D, ¢(t",x) < 0},
where the level set function ¢(t",-) is discretized at the vertices of 7.

e The motion Q(t") — Q(t"™) is realized by solving the level set equation

92 (t,x) + v(t,x) - Vo(t,x) =0 for (t,x) € (¢",t"") x D,
o(t", x) is given for x € D

on the fixed mesh 7.

e Drawback: Since €(t) is never discretized, the physical equation of the motion,
producing the velocity field v(t, x) has to be approximated by an equation on D.
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The “classical” practice of the level set method

(Upper row) Evolution of a rising bubble of fluid immersed in another, more dense fluid; (lower row) values of
associated level set functions.
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Open-source implementations dedicated to the level set method:

e Distancing / redistancing operations: mshdist

https://github.com/ISCDtoolbox/Mshdist

e Resolution of the level set advection equation: advect

https://github.com/ISCDtoolbox/Advection

<« C O 8 nhttps://github.com/ISCDtoolbo;

O Search or jump to... Pull requests Issues Marketplace Explore

& ISCDtoolbox / Advection | pubiic

<> Code Issues Pull requests Actions Projects Wiki Security Insights Settings

¥ master ~ ¥ 2branches © 0 tags Go to file Add file Code ~

Charles Dapogny Change threshold for ht.max from 3.71np to 5*np un function on 11Aug 2020 D 41 comn

B demos Add new information in manual and Readme 5 years ago
B sources Change threshold for ht.max from 3.71*np to 5*np un function hashe... ago
0O travisyml Updates installation 6 years ago
akeLists.tx pdates installation 6 years ago
CMakeLists.txt Updates installati 5 g
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Body-fitted interface tracking

Using the isosurface discretization operation, this program can be carried out while
modifying the computational mesh at each iteration.

Evolution of the rising bubble by using the combination of the level set method with isosurface discretization.” © "
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e Shape optimization aims at improving the performance of the initial design Q° of a
mechanical structure (e.g. a beam, a mechanical actuator,...) or a fluid duct, with
respect to a physical criterion.

e The problem arises under the form:

amin J(Q),

where
e J(Q) is a cost functional, depending on Q in a possibly very complicated way
(via the solution to a PDE posed on Q). For instance,

- When Q is a structure, J(2) may be the work of external forces on €,
a vibration frequency, etc.

- When Q is a fluid duct, J(£2) may account for the work of viscous
forces inside Q.

e U,q is a set of admissible designs, which encompasses, e.g. volume, or
manufacturability constraints.
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Example: shape optimization (1)

e Techniques from shape optimization make it is possible to calculate a shape
gradient at a shape , i.e. a vector field Vq : R? — R? such that:

J((Id + 7Va)(Q)) < J(R2), for 7 > 0 small enough.

(Id + Vo) (52)

e Starting from an initial design Q°, the sequence of shapes
Q" = (Id + 7" Van)(Q"), where 7" is a pseudo-time step,
evolves by decreasing the criterion J().
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A thermal chamber D is divided into

- A phase Q with high conductivity v,
- A phase D\ Q with low conductivity o.

A temperature To = 0 is imposed on I'p
and the remaining boundary 9D \ T'p is in-
sulated from the outside.

A heat source is acting inside D.

The temperature ug inside D is solution to
the two-phase Laplace equation.

The average temperature inside D,

1
J(Q): ﬁ/;UQdX

is minimized under a volume constraint.
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Optimization of the shape of a heat diffuser (II)

Optimization of the shape of a heat diffuser, from [Fe/lDalo].

[m]

=

DA
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heat.mp4
Media File (video/mp4)


A solid obstacle Qs := Q is placed inside a fixed cavity D where a fluid is flowing,
occupying the phase Qf := D \ Q.

The fluid obeys the Navier-Stokes equations (Re = 60), and the solid is governed by
the linearized elasticity system.

Weak coupling between Qf and €s: the fluid exerts a traction on the interface I'.

We optimize the shape of Q, with respect to the solid compliance
5(Q) = / Ae(un,) : e(uq,) dx,

under a volume constraint.
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An advanced example in fluid-structure interaction (I1)

Optimization of the shape of a mast withstanding an incoming flow in 3d, from [Fe/lDalo].
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e The dramatic increase in computational resources paves the way to more and more
realistic numerical simulations. based on large-scale meshes.

e This raises the need to process (remesh, adapt) very large meshes, that can barely
be stored in memory.

e A burning challenge is then to perform remeshing in parallel, on distributed
memory architectures: each process should receive and treat a portion of the mesh
independently of what happens on the other processes.
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e The mesh 7T is partitioned into disjoint submeshes 7, k =1,..., K.

e The edges and triangles lying at the interface between different submeshes form
the overlap mesh O.

e Each part 7k is modified on its corresponding processor, independently of the
treatment of the other submeshes.

Difficulties:

e To achieve full efficiency, it is desirable that the different processes bear
comparable work loads.... a feature which is difficult to predict.

e Specific data structures are needed for elements T € T sharing an interface entity
in O (update of the neighboring elements treated on other processes, etc), which
have to be maintained.
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Parallel remeshing

One solution: iterative remeshing-repartitioning procedure: For n =0, ...,

@ Create a new partition of 7 into K disjoint submeshes 71, ... 7Tk, and create or
update the structure for the overlap mesh O.

@ Apply the sequential remesher to all the T, while leaving the entities in O
unmodified;

First iteration 2d iteration 3d iteration
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Parallel remeshing

M
00e+00  0.10 0.15 020 025 32e-01

u R

Simulation of a turbulent flow around a delta wing on a mesh with 28M tetrahedra; (left) slices of the Mach
number and adapted mesh; (right) flow and mesh at the trailing edge (from ).
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