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Localized plasmonic resonances (I)

A localized plasmon resonance is a phenomenon caused by the interaction between
an electromagnetic wave and a nanoparticle in a dielectric medium.

The Lycurgus cup is encrusted with gold nanoparticles. It looks (left) green when seen in
reflection, and (right) red when seen in transmission.
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Localized plasmonic resonances (II)

• When the nanoparticle is excited by an electromagnetic wave whose frequency
is close to a plasmonic resonance,

• the absorbing and scattering properties of the particle are strongly enhanced,

• the electric field blows up in the vicinity of the particle.

• Localized plasmonic resonances occur only in specific situations:

• The size of the nanoparticle has to be much smaller than the wavelength,

• The electric permittivity of the particle must have negative real part, as is the
case, e.g. of metallic particles (gold, silver) at optical frequencies.

• The great sensitivity of plasmonic resonances to the local environment of the
particle has been used as an ingredient in accurate imaging processes [Ma]:

• biosensors, gold nanoparticles being harmless for health;

• spectroscopy devices in biochemistry, to image molecular adsorption on DNA,
polymers, etc.
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Mathematical model for plasmonic resonances (I)

The field u scattered by an incident wave ui is solution
to the TM Helmholtz equation:

div( 1
µD
∇u) + ω2εDu = 0 on D ∪ (Rd \ D),

u+ = u− on ∂D,
1
µd

∂u+

∂n
= 1

µm

∂u−

∂n
on ∂D,

u − ui satisfies the Sommerfeld
condition at infinity.

When the frequency ω is fixed and |D|→ 0, a rescal-
ing shows that plasmonic resonances are governed by
the existence of non trivial solutions to the quasi-static
equation [AmMiRuiZha, AmRuiYuZha]:

∆u = 0 on D ∪ (Rd \ D),
u+ = u− on ∂D,

1
µd

∂u+

∂n
= 1

µm

∂u−

∂n
on ∂D,

u(x)→ 0 as |x |→ ∞.

ui

D
µm

µd
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Mathematical model for plasmonic resonances (II)

This quasi-static problem is often investigated using potential theory; u is represented
as a single layer potential u = SDφ, φ ∈ H−1/2(∂D):

u(x) = SDφ(x) :=

∫
∂D

G(x , y)φ(y) ds, where

G(x , y) =

{
1
2π log|x − y | if d = 2,
|x−y|2−d

ωd (2−d)
if d ≥ 3,

is the Newtonian potential.

Using the Plemelj jump relations on ∂D:

∂u±

∂n
= ±1

2
φ+K∗Dφ,

where K∗D : H−1/2(∂D)→ H−1/2(∂D) is the Neumann-Poincaré operator of D:

K∗Dφ(x) =

∫
∂D

∂G

∂nx
(x , y) φ(y) ds(y),

the search for plasmonic resonances boils down to the eigenvalue problem:

Find φ ∈ H−1/2(∂D) s.t. λφ−K∗Dφ = 0, where λ =
1
2
µd + µm

µd − µm
.
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More about the Neumann-Poincaré operator

Proposition 1.
If D is of class C1,α,

• the operator K∗D is compact.

• The spectrum σ(K∗D) is contained in (− 1
2 ,

1
2 ]. It consists of a discrete sequence

with 0 as unique accumulation point.

The Neumann-Poincaré operator is a key tool in the study of many interface
problems with various origins; see [Kan] and references therein:

• Detection and imaging of inhomogeneities embedded in an ambient medium,

• passive cloaking, and cloaking by anomalous localized resonances,

• Analysis of stress concentration between close-to-touching inclusions (metallic
particles, elastic fibers, etc.).

8 / 50



Purposes of the present work

1. Investigate the plasmonic resonances associated to a large collection D1, ...,DN

of N small particles: do interactions between particles stir new resonance
effects?

2. Investigate the quasi-static limit of the Helmholtz equation,{
−div(AD∇u) = f in Rd ,

+ conditions at infinity ,

where AD(x) =

{
a if x ∈ D1 ∪ ... ∪ DN ,
1 otherwise,

when the conductivity a is negative, and the number N of particles grows to ∞.
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The homogenization setting

Microscopic inclusions with rescaled pattern ω ⊂ Y := (0, 1)d are periodically
distributed in a macroscopic domain Ω ⊂ Rd .

!

Y

⌦

Homogenized setting for a periodic distribution of inclusions.

Working assumptions:

• ω is smooth and strongly included in Y : ω b Y ;

• ω and Y \ ω are connected.
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Notations

• Macroscopic and microscopic
‘coordinates’ of x ∈ Rd :

x = ε
[x
ε

]
Y

+ ε
{x
ε

}
Y
,

for
[
x
ε

]
Y
∈ Zd and

{
x
ε

}
Y
∈ Y .

• Indices of the cells that are
strictly contained in Ω:

Ξε =
{
ξ ∈ Zd , ε(ξ + Y ) b Ω

}
,

and corresponding region in Ω:

Oε =
⋃
ξ∈Ξε

ε(ξ + Y ).

⌦

•x

Y

"
hx1

"

i

"
hx2

"

i •

nx

"

o
Y

0

• The considered set of inclusions is:

ωε =
⋃
ξ∈Ξε

ωξε , where ω
ξ
ε := ε(ξ + ω).
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The Poincaré variational principle

We consider the conductivity equation:{
−div(Aε∇u) = f in Ω,

u = 0 on ∂Ω,
where Aε(x) =

{
a if x ∈ ωε,
1 if x ∈ Ω \ ωε,

(Pε)

and f ∈ H−1(Ω) is a source.

A key tool in its study is the Poincaré variational operator Tε : H1
0 (Ω)→ H1

0 (Ω): for
u ∈ H1

0 (Ω), Tεu is the unique element in H1
0 (Ω) such that:

∀v ∈ H1
0 (Ω),

∫
Ω

∇(Tεu) · ∇v dx =

∫
ωε

∇u · ∇v dx .

Indeed, the conductivity equation (Pε) is equivalent to:

(λId− Tε)u = λg , where λ =
1

1− a
, and f = ∇g .

In particular, (Pε) is well-posed iff 1
1−a

/∈ σ(Tε).
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The spectrum of Tε (I)

• Tε is a positive, self-adjoint operator with norm ||Tε||≤ 1.

• The following orthogonal decomposition holds:

H1
0 (Ω) = Ker(Tε)⊕ hε ⊕Ker(Id− Tε),

where

• Ker(Tε) =
{
u ∈ H1

0 (Ω), u = a cste in each connected component of ωε,
}

• Ker(Id− Tε) =
{
u ∈ H1

0 (Ω), u = 0 on Ω \ ωε,
}

• hε (≈ the space of single layer potentials) contains the u ∈ H1
0 (Ω) such that:{

∆u = 0 on ωε ∪ (Ω \ ωε),∫
∂ω
ξ
ε

∂u+

∂n
ds = 0 for each connected component ωξε of ωε.
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The spectrum of Tε (II)

Proposition 2 ([BonTri, KhaPuSha]).
The spectrum of Tε : hε → hε is a translate of that σ(K∗ε) of the Neumann-Poincaré
operator; it is a discrete sequence of eigenvalues with 1

2 as unique accumulation point.

0 < λ−1 ≤ λ
−
2 ≤ ... ≤

1
2
, and

1
2
≤ ... ≤ λ+

2 ≤ λ+
1 < 1.

If
{
w±i
}
i≥1 are the associated eigenfunctions, the min-max formulae hold:

λ−i = min
u∈hε\{0}

u⊥w
−
1 ,...,w

−
i−1

∫
ωε

|∇u|2 dx∫
Ω

|∇u|2 dx
= max

Fi⊂hε
dim(Fi )=i−1

min
u∈F⊥i \{0}

∫
ωε

|∇u|2 dx∫
Ω

|∇u|2 dx
,

and
λ+
i = max

u∈hε\{0}
u⊥w+

1 ,...,w
+
i−1

∫
ωε

|∇u|2 dx∫
Ω

|∇u|2 dx
= min

Fi⊂hε
dim(Fi )=i−1

max
u∈F⊥i \{0}

∫
ωε

|∇u|2 dx∫
Ω

|∇u|2 dx
.

Hint of the proof: The operator Rε := Tε − 1
2 Id is related to K∗ε as:

2Rεu = (Sε ◦ K∗ε ◦ S−1
ε )(u|∂ωε), u ∈ hε.
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More remarks about Tε

• For u ∈ H1
0 (Ω), Tεu only depends on u|ωε∈ H1(ωε), modulo a function in

C(ωε) :=
{
u ∈ H1(ωε), ∃cξ ∈ R, u = cξ in ωξε , ξ ∈ Ξε

}
.

• The values of Tεu on Ω \ ωε may be ‘easily recovered’ from its values inside ωε
(since Tεu is harmonic on Ω \ ωε ).

• The spectrum of the Neumann-Poincaré operator can be studied from two
complementary points of view:

• by using integral equations, posed on ∂ωε,

• by variational methods, involving the operator Tε (posed on a fixed domain).
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Goals of this work

The two concurrent goals pursued in this work rewrite, in the homogenization setting:

1. Analyze the asymptotic behavior of the spectrum σ(Tε) in terms of the limit
spectrum:

lim
ε→0

σ(Tε) =
{
λ ∈ [0, 1], s.t. ∃εj ↓ 0, λεj ∈ σ(Tεj ), λεj → λ

}
.

2. Explore the well-posedness of the conductivity equation for the voltage
potential, {

−div(Aε∇u) = f in Ω,
u = 0 on ∂Ω,

,

when the conductivity a inside the inclusions is negative, in the limit ε→ 0.
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Uniform bounds on the non trivial part of σ(Tε)

One part of the following result was observed in [BuRam]:

Theorem 3.
There exists ε0 > 0 such that, for 0 < ε < ε0,

(λ ∈ σ(Tε), λ /∈ {0, 1})⇒ m ≤ λ ≤ M,

where 0 < m < M < 1 are explicit constants:

m = min
u∈ĥ0
u 6=0

∫
ω

|∇yu|2 dy∫
Y

|∇yu|2 dy
, and M = max

u∈ĥ0
u 6=0

∫
ω

|∇yu|2 dy∫
Y

|∇yu|2 dy
,

and ĥ0 ⊂ H1(Y )/R is the Hilbert space defined by:

ĥ0 =

{
u ∈ H1(Y )/R, ∆yu = 0 in ω ∪ (Y \ ω), and

∫
∂ω

∂u+

∂ny
ds = 0

}
.

Hint of the proof: Use the min-max formulae for the eigenvalues of Tε : hε → hε.
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How to study the limiting behavior of sequences λε ∈ σ(Tε)?

• Tε converges weakly to the trivial operator |ω|Id:

∀u ∈ H1
0 (Ω), Tεu

ε→0−−−→ |ω|u, weakly in H1
0 (Ω).

• This poor convergence allows to infer nothing about the spectrum σ(Tε).

• As is well-known in homogenization theory, one remedy to get a stronger
convergence uses correctors, describing the oscillations of the functions Tεu at
the ε-scale.

• These correctors can be used in the study of eigenvalues - see [SanVo, MosVo]
- but this approach seems difficult in our context.

• Our work is largely inspired by that of [AlCon] about Bloch wave
homogenization. Tε is rescaled into an operator

Tε : L2(Ω,H1(ω)/R)→ L2(Ω,H1(ω)/R),

which ‘does the same’ as Tε, but acts on functions φ(x , y) depending on both
macroscopic and microscopic variables x and y .
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The extension and projection operators Eε and Pε (I)

Definition 1 ([AlCon, CioDamGri]).

• The extension operator Eε : L2(Ω)→ L2(Ω× Y ) is defined by:

Eεu(x , y) =

{
u(ε
[
x
ε

]
Y

+ εy) if x ∈ Oε,
0 otherwise.

• The projection operator Pε : L2(Ω× Y )→ L2(Ω) is defined by:

Pεφ(x) =


∫
Y

φ(ε
[x
ε

]
Y

+ εz ,
{x
ε

}
Y

) dz if x ∈ Oε,

0 otherwise.
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The extension and projection operators Eε and Pε (II)

!

Y

y •
•

x

"
hx

"

i
Y

"
hx

"

i
Y

+ "y

••

The operator Eε rescales the content of each cell to size 1.
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The extension and projection operators Eε and Pε (III)

• Eε and Pε are bounded with norm 1.

• Eε : L2(Ω)→ L2(Ω× Y ) and Pε : L2(Ω× Y )→ L2(Ω) are adjoint operators.

• Eε and Pε are ‘almost inverse’ from one another:

• For u ∈ L2(Ω), PεEεu(x) =

{
u(x) if x ∈ Oε,
0 otherwise.

• For φ ∈ L2(Ω× Y ), EεPεφ→ φ strongly in L2(Ω× Y ), as ε→ 0.

• (Two-scale convergence): (see also [Al, Ngue]) Let uε be a bounded sequence
in H1(Ω); then, up to a subsequence, there exist u0 ∈ H1(Ω) and
û ∈ L2(Ω,H1

#(Y )) such that:

uε → u0 weakly in H1(Ω), and Eε(∇uε)→ ∇u0 +∇y û weakly in L2(Ω× Y ).
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The rescaled operator Tε

We define the rescaled operator

Tε = EεTεPε : L2(Ω,H1(ω)/R)→ L2(Ω,H1(ω)/R),

which is possible since Tε is defined modulo functions in Ker(Tε) (i.e. functions that
are constant inside each inclusion ωξε).

Proposition 4.
The rescaled operator Tε has the following properties.

• Tε is self-adjoint.

• The spectrum σ(Tε) of Tε coincides with that σ(Tε) of Tε except that it does
not contain the eigenvalue 0
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Properties of the rescaled operator Tε.

Proposition 5.

The operator Tε converges pointwise to a limit T0:

∀φ ∈ L2(Ω,H1(ω)/R), Tεφ
ε→0−−−→ T0φ, strongly in L2(Ω,H1(ω)/R).

The operator T0 is defined by

T0φ(x , y) = Q (∇v0(x) · y + v̂(x , y)) , where

• Q : L2(Ω,H1(Y ))→ L2(Ω,H1(ω)/R) is the natural restriction,

• v̂ is the unique solution in L2(Ω,H1
#(Y )/R) to the equation:

−∆y v̂(x , y) = −divy (1ω(y)∇yφ)(x , y) in H1
#(Y ), a.e. in x ∈ Ω,

• v0 is the unique solution in H1
0 (Ω) to:

−∆v0 = −div
(∫

ω

∇yφ(x , y) dy

)
.

Hint of proof: This is implied by two-scale convergence: the strong convergence of
sequences Tεu shows that T0u ‘keeps track’ of the ε-oscillations of the Tεu.
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Single cell resonances.

This convergence result allows to identify one part of limε→0 σ(Tε), corresponding to
the resonance modes of a single inclusion ω ⊂ Y .

Theorem 6.
The limit spectrum limε→0 σ(Tε) contains the cell spectrum, i.e. the spectrum of the
operator T0 : H1

#(Y )/R→ H1
#(Y )/R defined by: for u ∈ H1

#(Y )/R,

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .

Hint of the proof: The pointwise convergence Tε → T0 allows to infer:

lim
ε→0

(σ(Tε) \ {0}) = lim
ε→0

σ(Tε) ⊃ σ(T0).

In addition, it readily follows from the definition of T0 that σ(T0) ⊂ σ(T0).

�
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Rescaling Tε over packs of cells (I)

Following [AlCon, Plan], the previous rescaling procedure can be performed over
packs of K d cells, K > 1.

We define new extension and projection operators over K d cells:

EK
ε : L2(Ω)→ L2(Ω× KY ), and PK

ε : L2(Ω× KY )→ L2(Ω),

which satisfy analogous properties to those of their single-cell counterparts.

⌦

K

Rescaling over a pack of K d cells.

30 / 50



Rescaling Tε over packs of cells (II)

• We introduce the collection of K d copies of ω:

ωK :=
⋃

0≤j≤K−1

(j + ω) ⊂ KY ,

and the quotient Hilbert space HK := H1(ωK )/C(ωK ), where

C(ωK ) :=
{
u ∈ H1(ωK ), ∃cj ∈ R, u ≡ cj on (j + ω), 0 ≤ j ≤ K − 1

}
.

• The rescaled operator TK
ε : L2(Ω,HK )→ L2(Ω,HK ) is now TK

ε = EK
ε TεP

K
ε .

• Again, we prove the the pointwise convergence of TK
ε to a limit operator TK

0 :

For all φ ∈ HK , TK
ε φ

ε→0−−−→ TK
0 φ, strongly in HK .

• The spectrum σ(TK
0 ) contains that of the operator TK

0 : HK → HK defined by:

∀v ∈ HK ,

∫
KY

∇y (TK
0 u) · ∇yv dy =

∫
ωK

∇yu · ∇yv dy .
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The Bloch spectrum.

The spectrum σ(TK
0 ) is analyzed using a discrete Bloch decomposition [AguiCon]:

Theorem 7.

Let u in L2
#(KY ). Then, there exist K d complex-valued functions uj(y) ∈ L2

#(Y ),
j = (j1, ..., jd), j1, ..., jd = 0, ...,K − 1, such that:

u(z) =
∑

0≤j≤K−1

uj(z) e
2iπj
K
·z , a.e. z ∈ KY ;

The uj are unique and are given by:

uj(y) =
∑

0≤j′≤K−1

u(y + j ′)e−2iπ j
K
·(y+j′), a.e. y ∈ Y .

Furthermore, the Parseval identity holds:

∀u, v ∈ L2
#(KY ),

1
K d

∫
KY

u(z)v(z) dx =
∑

0≤j≤K−1

∫
Y

uj(y)vj(y) dy .
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The Bloch spectrum.

Bloch decomposition behaves well with functions u ∈ H1(ωK ), and diagonalizes
operators with Y -periodic coefficients. Hence,

σ(TK
0 ) =

⋃
0≤j≤K−1

σ(Tηj ), for ηj =
j

K
,

and where the operators Tη are defined by:

• For η 6= 0, Tη : H1
#(Y )→ H1

#(Y ) is given by:

∀v ∈ H1
#(Y ),

∫
Y

(∇y (Tηu) + 2iπη(Tηu)) · (∇yv + 2iπηv) dy =∫
ω

(∇y (Tηu) + 2iπηu) · (∇yv + 2iπηv) dy .

• T0 : H1
#(Y )/R→ H1

#(Y )/R is the the same as in the case of a single cell:

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .
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The Bloch spectrum.

Theorem 8.
The spectrum σ(Tη) is composed of a discrete sequence of real eigenvalues:

0 < λ−1 (η) ≤ λ−2 (η) ≤ ... ≤ 1
2
≤ ... ≤ λ+

2 (η) ≤ λ+
1 (η) ≤ 1.

Moreover, for any i = 1, ..., the mapping Y 3 η 7→ λ±i (η) is Lipschitz continuous.

Hint of the proof:

• This rests on an adapted, quasi-periodic version of the Poincaré variational
principle, which is tightly connected to the (compact) quasi-periodic version of
the Neumann-Poincaré operator.

• The Lipschitz continuity of the mappings Y 3 η 7→ λ±i (η) relies on the
(adapted) min-max formulae, and on an argument of [Ge].

�
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The Bloch spectrum.

Theorem 9.

The limit spectrum limε→0 σ(Tε) contains the Bloch spectrum σBloch defined by

σBloch =
∞⋃
i=1

[
min

η∈[0,1]d
λ−i (η), max

η∈[0,1]d
λ−i (η)

]
∪
∞⋃
i=1

[
min

η∈[0,1]d
λ+
i (η), max

η∈[0,1]d
λ+
i (η)

]
.

Hint of the proof:

• For every K ≥ 1, the pointwise convergence TK
ε → TK

0 shows that:

lim
ε→0

σ(Tε) ⊃ σ(Tk
0) ⊃ σ(TK

0 ) =
⋃

0≤j≤K−1

σ(Tηj ).

• Hence, the limit spectrum contains
∞⋃
i=1

{
λ±i (ηj)

}
K≥1

0≤j≤K−1
,

which gives the desired band structure since the mappings η 7→ λ±i (η) are
continuous and limε→0 σ(Tε) is a closed set.

�

35 / 50



1 Localized plasmonic resonances and the Neumann-Poincaré operator
Foreword about localized plasmonic resonances
Mathematical model for plasmonic resonances

2 Setting and background material
Setting and notations
The Poincaré variational principle

3 Asymptotic behavior of the spectrum of the Neumann-Poincaré operator
Uniform bounds on σ(Tε)
Single cell resonant modes: the cell eigenvalues
Collective resonances of cells: the Bloch spectrum
Completeness

4 The conductivity equation
Setting
Main results
The particular case of high-contrast

36 / 50



The completeness result

The remainder of limε→0 σ(Tε) gathers the limit behaviors of the eigenvectors of Tε
which spend a ‘not too small’ part of their energy near the macroscopic boundary ∂Ω.

Theorem 10.

The limit spectrum is decomposed as:

lim
ε→0

σ(Tε) = {0, 1} ∪ σ∂Ω ∪ σBloch,

where the boundary layer spectrum σ∂Ω is the set of the λ ∈ (0, 1) such that, for any
sequence λε ∈ σ(Tε) with λε → λ, and any corresponding (normalized) eigenvector
sequence uε ∈ H1

0 (Ω):

∀s > 0, lim
ε→0

ε−(1−1/d+s)||∇uε||L2(Uε) =∞,

where Uε := {x ∈ Ω, d(x , ∂Ω) < ε} is the tubular neighborhood of ∂Ω with width ε.

The difficulty to characterize more precisely σ∂Ω reveals very strong interactions
between the macroscopic boundary Ω and the inclusions; see [CasZua, MosVo].
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General setting

• We now turn to the conductivity equation:{
−div(Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
where Aε(x) =

{
a if x ∈ ωε,
1 otherwise, (Pε)

and the source f is in H−1(Ω).

• When a > 0, the classical homogenization theory states that uε converges weakly
in H1

0 (Ω) to the unique solution u∗ of{
−div(A∗∇u∗) = f in Ω,

u∗ = 0 on ∂Ω,
(P∗)

where the positive definite homogenized tensor is defined by:

A∗ij =

∫
Y

A(y)(∇ywi + ei ) · (∇ywj + ej) dy , where A(y) =

{
a if y ∈ ω,
1 if y ∈ Y \ ω.

and the cell functions wi ∈ H1
#(Y )/R solve

−div(A(y)(∇wi + ei )) = 0 in Y , i = 1, ..., d .

• What happens when a < 0 ?
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The formal, homogenized tensor

The cell problems

−div(A(y)(∇ywi + ei )) = 0 in Y , i = 1, ..., d .

are well-posed provided λ := 1
1−a

does not belong to the spectrum σ(T0) of the cell
operator T0 : H1

#(Y )/R→ H1
#(Y )/R:

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .

It then makes sense to define the (formal) homogenized tensor

A∗ij =

∫
Y

A(y)(∇ywi + ei ) · (∇ywj + ej) dy

as soon as a /∈ Σω :=
{
a ∈ C, 1

1−a
∈ σ(T0)

}
.
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Main results

Theorem 11.
Let a ∈ C \ Σω; then,

• If uε ∈ H1
0 (Ω) is a sequence of solutions to (Pε) such that

||∇uε||L2(Ω)≤ C ,

then up to a subsequence, uε converges weakly in H1
0 (Ω) to a solution of (P∗).

• Conversely, if u ∈ H1
0 (Ω) is one solution to (P∗) (if any), then for any sequence

aε → a, aε /∈ Σω, there exists a sequence fε ∈ H−1(Ω) converging pointwise to
f such that the voltage potentials uε, solution to:{

−div(Aε∇uε) = fε in Ω,
uε = 0 on ∂Ω

, where Aε(x) =

{
aε if x ∈ ωε,
1 otherwise.

converge to u weakly in H1
0 (Ω)

This indicates that no ‘good’ solution to (P∗) can be singled out via such a limiting
process.
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Partial identification of the limit spectrum

Proposition 12.

Let a ∈ C \ {0}. Then 1
1−a

belongs to the limit spectrum limε→0 σ(Tε) if and only if
there exists f ∈ H−1(Ω) and a sequence fε ∈ H−1(Ω) with fε → f pointwise, such
that the solution uε ∈ H1

0 (Ω) of (Pε) with fε as a source term satisfies
||∇uε||L2(Ω)d→ +∞.

Corollary 13.

Let a ∈ C \ Σω, and let A∗ be the corresponding homogenized tensor. If

• either there exists u ∈ H1
0 (Ω), u 6= 0 such that −div(A∗∇u) = 0,

• or there exists f ∈ H−1(Ω) such that (P∗) does not have a solution,

then
1

1− a
∈ lim
ε→0

σ(Tε).
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The particular case of high-contrast

The previous material reveals that the conductivity equation (Pε) is uniformly
well-posed as ε→ 0 when a is either ‘very small’ or ‘very large’.

Theorem 14.

There exists a constant 0 < α such that, if the conductivity a belongs to
(−∞,−1/α) ∪ (−α, 0), then

(i) For 0 < ε, the system (Pε) for uε is well-posed, i.e. it has a unique solution for
any source f ∈ H−1(Ω), and uε depends continuously on f .

(ii) The homogenized tensor A∗ is elliptic; in particular, (P∗) is well-posed.

(iii) For any source f ∈ H−1(Ω), the unique solution uε ∈ H1
0 (Ω) to (Pε) converges,

weakly in H1
0 (Ω), to the unique solution u∗ of (P∗).
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Thank you !

Thank you for your attention!

46 / 50



References I

[AguiCon] F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed
in a fluid, Appl. Math. Optim., 18, (1988), pp.1–38.

[Al] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math.
Anal. 23, 6, (1992), pp. 1482–1518.

[AlCon] G. Allaire and C. Conca, Bloch wave homogenization and spectral
asymptotic analysis, J. Math. Pures et Appli., 77, (1998), pp.153–208.

[AmMiRuiZha] H. Ammari, P. Millien, M. Ruiz and H. Zhang, Mathematical
analysis of plasmonic nanoparticles: the scalar case, arXiv:1506.00866, (2016).

[AmRuiYuZha] H. Ammari, M. Ruiz, S. Yu, and H. Zhang, Mathematical
analysis of plasmonic resonances for nanoparticles: the full Maxwell equations,
arXiv:1511.06817, (2016).

[BonDaTri] É. Bonnetier, C. Dapogny and F. Triki, Homogenization of the
eigenvalues of the Neumann-Poincaré operator, submitted, (2017),
arXiv:1702.01798.

47 / 50



References II

[BonTri] E. Bonnetier and F. Triki, On the spectrum of the Poincaré variational
problem for two close-to-touching inclusions in 2d, Arch. Rational Mech. Anal.,
209, (2013), pp. 541–567.

[BuRam] R. Bunoiu and K. Ramdani, Homogenization of materials with sign
changing coefficients, Commun. Math. Sci., Vol. 14, No. 4 (2016),
pp. 1137–1154.

[CasZua] C. Castro and E. Zuazua, Une remarque sur l’analyse asymptotique
spectrale en homogénéisation, C. R. Acad. Sci. Paris, Ser. I 335 pp.99-104
(2002).

[CioDamGri] D. Cioranescu, A. Damlamian and G. Griso The periodic unfolding
method in homogenization, SIAM J. Math. Anal., 40(4), (2008), pp. 1585–1620.

[Ge] P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire
Équations aux Dérivées Partielles 1990-1991, volume 16, Ecole Polytechnique,
Palaiseau, (1991).

48 / 50



References III

[Kan] H. Kang, Layer potential approaches to interface problems, In Inverse
Problems and Imaging: Panoramas et synthèses, 44. Société Mathématique de
France, (2013).

[KhaPuSha] D. Khavinson, M. Putinar and H.S. Shapiro, On Poincaré’s
variational problem in potential theory, Arch. Rational Mech. Anal., 185,
(2007), pp. 143–184.

[Ma] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, (2007).

[MosVo] S. Moskow and M.S. Vogelius, First-order corrections to the
homogenised eigenvalues of a periodic composite medium. A convergence proof,
Proc. Roy. Soc., Edinburgh, 127, (1997), pp. 1263–1299.

[Ngue] G. Nguetseng, A general convergence result for a functional related to
the theory of homogenization, SIAM J. Math. Anal, 20:3 (1989), pp. 608–623.

[Plan] J. Planchard, Global behaviour of large elastic tube bundles immersed in
a fluid, Computational Mechanics, 2, (1987), pp. 105–118.

49 / 50



References IV

[SanVo] F. Santosa and M.S. Vogelius, First-Order Corrections to the
Homogenized Eigenvalues of a Periodic Composite Medium, SIAM J. Appl.
Math., 53(6), (1993), pp. 1636âĂŞ1668.

50 / 50


	Localized plasmonic resonances and the Neumann-Poincaré operator
	Foreword about localized plasmonic resonances
	Mathematical model for plasmonic resonances

	Setting and background material
	Setting and notations
	The Poincaré variational principle

	Asymptotic behavior of the spectrum of the Neumann-Poincaré operator
	Uniform bounds on (T)
	Single cell resonant modes: the cell eigenvalues
	Collective resonances of cells: the Bloch spectrum
	Completeness

	The conductivity equation
	Setting
	Main results
	The particular case of high-contrast


