Habilitation à Diriger des Recherches

Charles Dapogny

CNRS & Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Grenoble, France

15th April, 2024

Foreword: Shape and topology optimization

- Shape optimization aims to minimize a function of the domain.
- Such problems can be traced back to the early human history...
- They are now as topical as ever, because of the needs to realize energy savings and to get free from fossile fuels.
- Despite its extensive academic and industrial treatments, the discipline keeps raising fascinating issues:
 - Develop mathematical tools, e.g. to measure the sensitivity of a quantity with respect to the domain.
 - Develop efficient numerical methods, that leverage recent achievements in scientific computing, machine learning, etc.
 - Address novel, challenging physical situations.
 - Propose realistic optimal design models, that notably take into account uncertainties and fabrication constraints.

Hooke's principle: "As hangs the flexible chain, so but inverted stands the rigid arch".

Outline of the presentation

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- 2 Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Shape and topology optimization in a nutshell (I)

A shape and topology optimization problem reads:

$$\min_{\Omega} J(\Omega)$$
 s.t. $C(\Omega) \leq 0$,

where

- The shape Ω is a bounded Lipschitz domain in \mathbb{R}^d ;
- $J(\Omega)$ measures the physical performance of Ω ;
- $C(\Omega)$ is a constraint functional.

• In applications, $J(\Omega)$ and $C(\Omega)$ depend on the physical behavior of Ω , via a state u_{Ω} , solution to a boundary value problem posed on Ω .

Shape and topology optimization in a nutshell (II)

Thermal (or electric) conduction

- Ω is a thermal cavity;
- $u_{\Omega}: \Omega \to \mathbb{R}$ is the temperature within Ω , solution to the conductivity equation;
- $J(\Omega)$ is the mean, or maximum temperature in Ω ;
- $C(\Omega)$ is a constraint on the volume of Ω .

Structural mechanics

- Ω is a mechanical part;
- u_Ω : Ω → ℝ^d is the displacement of Ω, solution to the linear elasticity system;
- $J(\Omega)$ is the compliance of Ω ;
- The constraint C(Ω) concerns the volume of Ω, its von Mises stress, etc.

Shape and topology optimization in a nutshell (III)

A shape and topology optimization problem reads:

$$\min_{\Omega} J(\Omega)$$
 s.t. $C(\Omega) \leq 0$,

where

- The shape Ω is a bounded Lipschitz domain in \mathbb{R}^d ;
- $J(\Omega)$ measures the physical performance of Ω ;
- $C(\Omega)$ is a constraint functional.

... a notion that can be understood in various ways.

Different sensitivities with respect to the domain (I)

Hadamard's boundary variation method.

Variations Ω of a shape are considered under the form

$$\Omega_{\theta} := (\mathrm{Id} + \theta)(\Omega),$$

where $\theta \in W^{1,\infty}(\mathbb{R}^d;\mathbb{R}^d)$ is a "small" vector field.

Definition 1.

The shape derivative $J'(\Omega)(\theta)$ of a function $J(\Omega)$ is the Fréchet derivative of the underlying mapping $\theta \mapsto J(\Omega_{\theta})$:

$$J(\Omega_{\theta}) = J(\Omega) + J'(\Omega)(\theta) + o(\theta).$$

Different sensitivities with respect to the domain (II)

Nucleation of a tiny hole.

Variations of Ω are considered under the form

$$\Omega_{x_0,r} := \Omega \setminus \overline{B(x_0,r)},$$

where $x_0 \in \Omega$ and $r \ll 1$.

Definition 2.

A function $J(\Omega)$ has a topological derivative $dJ_T(\Omega)(x_0)$ at x_0 if the following expansion holds:

$$J(\Omega_{x_0,r}) = J(\Omega) + r^d dJ_T(\Omega)(x_0) + o(r^d).$$

A. A. Novotny and J. Sokołowski, Topological derivatives in shape optimization, Springer Science & Business Media, 2012. イロト イ御 トイラト イラト 一多

Different sensitivities with respect to the domain (III)

- The calculations of $J'(\Omega)(\theta)$ and $\mathrm{d}J_T(\Omega)(x)$ rely on the adjoint method.
- Their expressions depend on u_{Ω} and an adjoint state p_{Ω} .
- Assuming regularity of u_{Ω} and p_{Ω} , shape derivatives have the structure

$$J'(\Omega)(\theta) = \int_{\partial\Omega} v_{\Omega}(u_{\Omega}, p_{\Omega}) \, \theta \cdot n \, \mathrm{d}s,$$

where $v_{\Omega}(u_{\Omega}, p_{\Omega}) : \partial \Omega \to \mathbb{R}$ has a closed form expression.

• A descent direction for $J(\Omega)$ is easily revealed from this structure:

$$\theta = -v_{\Omega}(u_{\Omega}, p_{\Omega})n \text{ on } \partial\Omega \Rightarrow J'(\Omega)(\theta) < 0,$$

i.e. "small deformations" of Ω according to θ decrease the value of $J(\Omega)$.

• Points $x \in \Omega$ s.t. $dJ_T(\Omega)(x) < 0$ indicate where it is beneficial to drill tiny holes.

J.-L. Lions, Optimal control of systems governed by partial differential equations, Grundlehren der mathematischen Wissenschaften, (1971), Springer-Verlag.

A steepest-descent strategy:

- At each iteration n = 0, ..., the shape Ω^n is equipped with a mesh \mathcal{T}^n .
- The finite element computations for u_{Ω^n} and p_{Ω^n} are performed on \mathcal{T}^n .
- A descent direction θ^n is obtained from $J'(\Omega^n)$, $C'(\Omega^n)$.
- The mesh updates $\mathcal{T}^n \to \mathcal{T}^{n+1}$ leverage a mesh evolution algorithm.
- Topological derivatives are periodically used to nucleate small holes inside Ω .

A word of advertisement

The algorithms involved in this strategy are available as free, open-source codes.

- ISCDtoolbox: Algorithms for the level set method.
 - https://github.com/ISCDtoolbox
- Mmg: A general purpose remeshing library.
- https://www.mmgtools.org
 - https://github.com/MmgTools/mmg

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- 2 Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Optimization of a nanophotonic duplexer (I)

Joint work with A. Gliere, K. Hassan, N. Lebbe & E. Oudet

- Nanophotonic devices are the basic components of photonic integrated circuits.
- In these, light is transported by wave guides.
- The attached electric and magnetic fields are governed by Maxwell's equations.
- Duplexers steer incoming waves to different output channels, depending on their wavelength.
- The shape Ω of air inclusions in the Si core is optimized to achieve this effect.

Optimization of a nanophotonic duplexer (II)

Optimization of the shape of a nanophotonic duplexer.

Optimization of the shape of a 3d heat exchanger (I)

Joint work with G. Allaire, F. Feppon & P. Jolivet

- A thermal chamber D is made of
 - A phase $\Omega_{f,hot}$ conveying a hot fluid;
 - A phase $\Omega_{f,cold}$ conveying a cold fluid;
 - A solid phase Ω_s .
- The Navier-Stokes equations are satisfied in $\Omega_{f,hot}$, $\Omega_{f,cold}$.
- The stationary heat equation accounts for the temperature diffusion within D.
- The heat transferred from $\Omega_{f,\text{hot}}$ to $\Omega_{f,\text{cold}}$ is maximized.
- A constraint is imposed on the minimal distance between $\Omega_{f,hot}$ and $\Omega_{f,cold}$:

$$d(\Omega_{f,\mathsf{hot}},\Omega_{f,\mathsf{cold}}) \geq d_{\mathsf{min}}.$$

• Volume and pressure drop constraints are added on $\Omega_{f,hot}$, $\Omega_{f,cold}$.

Optimization of the shape of a 3d heat exchanger (II)

Optimization of the shape of a heat exchanger.

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Robustness and fabrication constraints

Realistic optimal design studies are often expected to be aware of:

- Uncertainties about the parameters of the physical models.
 - ⇒ We introduce various robust optimal design formulations, depending on the available information about uncertainties.
- The constraints imposed on (the geometry of) the design by fabrication processes.

Thin parts are likely to break during cooling.

Molding processes make undercuts undesirable.

- ⇒ We consider the overhang constraints imposed by the promising additive manufacturing technologies.
- **K. Maute**, *Topology optimization under uncertainty*, in Topology optimization in structural and continuum mechanics, (2014), pp. 457–471.
- G. Michailidis, Manufacturing constraints and multi-phase shape and topology optimization via a level-set method, PhD thesis, Ecole Polytechnique (2014).

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Foreword: uncertainties in structural optimization

A concrete shape optimization problem reads:

$$\min_{\Omega} \mathcal{C}(\Omega, \xi) \,\, (+ \,\, \mathsf{constraints}),$$

where $\xi \in \Xi$ represents physical parameters.

- In structural mechanics, ξ may stand for:
 - The loads;
 - The material properties (e.g. Young's modulus);
 - The geometry of the system itself.
- In practice, these parameters are often uncertain:
 - They are identified via error-prone measurements,
 - They are altered with time (wear) and depend on the conditions of the ambient medium.
- The cost $\mathcal{C}(\Omega, \xi)$ (and the optimality of Ω) is usually very sensitive to even small perturbations of ξ .
 - ⇒ Need to somehow anticipate uncertainties when designing and optimizing shapes.

Drag on the wing of an aircraft (from https://mximillinblogbll.blogspot.com)

A worn out brake pad

• When nothing is known about ξ but a (small) bound m on its amplitude around a mean value ξ_0 , worst-case formulations are considered:

$$\min_{\Omega} J_{\mathrm{wc}}(\Omega), \text{ where } J_{\mathrm{wc}}(\Omega) := \sup_{||\xi - \xi_{\mathbf{0}}||_{\Xi} \leq m} \mathcal{C}(\Omega, \xi). \tag{WC}$$

• <u>Formal idea:</u> We linearize the cost $C(\Omega, \xi)$ with respect to ξ :

$$C(\Omega, \xi) \approx C(\Omega, \xi_0) + \frac{\partial C}{\partial \xi}(\Omega, \xi_0)(\xi) + o(m),$$

and then formally approximate

$$\begin{array}{ll} J_{\mathrm{wc}}(\Omega) & \approx & \sup_{||\xi - \xi_{\mathbf{0}}||_{\Xi} \leq m} \left(\mathcal{C}(\Omega, \xi_{\mathbf{0}}) + \frac{\partial \mathcal{C}}{\partial \xi}(\Omega, \xi_{\mathbf{0}})(\xi) \right) \\ & = & \left. \mathcal{C}(\Omega, \xi_{\mathbf{0}}) + m \left| \left| \frac{\partial \mathcal{C}}{\partial \xi}(\Omega, \xi_{\mathbf{0}}) \right| \right|_{\Xi_{*}}, \end{array}$$

where $||\cdot||_{\Xi_*}$ is the dual norm of $||\cdot||_{\Xi}$.

The resulting approximation of (WC) can be tackled by standard adjoint methods.

Various uncertainty paradigms: stochastic approaches (I)

Joint work with G. Allaire

• Stochastic approaches assume a random distribution

$$\xi \equiv \xi(\omega), \ \omega \in \mathcal{O}, \text{ with law } \mathbb{P} \in \mathcal{P}(\Xi): \ \forall A \subset \Xi, \ \mathbb{P}(A) = \int_{\mathcal{O}} \mathbb{1}_{\{\xi(\omega) \in A\}} d\omega.$$

• The robust optimal design problem involves a moment of the cost $\mathcal{C}(\Omega, \xi)$, e.g.:

$$\min_{\Omega} J_{\mathrm{mean}}(\Omega), \ ext{where} \ J_{\mathrm{mean}}(\Omega) := \int_{\Xi} \mathcal{C}(\Omega, \xi) \ \mathrm{d}\mathbb{P}(\xi).$$

- We rely on the following assumptions about the uncertain parameters $\xi(\omega)$:
 - **1** $\xi(\omega)$ is "small", e.g. the norm $||\xi||_{L^p(\mathcal{O};\Xi)}$ is "small" for some $p \geq 1$.
 - \otimes $\xi(\omega)$ is "finite-dimensional":

$$\xi(\omega) = \xi_0 + \sum_{i=1}^N \xi_i \alpha_i(\omega),$$

where $\xi_0, \xi_1, \dots, \xi_N$ are deterministic parameters,

$$\int_{\mathcal{O}} \alpha_i(\omega) \, \mathrm{d}\omega = 0, \text{ and } \int_{\mathcal{O}} \alpha_i(\omega) \alpha_j(\omega) \, \mathrm{d}\omega = \delta_{ij}, \quad i, j = 1, \dots, N.$$

Such a reduced structure is obtained e.g. by a Karhunen-Loève expansion.

Various uncertainty paradigms: stochastic approaches (II)

• Formal idea: We linearize the cost $C(\Omega, \xi)$ around the mean value ξ_0 :

$$\mathcal{C}(\Omega,\xi) \approx \mathcal{C}(\Omega,\xi_0) + \frac{\partial \mathcal{C}}{\partial \xi}(\Omega,\xi_0)(\xi) + \frac{1}{2} \frac{\partial^2 \mathcal{C}}{\partial \xi^2}(\Omega,\xi_0)(\xi,\xi) + o(||\xi - \xi_0||_{\Xi}^2).$$

• Injecting the structure of $\xi(\omega)$ and taking the mean value, it follows:

$$J_{\mathrm{mean}}(\Omega) pprox \mathcal{C}(\Omega, \xi_0) + rac{1}{2} \sum_{i=1}^N rac{\partial^2 \mathcal{C}}{\partial \xi^2}(\Omega, \xi_0)(\xi_i, \xi_i).$$

- This shape functional can be analyzed by standard adjoint techniques.
- A similar treatment yields an approximate variance or probability of failure:

$$J_{\mathrm{var}}(\Omega) := \int_{\Xi} \Big(\mathcal{C}(\Omega, \xi) - J_{\mathrm{mean}}(\Omega) \Big)^2 \, \mathrm{d} \xi \, \, \mathsf{and} \, \, J_{\mathrm{fail}}(\Omega) = \mathbb{P} \Big\{ \xi \in \Xi, \, \, \mathcal{C}(\Omega, \xi) > lpha \Big\},$$

where α is a safety threshold.

A numerical example

row) Random loads with the objective $J_{\rm mean}(\Omega)+\delta J_{\rm var}(\Omega)^{1/2}$ and $\delta=3, m=1,2,5,10$; (bottom row) The worst-case approach with m = 1, 2, 5, 10. 4日 > 4周 > 4 国 > 4 国 >

Shortcomings of worst-case and stochastic approaches

Beyond computational aspects, neither of these paradigms is truly satisfactory.

• Worst-case approaches are pessimistic:

Anticipating the (unlikely) worst-case scenario yields shapes with poor nominal performance.

Stochastic approaches suffer from a major conceptual flaw:

The law \mathbb{P} of the uncertain parameters $\xi(\omega)$ is not known, and can at best be estimated from (a few) observed samples.

- Distributionally robust formulations only assume an estimate \mathbb{P} of the law of the uncertain parameter ξ , that belongs to a compact set $\Xi \subset \mathbb{R}^k$.
- The worst mean value of $C(\Omega, \xi)$ is minimized among laws \mathbb{Q} that are "close" to \mathbb{P} :

$$\min_{\Omega} J_{\mathrm{dr}}(\Omega), \text{ where } J_{\mathrm{dr}}(\Omega) = \sup_{\substack{\mathbb{Q} \in \mathcal{P}(\Xi) \\ d(\mathbb{Q}, \mathbb{P}) \leq m}} \int_{\Xi} \mathcal{C}(\Omega, \xi) \, \mathrm{d}\mathbb{Q}(\xi).$$

• The distance $d(\mathbb{Q}, \mathbb{P})$ between probability measures is the Wasserstein distance:

$$W(\mathbb{Q}, \mathbb{P}) = \inf_{\substack{\pi \in \mathcal{P}(\Xi \times \Xi) \\ \pi_1 = \mathbb{Q}, \ \pi_2 = \mathbb{P}}} \int_{\Xi \times \Xi} c(\xi, \zeta) \, \mathrm{d}\pi(\xi, \zeta),$$

where $c(\xi,\zeta):=|\xi-\zeta|^2$ is the ground cost of sending a unit of matter from ξ to ζ .

The Wasserstein distance (I)

- A coupling is a probability measure $\pi \in \mathcal{P}(\Xi \times \Xi)$.
- The marginals $\pi_1, \pi_2 \in \mathcal{P}(\Xi)$ of $\pi \in \mathcal{P}(\Xi \times \Xi)$ are defined by:

$$\forall \varphi \in \mathcal{C}(\Xi), \quad \int_{\Xi \times \Xi} \varphi(\xi) \mathrm{d}\pi(\xi, \zeta) = \int_{\Xi} \varphi(\xi) \, \mathrm{d}\pi_1(\xi), \text{ and}$$

$$\int_{\Xi \times \Xi} \varphi(\zeta) \mathrm{d}\pi(\xi, \zeta) = \int_{\Xi} \varphi(\zeta) \, \mathrm{d}\pi_2(\zeta).$$

- Interpretation: $\pi(\xi,\zeta) \approx \text{ amount of mass of } \mathbb{P} \text{ at } \zeta \text{ coming from mass at } \xi \text{ in } \mathbb{Q}.$
- $W(\mathbb{Q}, \mathbb{P})$ thus measures the optimal way to transport the mass from \mathbb{Q} to \mathbb{P} .
- It is a "geometric" quantity to appraise the difference between P and Q.

The Wasserstein distance (II)

The blurred, entropy-regularized Wasserstein distance is used:

$$W_{\varepsilon}(\mathbb{Q},\mathbb{P}) = \inf_{\substack{\pi \in \mathcal{P}(\Xi \times \Xi) \\ \pi_{1} = \mathbb{Q}, \ \pi_{2} = \mathbb{P}}} \left(\int_{\Xi \times \Xi} c(\xi,\zeta) d\pi(\xi,\zeta) + \varepsilon H(\pi) \right),$$

where the entropy $H(\pi)$ of a coupling π is:

$$H(\pi) = \begin{cases} \int_{\Xi \times \Xi} \log \left(\frac{\mathrm{d}\pi}{\mathrm{d}\pi_0} \right) \, \mathrm{d}\pi & \text{if } \pi \text{ is a.c. w.r.t. } \pi_0 \\ +\infty & \text{otherwise,} \end{cases}$$

and the reference coupling π_0 is:

$$\pi_0(\xi,\zeta) = \mathbb{P}(\xi) d\nu_{\xi}(\zeta), \quad \text{with} \quad d\nu_{\xi}(\zeta) := \alpha_{\xi} e^{-\frac{c(\xi,\zeta)}{2\sigma}} \mathbb{1}_{\Xi}(\zeta) d\zeta,$$

for some $\sigma > 0$ and a normalization factor α_{ξ} , i.e.

 π_0 "spreads" the mass of $\mathbb P$ at ξ over a characteristic length σ .

G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, Foundations and Trends in Machine Learning, 11 (2019), pp. 355–607.

F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, 2015.

Ongoing work: distributionally robust formulations (III)

We use the following result from convex duality.

Theorem 1.

Let $f:\Xi\to\mathbb{R}$ be a continuous function, and $\mathbb{P}\in\mathcal{P}(\Xi)$ be a probability measure. Then, for any m>0 and for σ small enough,

$$\sup_{W_{\varepsilon}(\mathbb{P},\mathbb{Q})\leq m}\int_{\Xi}f(\zeta)\,\mathrm{d}\mathbb{Q}(\zeta)=\inf_{\lambda\geq 0}\left\{\lambda m+\lambda\varepsilon\int_{\Xi}\log\left(\int_{\Xi}e^{\frac{f(\zeta)-\lambda\varepsilon(\xi,\zeta)}{\lambda\varepsilon}}\mathrm{d}\nu_{\xi}(\zeta)\right)\mathrm{d}\mathbb{P}(\xi)\right\}.$$

The distributionally robust problem has a tractable reformulation:

$$\begin{split} \min_{\Omega,\lambda \geq 0} \mathcal{D}(\Omega,\lambda), \text{ where} \\ \mathcal{D}(\Omega,\lambda) := \lambda \textit{m} + \lambda \varepsilon \int_{\Xi} \log \left(\int_{\Xi} e^{\frac{\mathcal{C}(\Omega,\zeta) - \lambda c(\xi,\zeta)}{\lambda \varepsilon}} \mathrm{d}\nu_{\xi}(\zeta) \right) \mathrm{d}\mathbb{P}(\xi). \end{split}$$

W. Azizian, F. lutzeler and J. Malick, Regularization for Wasserstein distributionally robust optimization, ESAIM: Control, Optimisation and Calculus of Variations, (2023), 29, 33.

Ongoing work: distributionally robust formulations

Distributionally robust shapes of the cantilever for various values of m.

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Additive manufacturing in a nutshell

• Additive manufacturing technologies (a.k.a. 3d printing) proceed by decomposing the shape into horizontal layers, which are assembled one on top of the other.

• 3d printing technologies differ on how each individual layer is fabricated.

Material extrusion methods (e.g. FDM), used to process plastic (ABS), act by deposition of a molten filament.

Powder bed fusion methods (e.g. EBM, SLS) process metals; metallic powder is spread within the build chamber, and a laser binds the grains together.

3d printing techniques can allegedly process arbitrarily complex shapes.

The overhang issue

All additive manufacturing technologies experience trouble when assembling shapes with large overhangs, i.e. regions hanging over void.

- In the case of FDM processes, this amounts to assembling over void.
- In powder-bed methods, these regions cannot efficiently evacuate heat, inducing residual stress and warpage during cooling.
- A common, but <u>cumbersome</u> strategy to handle overhangs is to erect a sacrificial <u>scaffold</u> structure alongside the construction of the shape.
 - \Rightarrow Desire to add an overhang constraint $P(\Omega)$ in the optimal design problem.

(Left) Warpage caused by residual constraints in EBM (from [PoFarCoMa]); (right) Supporting scaffold structure (from https://filament2print.com).

Insufficiency of geometric constraints: the "dripping effect"

• Geometric attempt: $P(\Omega)$ penalizes regions of $\partial\Omega$ "close" from horizontal, e.g.

$$P(\Omega) = \int_{\partial\Omega} \varphi(\textit{n}_{\Omega}) \, \mathrm{d}s, \, \, \mathsf{where} \,\, \varphi : \mathbb{R}^d o \mathbb{R} \,\, \mathsf{is \,\, given}.$$

 The results are undesirable: such functions induce "many" local minima", where the constraint is satisfied "almost everywhere".

Optimized shape accommodating a geometric constraint, which is fulfilled "almost everywhere"!

We rely on a mechanical constraint $P(\Omega)$ which appraises the physical behavior of the shape at each stage of its construction.

- Ω is enclosed in the build chamber $D = S \times (0, H)$, where $S \subset \mathbb{R}^{d-1}$,
- $\Omega_h := \{x = (x_1, ..., x_d) \in \Omega, x_d < h\}$ is the intermediate shape at height h.
- The boundary $\partial \Omega_h$ is decomposed as $\partial \Omega_h = \Gamma_0 \cup \Gamma_h^u \cup \Gamma_h^l$, where
- $\Gamma_0 = \{x \in \partial \Omega_h, \ x_d = 0\}$ is the contact region between Ω_h and the build table,
- $\Gamma_h^u=\{x\in\partial\Omega_h,\ x_d=h\}$ is the upper side of Ω_h ,
- $\Gamma_h^I = \partial \Omega_h \setminus (\overline{\Gamma_0} \cup \overline{\Gamma_h^u})$ is the lateral surface.

A mechanical constraint for overhang features (II)

- Each intermediate shape Ω_h is only subjected to gravity effects $g \in H^1(\mathbb{R}^d)^d$.
- The displacement $u_{\Omega_h}^c$ of Ω_h during construction (\neq final use) satisfies:

$$\left\{ \begin{array}{ll} -\mathrm{div}(Ae(u_{\Omega_h^c})) = g & \text{in } \Omega_h, \\ u_{\Omega_h}^c = 0 & \text{on } \Gamma_0, \\ Ae(u_{\Omega_h}^c)n = 0 & \text{on } \Gamma_h^l \cup \Gamma_h^u. \end{array} \right.$$

• The self-weight of each intermediate shape Ω_h is:

$$c_{\Omega_h} := \int_{\Omega_h} A e(u_{\Omega_h}^c) : e(u_{\Omega_h}^c) dx = \int_{\Omega_h} g \cdot u_{\Omega_h}^c dx.$$

• The manufacturing compliance of Ω aggregates the self weights of its intermediate shapes:

$$P_{\mathrm{sw}}(\Omega) = \int_0^H j(c_{\Omega_h}) \,\mathrm{d}h,$$

where $j: \mathbb{R} \to \mathbb{R}$ is a smooth function.

A mechanical constraint for overhang features (III)

- The shape derivative of the constraint $P_{\text{sw}}(\Omega)$ can be calculated.
- Other models may be used for the physical behavior of intermediate shapes Ω_h , e.g.
 - The problem for the displacement $u_{\Omega_h}^c$ of Ω_h could be replaced by:

$$\left\{ \begin{array}{ll} -\mathrm{div}(Ae(u_{\Omega_h}^a)) = g_h & \text{in } \Omega_h, \\ u_{\Omega_h}^a = 0 & \text{on } \Gamma_0, \\ Ae(u_{\Omega_h}^a)n = 0 & \text{on } \Gamma_h', \\ Ae(u_{\Omega_h}^a)n = 0 & \text{on } \Gamma_h', \end{array} \right. \text{ where } g_h(x) = \left\{ \begin{array}{ll} g & \text{if } x_d \in (h-\delta,h), \\ 0 & \text{otherwise}, \end{array} \right.$$

is the force applied by the printing tool on the upper side of Ω_h .

- In [AlJak], the constraint $P(\Omega)$ involves the solution T_{Ω_h} to a thermal cooling problem posed on Ω_h , to model residual stresses in the final shape Ω .

A mechanical constraint for overhang features (IV): example

Optimized 2d MBB Beams obtained using the modified manufacturing compliance $P_{\rm af}(\Omega)$ and parameters (from top to bottom) $\alpha_c=0.30,\,\alpha_c=0.10,\,\alpha_c=0.05,$ and $\alpha_c=0.03.$

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Asymptotic analysis: foreword

Asymptotic analysis generally deals with the effect of "small perturbations" on the solution to a boundary value problem, indexed by $\varepsilon \ll 1$. They may be

- Regularized versions of a singular boundary value problem,
- Singular perturbations of "smooth" partial differential equations.

A representative issue of the second category is the analysis of the effect of small inhomogeneities within a background medium.

Small inhomogeneities in a background medium (I)

• Background situation: u_0 is the potential associated to a smooth conductivity γ_0 within $D \subset \mathbb{R}^d$:

$$\left\{ \begin{array}{ccc} -\mathrm{div}(\gamma_0 \nabla u_0) = f & \text{in } D, \\ u_0 = 0 & \text{on } \partial D. \end{array} \right.$$

• Perturbed situation: γ_0 is replaced by another smooth conductivity γ_1 inside a "small" subset $\omega_\varepsilon \in D$:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\pmb{\gamma}_{\pmb{\varepsilon}}\nabla u_{\pmb{\varepsilon}}) = f & \text{in } D, \\ u_{\pmb{\varepsilon}} = 0 & \text{on } \partial D, \end{array} \right.$$

where
$$\gamma_{\varepsilon}(x) := \begin{cases} \gamma_1(x) & \text{if } x \in \omega_{\varepsilon}, \\ \gamma_0(x) & \text{otherwise.} \end{cases}$$

What is the behavior of the perturbed potential u_{ε} by the presence of inclusions ω_{ε} of conductivity γ_1 in the background medium?

Small inhomogeneities in a background medium (II)

• A general representation formula for u_{ε} is (up to a subsequence of the ε):

$$u_{\varepsilon}(x) = u_{0}(x) + |\omega_{\varepsilon}| \int_{D} \mathcal{M}(y) \nabla u_{0}(y) \cdot \nabla_{y} N(x, y) d\mu(y) + o(|\omega_{\varepsilon}|),$$

where

- μ is a positive measure indicating the "limiting position" of the sets ω_{ε} ;
- The polarization tensor $\mathcal{M}(y)$ encodes the limiting "near field" u_{ε} inside ω_{ε} ;
- N(x, y) is the Green's function for the background problem.
- Under "mild" conditions, the quantity $J(u_{\varepsilon}):=\int_{D} j(u_{\varepsilon})\,\mathrm{d}x$ has the expansion:

$$J(u_{\varepsilon}) = J(u_0) - |\omega_{\varepsilon}| \int_{D} \mathcal{M}(y) \nabla u_0(y) \cdot \nabla p_0(y) \, \mathrm{d}\mu(y) + \mathrm{o}(|\omega_{\varepsilon}|),$$
 where the adjoint state p_0 is defined by
$$\begin{cases} -\mathrm{div}(\gamma_0 \nabla p_0) = -j'(u_0) & \text{in } D, \\ p_0 = 0 & \text{on } \partial D. \end{cases}$$

■ Y. Capdeboscq and M. S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, ESAIM: M2AN, 37 (2003), pp. 159–173.

Small inhomogeneities in a background medium (III)

Diametrically small inhomogeneities

$$\omega_{\varepsilon} = x_0 + \varepsilon \omega$$

where $\omega \in \mathbb{R}^d$ is a given bounded subset.

- μ is a multiple of δ_{x_0} ,
- \mathcal{M} involves the solution to an exterior problem, posed on ω and $\mathbb{R}^d \setminus \overline{\omega}$.

x_0 ω_{ε} D

Small tubular inhomogeneities

$$\omega_{\sigma,\varepsilon} = \left\{ x \in \mathbb{R}^d, \ d(x,\sigma) < \varepsilon \right\},$$

where $\sigma \in D$ is an (open or closed) curve in \mathbb{R}^d .

- μ is an integration measure on σ ,
- \mathcal{M} is diagonal in a local basis $(\tau, n_1, \dots, n_{d-1})$ attached to σ .
- These have been seldom considered [BCGF, CGK].

Foreword

We investigate two forays of asymptotic analysis in shape and topology optimization.

Optimization of the regions supporting boundary conditions

Optimization of the topology of shapes by the graft of thin ligaments

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- 2 Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Optimization of boundary conditions: examples

Thermal conduction

- The temperature $u_{\Omega}: \Omega \to \mathbb{R}$ inside Ω is the solution to the conductivity equation;
- Dirichlet b.c. account for a known profile;
- Neumann b.c. represent an imposed heat flux.

000000

Optimization of the screws of a mandibular prosthesis [LaBa].

Structure mechanics

- The displacement u_Ω : Ω → ℝ^d of Ω is solution to the linear elasticity system;
- Ω is attached at the regions equipped with homogeneous Dirichlet b.c. ;
- Neumann b.c. represent applied surface loads.

Optimized cooling process for a structure produced by molding [WeWuShi].

A model situation (I)

• The considered shapes Ω are smooth, bounded domains in \mathbb{R}^d , with boundaries:

$$\partial \Omega = \overline{\Gamma_D} \cup \overline{\Gamma_N} \cup \overline{\Gamma}.$$

• We assume that $\overline{\Gamma_D} \ \cap \overline{\Gamma_N} \ = \emptyset$ and denote

$$\Sigma_D = \partial \Gamma_D, \text{ and } \Sigma_N = \partial \Gamma_N.$$

• The behavior of Ω is dictated by the solution $u_{\Omega} \in H^{1}(\Omega)$ to the conductivity equation:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_\Omega) = f & \text{in } \Omega, \\ u_\Omega = 0 & \text{on } \Gamma_D, \\ \gamma \frac{\partial u_\Omega}{\partial n} = 0 & \text{on } \Gamma, \\ \gamma \frac{\partial u_\Omega}{\partial n} = g & \text{on } \Gamma_N, \end{array} \right.$$

ullet γ is the conductivity of the medium,

where • $f \in L^2(\Omega)$ is a source (or a sink),

• $g \in L^2(\Gamma_N)$ is a heat flux.

A model situation (II)

We consider a shape functional of the form

$$J(\Omega) := \int_{\Omega} j(u_{\Omega}) \, \mathrm{d}x, \,\, \mathsf{for \,\, some \,\, smooth} \,\,\, j : \mathbb{R} o \mathbb{R},$$

which depends on Ω , but also on the repartition of Γ_D , Γ_N and Γ on $\partial\Omega$.

- We aim to
 - Calculate the shape derivative $J'(\Omega)(\theta)$ when deformations θ do not vanish near Γ_D .
 - ② Calculate "topological derivatives", measuring the sensitivity of $J(\Omega)$ to the insertion of a small Dirichlet subset ω_{ε} inside Γ.
- The presented methods can be generalized to
 - Other types of regions (derivative of Γ_N → J(Ω), transitions between homogeneous / inhomogeneous Dirichlet conditions, etc.),
 - Other physical contexts (linear elasticity, acoustics, etc).

Shape derivatives of regions supporting boundary conditions

Joint work with N. Lebbe & E. Oudet

 $J'(\Omega)(\theta)$ has an intricate expression because of the limited regularity of u_{Ω} near Σ_D :

- There is a neighborhood W of each $x \in \overline{\Omega} \setminus (\Sigma_D \cup \Sigma_N)$ s.t. u_{Ω} is smooth in $\Omega \cap W$.
- u_{Ω} is weakly singular near Σ_D (i.e. $H^{3/2-\eta}$ for all $\eta > 0$).

Illustration: In 2d, assuming a flat boundary $\partial\Omega$ near $\Sigma_D=\{s_0,s_1\}$

-
$$u_r^i$$
 belongs to $H^2(\Omega \cap V)$,

$$u_{\Omega} = u_r^i + c^i S^i$$
 near s_i , where

$$-S^{i}(r,\nu)=r^{\frac{1}{2}}\cos\left(\frac{\nu}{2}\right).$$

We introduce a regularized problem:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_{\Omega,\varepsilon}) = f & \text{in } \Omega, \\ \gamma \frac{\partial u_{\Omega,\varepsilon}}{\partial n} + \frac{h_{\varepsilon}}{\log n} u_{\Omega,\varepsilon} = 0 & \text{on } \Gamma \cup \Gamma_D, \\ \gamma \frac{\partial u_{\Omega,\varepsilon}}{\partial n} = g & \text{on } \Gamma_N. \end{array} \right.$$

- $h_{\varepsilon}(x) := \frac{1}{\varepsilon} h\left(\frac{d_{\Gamma_D}^{\partial\Omega}(x)}{\varepsilon}\right)$ is made from:
 - The geodesic signed distance $d_{\Gamma_D}^{\partial\Omega}$ to Γ_D ,
 - A smooth profile $h: \mathbb{R} \to \mathbb{R}$ such that:

$$0 \le h \le 1$$
,
$$\begin{cases} h \equiv 1 & \text{on } (-\infty, -1], \\ h(0) > 0, \\ h \equiv 0 & \text{on } [1, \infty). \end{cases}$$

- Intuitively,
 - $h_{\varepsilon}=0$ "well inside" Γ (pprox homogeneous Neumann b.c.),
 - $h_{\varepsilon} = \frac{1}{\varepsilon} \approx \infty$ in Γ_D (\approx homogeneous Dirichlet b.c.).
- For a fixed $\varepsilon > 0$, standard elliptic regularity implies that $u_{\Omega,\varepsilon}$ is smooth on $\overline{\Omega}$.

Approximation of the optimization problem (II)

This approximation gives rises to an approximate shape functional:

$$J_{\varepsilon}(\Omega) = \int_{\Omega} j(u_{\Omega,\varepsilon}) dx.$$

- Its shape derivative can be calculated by standard adjoint methods and is simple to handle in algorithms.
- Under "mild" assumptions, the following convergence results hold true:
 - The function $u_{\Omega,\varepsilon}$ converges to u_{Ω} strongly in $H^1(\Omega)$: for any $0 < s < \frac{1}{4}$,

$$||u_{\Omega,\varepsilon}-u_{\Omega}||_{H^{1}(\Omega)}\leq C_{s}\varepsilon^{s}||f||_{L^{2}(\Omega)}.$$

- The approximate functional $J_{\varepsilon}(\Omega)$ converges to its exact counterpart $J(\Omega)$.
- The approximate shape derivative $J'_{\varepsilon}(\Omega)$ converges to the exact one $J'(\Omega)$:

$$\sup_{||\theta||_{W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d)}\leq 1} |J_\varepsilon'(\Omega)(\theta)-J'(\Omega)(\theta)|\xrightarrow{\varepsilon\to 0} 0.$$

Topological derivatives for boundary condition regions (I)

Joint work with E. Bonnetier, C. Brito-Pacheco & M. Vogelius

- Let $\omega_{\varepsilon} \subset \Gamma$ be the surface disk with center x_0 and radius ε .
- The background and perturbed potentials u_{Ω} and u_{ε} are the $H^1(\Omega)$ solutions to:

$$\begin{cases} -\operatorname{div}(\gamma \nabla u_{\Omega}) = f & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ \gamma \frac{\partial u_{\Omega}}{\partial n} = 0 & \text{on } \Gamma, \\ \gamma \frac{\partial u_{\Omega}}{\partial n} = g & \text{on } \Gamma_{N}. \end{cases}$$

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma \nabla u_{\varepsilon}) = f & \text{in } \Omega, \\ u_{\varepsilon} = 0 & \text{on } \Gamma_{D} \cup \omega_{\varepsilon}, \\ \gamma \frac{\partial u_{\varepsilon}}{\partial n} = 0 & \text{on } \Gamma \setminus \overline{\omega_{\varepsilon}}, \\ \gamma \frac{\partial u_{\varepsilon}}{\partial n} = g & \text{on } \Gamma_{N}. \end{array} \right.$$

Theorem 2.

The following asymptotic expansion holds at any point $x \in \overline{\Omega}$, $x \notin \Sigma \cup \{x_0\}$:

$$u_{\varepsilon}(x) = \begin{cases} u_{\Omega}(x) - \frac{\pi}{|\log \varepsilon|} \gamma(x_0) u_{\Omega}(x_0) \mathcal{N}(x, x_0) + o\left(\frac{1}{|\log \varepsilon|}\right) & \text{if } d = 2, \\ u_{\Omega}(x) - 4\varepsilon \gamma(x_0) u_{\Omega}(x_0) \mathcal{N}(x, x_0) & \text{if } d = 3. \end{cases}$$

Topological derivatives for boundary condition regions (II)

The corresponding perturbed version of $J(\Omega)$ reads:

$$J(\varepsilon)=\int_{\Omega}j(u_{\varepsilon})\,\mathrm{d}x.$$

Corollary 3.

The function $J(\varepsilon)$ has the following asymptotic expansion at 0:

$$J(\varepsilon) = \begin{cases} J(0) + \frac{\pi}{|\log \varepsilon|} \gamma(x_0) u_{\Omega}(x_0) p_{\Omega}(x_0) + o\left(\frac{1}{|\log \varepsilon|}\right) & \text{if } d = 2, \\ J(0) + 4\varepsilon \gamma(x_0) u_{\Omega}(x_0) p_{\Omega}(x_0) + o(\varepsilon) & \text{if } d = 3, \end{cases}$$

where p_{Ω} is the unique solution in $H^1(\Omega)$ to the boundary value problem:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma\nabla p_\Omega) = -j'(u_\Omega) & \text{in } \Omega, \\ p_\Omega = 0 & \text{on } \Gamma_D, \\ \gamma\frac{\partial p_\Omega}{\partial n} = 0 & \text{on } \Gamma_N. \end{array} \right.$$

⇒ The negativity of the first non-trivial term indicates where to add Dirichlet b.c.

Example: Optimization of a micro-osmotic mixer (I)

- Electro-osmotic mixers achieve the mixture of two fluids inside a device Ω by maximizing the electric field induced by electrodes on $\partial\Omega$.
- The boundary of Ω is decomposed as:

$$\partial\Omega = \overline{\Gamma_C} \cup \overline{\Gamma_A} \cup \overline{\Gamma},$$
 - Γ_C is the cathode, where - Γ_A is the anode, - Ω is insulated on Γ .

• We aim to maximize the electric power inside Ω with respect to Γ_A and Γ_C :

$$J(\Omega) = -\int_{\Omega} |\gamma \nabla u_{\Omega}|^2 dx,$$

under constraints on the surface measures of Γ_A and Γ_C .

Example: Optimization of a micro-osmotic mixer (II)

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- 2 Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

An exotic notion of sensitivity with respect to the domain

Besides boundary perturbations and small holes, there is one third means to define "small" variations of Ω :

$$\Omega_{\sigma,\varepsilon} := \Omega \cup \omega_{\sigma,\varepsilon},$$

where

$$\omega_{\sigma,\varepsilon} := \left\{ x \in \mathbb{R}^d, \ d(x,\sigma) < \varepsilon \right\}$$

is a tube with thickness $\varepsilon \ll 1$ around a curve σ .

Such variations pave the way to a notion of topological ligament derivative:

$$J(\Omega_{\sigma,\varepsilon}) = J(\Omega) + \underbrace{\varepsilon^{d-1}}_{\approx |\omega_{\sigma,\varepsilon}|} \mathrm{d}J_L(\Omega)(\sigma) + \mathrm{o}(\varepsilon^{d-1}).$$

This topic has been seldom investigated in the literature. Unfortunately,

- The mathematical derivation of such asymptotic formulas is very difficult.
- The resulting expressions are difficult to use in practice.

A model problem in linear elasticity

Background situation

The displacement $u_{\Omega} \in H^1(\Omega)^d$ is the solution to:

$$\begin{cases} -\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma, \end{cases}$$

The performance of Ω equals $J(\Omega) = \int_{\Omega} j(u_{\Omega}) dx$.

Perturbed situation

The perturbed displacement $u_{arepsilon} \in H^1(\Omega_{\sigma,arepsilon})^d$ satisfies:

$$egin{aligned} -\mathrm{div}(Ae(u_arepsilon)) &= 0 & ext{in } \Omega_{\sigma,arepsilon}, \ u_arepsilon &= 0 & ext{on } \Gamma_D, \ Ae(u_arepsilon)n &= g & ext{on } \Gamma_N, \ Ae(u_arepsilon)n &= 0 & ext{on } \Gamma \cup \partial \omega_{\sigma,arepsilon}. \end{aligned}$$

The performance of $\Omega_{\sigma,\varepsilon}$ reads $J(\varepsilon) := \int_{\Omega_{\sigma,\varepsilon}} j(u_{\varepsilon}) dx$.

The general strategy to add a tube to a shape (I)

We approximate this setting by "filling the void" $D\setminus \overline{\Omega}$ with a soft material ηA , $\eta\ll 1$.

$$\begin{cases} -\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\ u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma. \end{cases}$$

$$\begin{cases} -\mathrm{div}(A_{\eta}e(u_{\eta}) = 0 \text{ in } D, \\ u_{\eta} = 0 & \text{on } \Gamma_{D}, \\ A_{\eta}e(u_{\eta})n = g & \text{on } \Gamma_{N}, \\ A_{\eta}e(u_{\eta})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}), \end{cases}$$

$$A_{\eta} = \left\{ egin{array}{ll} A & ext{if } x \in \Omega, \\ \eta A & ext{otherwise.} \end{array}
ight.$$

The general strategy to add a tube to a shape (I-b)

We may as well use a smoothed Hooke's tensor A_{η} .

$$\begin{cases}
-\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega, \\
u_{\Omega} = 0 & \text{on } \Gamma_{D}, \\
Ae(u_{\Omega})n = g & \text{on } \Gamma_{N}, \\
Ae(u_{\Omega})n = 0 & \text{on } \Gamma.
\end{cases}$$

$$\begin{cases} -\mathrm{div}(A_{\eta}e(u_{\eta})) = 0 & \text{in } D, \\ u_{\eta} = 0 & \text{on } \Gamma_{D}, \\ A_{\eta}e(u_{\eta})n = g & \text{on } \Gamma_{N}, \\ A_{\eta}e(u_{\eta})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}), \end{cases}$$

$$A_{\eta} = \text{(smoothed)} \left\{ egin{array}{ll} A & ext{if } x \in \Omega, \\ \eta A & ext{otherwise.} \end{array} \right.$$

The general strategy to add a tube to a shape (I-c)

We make a similar approximation for the perturbed problem.

$$\begin{cases} -\mathrm{div}(Ae(u_{\varepsilon})) = 0 & \text{in } \Omega_{\sigma,\varepsilon}, \\ u_{\varepsilon} = 0 & \text{on } \Gamma_{D}, \\ Ae(u_{\varepsilon})n = g & \text{on } \Gamma_{N}, \\ Ae(u_{\varepsilon})n = 0 & \text{on } \Gamma \cup \partial \omega_{\sigma,\varepsilon}. \end{cases}$$

$$\begin{cases} -\mathrm{div}(A_{\eta,\varepsilon}e(u_{\eta,\varepsilon})) = 0 & \text{in } D, \\ u_{\eta,\varepsilon} = 0 & \text{on } \Gamma_D, \\ A_{\eta,\varepsilon}e(u_{\eta,\varepsilon})n = g & \text{on } \Gamma_N, \\ A_{\eta,\varepsilon}e(u_{\eta,\varepsilon})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_D} \cup \overline{\Gamma_N}), \end{cases}$$

$$A_{\eta,arepsilon} = \left\{ egin{array}{ll} A & ext{if } x \in \omega_{\sigma,arepsilon}, \ A_{\eta} & ext{otherwise}. \end{array}
ight.$$

The general strategy to add a tube to a shape (II)

We make the formal approximations:

$$J(\Omega) pprox J(0) = \int_D j(u_\eta) \, \mathrm{d}x, \text{ and } J(\Omega_{\sigma,\varepsilon}) pprox J(\varepsilon) := \int_D j(u_{\eta,\varepsilon}) \, \mathrm{d}x.$$

- The asymptotic behavior of $u_{\eta,\varepsilon}$ as $\varepsilon \to 0$ boils down to a problem of thin tubular inhomogeneities for the linear elasticity system.
- A (tedious) analysis yields:

$$u_{\eta,\varepsilon}(x) = u_{\eta}(x) + \varepsilon^{d-1} \int_{\sigma} \mathcal{M}(y) e(u_{\eta}) : e_{y}(\mathcal{N}(x,y)) d\ell(y) + o(\varepsilon^{d-1}),$$

and

$$J(\varepsilon) = J(0) - \varepsilon^{d-1} \int_{\sigma} \mathcal{M}(y) e(u_{\eta}) : e(p_{\eta}) d\ell(y) + o(\varepsilon^{d-1}),$$

where $\mathcal{M}(y)$ is a suitable polarization tensor and the adjoint state p_{η} satisfies:

$$\begin{cases} -\operatorname{div}(A_{\eta}e(p_{\eta})) = -j'(u_{\eta}) & \text{in } D, \\ p_{\eta} = 0 & \text{on } \Gamma_{D}, \\ A_{\eta}e(p_{\eta})n = 0 & \text{on } \partial D \setminus (\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}). \end{cases}$$

 \Rightarrow The negativity of the first non trivial term indicates that it is beneficial to graft a thin tube based on σ to Ω .

Application: Insertion of a bar in the course of a shape evolution (I)

• We minimize the compliance of a shape Ω under a volume constraint:

$$\min_{\Omega} J(\Omega) \text{ s.t. Vol } (\Omega) \leq V_{\mathcal{T}},$$
 where $J(\Omega) := \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) \, \mathrm{d}x, \text{ and Vol}(\Omega) = \int_{\Omega} \, \mathrm{d}x.$

The optimized shape is prone to falling into local minima with trivial topologies.

To remedy this, we periodically interrupt the optimization process to insert bars.

Application: Insertion of a bar in the course of a shape evolution (${\rm II}$)

The "benchmark" 2d cantilever test case is considered.

- The shape Ω is optimized with a boundary variation algorithm.
- \bullet Every now and then, the process in interrupted and a bar is added to Ω at an "optimal location".

Application: Insertion of a bar in the course of a shape evolution (${\sf III}$)

The optimization of a 3d bridge Ω is considered.

• We minimize the compliance of Ω

$$J(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

- · A volume constraint is enforced.
- Every now and then, a bar is added to Ω at an "optimal location".

Application: A "clever" initialization for truss structures (I)

- Truss structures are collections of bars.
- Many truss optimization methods rely on the ground structure approach: an initial, dense network of bars is iteratively decimated.
- We propose instead to start from void and
 - Incrementally add bars to the structure.
 - Optionally) Take on the optimization with a more "classical" boundary-variation algorithm.

Example of a truss structure

Initialization of a truss optimization algorithm by the ground structure approach

Application: A "clever" initialization for truss structures (II)

We consider the optimization of the shape of a 2d crane Ω .

• The compliance

$$J(\Omega) := \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx$$

is minimized.

A volume constraint is enforced.

- Motivation and background
 - Some basic material about shape optimization
 - Two recent numerical realizations
- 2 Towards realistic shape and topology optimization models
 - Shape optimization under uncertainties
 - Modeling fabrication constraints: the example of additive manufacturing
- Asymptotic analysis for new types of shape variations
 - Optimization of boundary conditions
 - Topological ligaments
- An ongoing project: Evolution of shapes via Laguerre diagrams

Evolution of shapes via Laguerre diagrams (I)

Ongoing work with B. Levy & E. Oudet

• The domain *D* is equipped with a Laguerre diagram:

$$\overline{D} = \bigcup_{i=1}^{N} \mathrm{Lag}_{i}(s, \psi), \text{ where } \begin{cases} s_{1}, \dots, s_{N} \in D \text{ are seeds,} \\ \psi_{1}, \dots, \psi_{N} \in \mathbb{R} \text{ are weights,} \end{cases}$$

and the i^{th} cell Lag_i (s, ψ) is defined by:

$$\operatorname{Lag}_{i}(s, \psi) = \left\{x \in \overline{D}, |x - s_{i}|^{2} - \psi_{i} \leq |x - s_{j}|^{2} - \psi_{j}, \forall j \neq i\right\}.$$

- The diagram can be parametrized by the seeds s_1, \ldots, s_N and the measures ν_1, \ldots, ν_N of the cells.
- This induces a decomposition of D into convex polygons, with vertices q₁,..., q_M.
- The shape $\Omega \subset D$ is represented as a subdiagram:

$$\overline{\Omega} = \bigcup_{i=1}^{N_{\Omega}} \operatorname{Lag}_i(s, \psi).$$

A Laguerre diagram of D

Representation of $\Omega \subset D$ as a subdiagram.

Evolution of shapes via Laguerre diagrams (II)

• We consider a shape optimization problem:

$$\min_{\Omega \subset D} J(\Omega) + (constraints),$$

where $J(\Omega)$ involves e.g. the elastic displacement u_{Ω} .

• The discretized version of this problem reads:

$$\min_{s, \nu} J(s, \nu).$$

- The mechanical calculations for u_{Ω} (and the adjoint p_{Ω}) hinge on the Virtual Element Method.
- This naturally yields the derivatives of J with respect to the vertices q₁,..., q_M of the polygonal mesh.
- These derivatives are "transferred" at the seeds s and volumes ν by a suitable adjoint method.

Virtual Element solution of the linear elasticity system.

Sensitivity of J w.r.to vertices.

Evolution of shapes via Laguerre diagrams (III): Numerical example

This framework is Lagrangian; yet, it naturally accounts for topological changes.

Thank you!

Further references I

- [AlJak] G. Allaire, L. Jakabcin, *Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing*, Math. Models and Methods in Applied Sciences, 28(12), (2018), pp. 2313-2366.
- [AmKa] H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary measurements, Springer, 2004.
- [Au] F. Aurenhammer, *Power diagrams: properties, algorithms and applications*, SIAM Journal on Computing, 16 (1987), pp. 78–96.
- [BCGF] E. Beretta, Y. Capdeboscq, F. De Gournay, and E. Francini, *Thin cylindrical conductivity inclusions in a three-dimensional domain: a polarization tensor and unique determination from boundary data*, Inverse Problems, 25 (2009), p. 065004.
- [BSCO] B. Boots, K. Sugihara, S. N. Chiu, and A. Okabe, *Spatial tessellations: concepts and applications of Voronoi diagrams*, John Wiley & Sons, 2009.

Further references II

- [CGK] Y. Capdeboscq, R. Griesmaier, and M. Knöller, *An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering*, Multiscale Modeling & Simulation, 19 (2021), pp. 846–885.
- [CV] Y. Capdeboscq and M. S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, ESAIM: M2AN, 37 (2003), pp. 159–173.
- [EsKu] P. Mohajerin Esfahani and D. Kuhn, *Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations*, Mathematical Programming, 171 (2018), pp. 115–166.
- [FreSo] G. Fremiot and J. Sokolowski, *Shape sensitivity analysis of problems with singularities*, Lecture notes in pure and applied mathematics, (2001), pp. 255–276.
- [GiRoStu] I. Gibson, D.W. Rosen and B. Stucker, *Additive manufacturing technology: rapid prototyping to direct digital manufacturing*, Springer Science Business Media, Inc, (2010).

Further references III

- [LaBa] J. J. Lang, M. Bastian, P. Foehr, M. Seebach, et al, *Improving mandibular reconstruction by using topology optimization, patient specific design and additive manufacturing?—A biomechanical comparison against miniplates on human specimen.* Plos one, 16(6),(2021), e0253002.
- [PoFarCoMa] P. Pourabdollah, F. Farhang Mehr, S. Cockcroft and D. Maijer, A new variant of the inherent strain method for the prediction of distortion in powder bed fusion additive manufacturing processes, The International Journal of Advanced Manufacturing Technology, (2024), pp. 1–20.
- [WeWuShi] Z. Wei, J. Wu, N. Shi et al, Review of conformal cooling system design and additive manufacturing for injection molds, Math. Biosci. Eng, 17(5), (2020), pp. 5414–5431.