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Foreword: Shape and topology optimization‘

Shape optimization aims to minimize a function of the domain.
Such problems can be traced back to the early human history...

They are now as topical as ever, because of the needs to realize
energy savings and to get free from fossile fuels. b =g

Hooke's principle:
the flexible chain, so but

Despite its extensive academic and industrial treatments, the jyverted stands the rigid arch”.

discipline keeps raising fascinating issues:

- Develop mathematical tools, e.g. to measure the sensitivity
of a quantity with respect to the domain.

- Develop efficient numerical methods, that leverage recent
achievements in scientific computing, machine learning, etc.

- Address novel, challenging physical situations.

- Propose realistic optimal design models, that notably take
into account uncertainties and fabrication constraints.

Optimized design of a landing
gear (courtesy of Ansys).
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O Motivation and background
@ Some basic material about shape optimization
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Shape and topology optimization in a nutshell (I)

e A shape and topology optimization problem reads:

mfin J(Q) st. C(Q2) <0,

where

- The shape Q is a bounded Lipschitz domain in RY;
- J(2) measures the physical performance of Q;

- C(RQ) is a constraint functional.

e In applications, J(2) and C(Q2) depend on the physical behavior of Q, via a state
uq, solution to a boundary value problem posed on €.
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Shape and topology optimization in a nutshell (I1)

Thermal (or electric) conduction
e Qs a thermal cavity;

e ug: Q — Ris the temperature within €, solution
to the conductivity equation;

e J(Q) is the mean, or maximum temperature in ;

e C(Q) is a constraint on the volume of €.

Structural mechanics |

e Q is a mechanical part;

o ug: Q — RY is the displacement of Q, solution
to the linear elasticity system;

e J(Q) is the compliance of Q;

e The constraint C(2) concerns the volume of
€, its von Mises stress, etc.

U

I'n

T'p




e A shape and topology optimization problem reads:

mfin J(Q) st. C(Q2) <0,

where

- The shape Q is a bounded Lipschitz domain in RY;
- J(2) measures the physical performance of Q;

- C(RQ) is a constraint functional.

e In applications, J(Q2) and C(€2) depend on the physical behavior of Q, via the
solution ug to a boundary value problem posed on Q.

e The theoretical and numerical treatments of such problems rely on the

“derivatives” of  — J(Q) and Q — C(Q)...

. a notion that can be understood in various ways.
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Hadamard’s boundary variation method. ‘

Variations 2 of a shape are considered under the form

Qo := (Id + 0)(Q),

where § € W1 >°(R?; R9) is a “small” vector field.

The shape derivative J'(Q)(0) of a function J(2) is the Fréchet derivative of the
underlying mapping 6 — J(Qp):

J(Q0) = J(Q) + J(Q)(0) + o(6).

A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts in
Mathematics Vol. 28, 2018.
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Nucleation of a tiny hole. ‘

Variations of € are considered under the form .E

Quo,r i =2\ B(xo, r),

where xo € Q and r <« 1. Q

A function J(Q2) has a topological derivative dJr(Q)(xo) at xo if the following
expansion holds:
J(Qso,r) = J(Q) + r!dIr(Q)(x0) + o(r?).

A. A. Novotny and J. Sokotowski, Topological derivatives in shape optimization,
Springer Science & Business Media, 2012.
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The calculations of J'(Q2)(8) and dJ7(2)(x) rely on the adjoint method.
e Their expressions depend on uq and an adjoint state pq.

e Assuming regularity of uq and pq, shape derivatives have the structure

J(Q)(0) = /(99 va(uq, pa) 0 - nds,

where vo(ug, pa) : 92 — R has a closed form expression.

A descent direction for J(£2) is easily revealed from this structure:
0 = —va(ug, pa)non 9Q = J'(Q)(9) <0,

i.e. “small deformations” of Q according to 6 decrease the value of J().

Points x € Q s.t. dJ7(Q2)(x) < 0 indicate where it is beneficial to drill tiny holes.

J.-L. Lions, Optimal control of systems governed by partial differential equations,
Grundlehren der mathematischen Wissenschaften, (1971), Springer-Verlag.

10/76



A numerical algorithm

Joint work with G. Allaire & P. Frey

A steepest-descent strategy:
e At each iteration n =0, ..., the shape Q" is equipped with a mesh 7.

e The finite element computations for ugn and pg» are performed on 7.

e A descent direction 6" is obtained from J'(Q"), C'(Q").
e The mesh updates 7" — 7" leverage a mesh evolution algorithm.
e Topological derivatives are periodically used to nucleate small holes inside Q.
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\A word of advertisement

Mmg PLATFORM R

Robust, Open-source & Multidisciplinary
Software for Remeshing

J « ULpgrade

Uour meshes

The algorithms involved in this strategy are available as free, open-source codes.

e ISCDtoolbox: Algorithms for the level set method.
https://github.com/ISCDtoolbox
e Mmg: A general purpose remeshing library.

@ https://www.mmgtools.org

https://github.com/MmgTools/mmg
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«Or «F»
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Optimization of a nanophotonic duplexer (1)

Joint work with A. Gliere, K. Hassan, N. Lebbe & E. Oudet

Nanophotonic devices are the basic components
of photonic integrated circuits.

In these, light is transported by wave guides.

The attached electric and magnetic fields are gov-
erned by Maxwell’s equations.

Duplexers steer incoming waves to different out-
put channels, depending on their wavelength.

The shape Q of air inclusions in the Si core is
optimized to achieve this effect.

— 500 NM

One nanophotonic component inside a complete photonic circuit.
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Optimization of the shape of a nanophotonic duplexer.
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Optimization of the shape of a 3d heat exchanger (I)

Joint work with G. Allaire, F. Feppon & P. Jolivet

A thermal chamber D is made of

- A phase Qf hot conveying a hot fluid;
- A phase Qf co1d conveying a cold fluid;
- A solid phase Q.

The Navier-Stokes equations are satis-
fied in Q¢ hot, Qf cold-

inin

e

The stationary heat equation accounts
for the temperature diffusion within D.

The heat transferred from Qf ot to
Qf cold is maximized.

A constraint is imposed on the minimal
distance between Qf hot and Q cold:

d(S2f hots 2f,cold) > dmin.

Volume and pressure drop constraints are
added on Qf,hotv Qf,co|d.
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Optimization of the shape of a 3d heat exchanger (I1)

Optimization of the shape of a heat exchanger.

DA
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© Towards realistic shape and topology optimization models
@ Shape optimization under uncertainties
@ Modeling fabrication constraints: the example of additive manufacturing
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Realistic optimal design studies are often expected to be aware of:

e Uncertainties about the parameters of the physical models.

= We introduce various robust optimal design formulations, depending on the
available information about uncertainties.

e The constraints imposed on the design by fabrication processes.

L/mm

Thin parts are likely to break during cooling. Molding processes make undercuts undesirable.

= We consider the overhang constraints imposed by the promising additive
manufacturing technologies.

K. Maute, Topology optimization under uncertainty, in Topology optimization in
structural and continuum mechanics, (2014), pp. 457-471.

G. Michailidis, Manufacturing constraints and multi-phase shape and topology
optimization via a level-set method, PhD thesis, Ecole Polytechnique;(2014).
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© Towards realistic shape and topology optimization models
@ Shape optimization under uncertainties
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Foreword: uncertainties in structural optimization

A concrete shape optimization problem reads:

min (2, ) :

where £ € = represents physical parameters.

In structural mechanics, £ may stand for: » Tz
- The loads; Drag on the wing of an aircraft (from
https://mzimillinblogbll.blogspot.com)
- The material properties (e.g. Young's modulus);

- The geometry of the system itself.

In practice, these parameters are often uncertain:

- They are identified via error-prone measurements,

- They are altered with time (wear) and depend on
the conditions of the ambient medium.

The cost C(£2,¢) (and the optimality of Q) is usually
very sensitive to even small perturbations of &.

= Need to somehow anticipate uncertainties when A worn out brake pad

designing and optimizing shapes.
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e When nothing is known about £ but a (small) bound m on its amplitude around a
mean value &, worst-case formulations are considered:

min Jwe(Q2), where Juo(2) :=  sup  C(,€). (wa)
@ lls—€oll=<m

e Formal idea: We linearize the cost C(2, £) with respect to &:

C(.€) ~ €9 60) + G (R &0)(E) +o(m),
and then formally approximate

Jel@) ~ sup (€C(9,60) + 5(92,6)(9))

[[€=&ollz<m
- Gl
where ||-||z« is the dual norm of || - ||=.

e The resulting approximation of (\/C) can be tackled by standard adjoint methods.
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e Stochastic approaches assume a random distribution

E=¢(w), we O, withlawPe P(Z): VACEZE, PA) = / Liew) eay dw.
o

e The robust optimal design problem involves a moment of the cost C(£2,€), e.g.:
min Joncan(€2), Where Jran (€2) = / C(Q, €) dP(&).

e We rely on the following assumptions about the uncertain parameters £(w):

&(w) is “small”, e.g. the norm ||£]|.p(0;z) is “small” for some p > 1.
&(w) is “finite-dimensional”:

N
{w) =&+ &ai(w),
i=1
where &, &1, ..., &N are deterministic parameters,
/ aj(w) dw =0, and / ai(w)aj(w)dw =465, i,j=1,...,N.
o o

Such a reduced structure is obtained e.g. by a Karhunen-Loéve expansion.
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Formal idea: We linearize the cost C(€2, &) around the mean value &:

C(.€) ~ C(.60) + G (&) + 5 G (R.E)(EE) + o€ — &l D).

Injecting the structure of £(w) and taking the mean value, it follows:

N 92C
Ineanl@) = C(R0) + 5 D T (. 60)(6 €.
i=1

This shape functional can be analyzed by standard adjoint techniques.

A similar treatment yields an approximate variance or probability of failure:

Joar(Q) = / (ce - mm(Q))2 d and Jun(Q) = F{€ € =, €(2,6) > o},

where « is a safety threshold.
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A & DM
N & AN

Optimized bridge considering (Top row) Random loads with the objective Jycan(2) and m = 1, 2,5, 10; (middle
row) Random loads with the objective Jycan () + LSJ‘/M(Q)‘/2 and 6 =3, m=1,2,5,10; (bottom row) The
worst-case approach with m = 1,2,5,10.
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Beyond computational aspects, neither of these paradigms is truly satisfactory.

e Worst-case approaches are pessimistic:

Anticipating the (unlikely) worst-case scenario yields shapes with poor nominal
performance.

e Stochastic approaches suffer from a major conceptual flaw:

The law P of the uncertain parameters £(w) is not known, and can at best be
estimated from (a few) observed samples.
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e Distributionally robust formulations only assume an estimate P of the law of the
uncertain parameter &, that belongs to a compact set = C RX.

e The worst mean value of C(£2,£) is minimized among laws Q that are “close” to PP

mfin Jar(2), where J4,(Q2) = sup /C(Q £) dQ(¢).
(@ 11”)

e The distance d(Q,P) between probability measures is the Wasserstein distance:

@R = i [ _deoaro.

where c(¢,¢) := |€ — ¢|? is the ground cost of sending a unit of matter from £ to (.

H. Rahimian and S. Mehrotra, Distributionally robust optimization: A review, arXiv
preprint arXiv:1908.05659 (2019).
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A coupling is a probability measure 7 € P(= x =).

The marginals w1, m2 € P(Z) of 7 € P(Z X =) are defined by:

Vo € C(3), / P(E)dn(£,C) = / (€) dma (), and

XZ

/Exz P(Odr(€, ) = /Eso(c) dra(C).

Interpretation: w(&,() ~ amount of mass of P at { coming from mass at £ in Q.

W(Q,P) thus measures the optimal way to transport the mass from Q to P.

It is a "geometric” quantity to appraise the difference between P and Q.

(& G)

5 = tl &2

[11
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The blurred, entropy-regularized Wasserstein distance is used:

wier = it ([ _ceancqeHm).
71=Q, m2=P =x=

where the entropy H(w) of a coupling 7 is:

H(r) = J=y = log (ddT"o) dr  if mis a.c. w.r.t. mo
+00 otherwise,

and the reference coupling 7o is:

7o(€,C) = P(E)dre(C), with due(C) = ace™ "3 1=(C)dC,

for some o > 0 and a normalization factor ag, i.e.

o “spreads” the mass of P at £ over a characteristic length o.

G. Peyré and M. Cuturi, Computational optimal transport: With applications to data
science, Foundations and Trends in Machine Learning, 11 (2019), pp. 355-607.
F. Santambrogio, Optimal transport for applied mathematicians, Birkauser, 2015.
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We use the following result from convex duality.

Let f : = — R be a continuous function, and P € P(Z) be a probability measure.
Then, for any m > 0 and for o small enough,

Lo [ Ao = inf, {am - xe f1og ([ “455 ane(0)) ar@) |

The distributionally robust problem has a tractable reformulation:

min D(Q, A), where
Q,A>0

D(Q,\) == Am + ,\s/:log (/_ ewdyg(g)) dP(¢).

W. Azizian, F. lutzeler and J. Malick, Regularization for Wasserstein distributionally robust
optimization, ESAIM: Control, Optimisation and Calculus of Variations, (2023), 29, 33.
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Ongoing work: distributionally robust formulations

Distributionally robust shapes of the cantilever for various values of m.
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© Towards realistic shape and topology optimization models

@ Modeling fabrication constraints: the example of additive manufacturing
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Additive manufacturing in a nutshell‘

e Additive manufacturing technologies (a.k.a. 3d printing) proceed by decomposing
the shape into horizontal layers, which are assembled one on top of the other.

Material extrusion methods (e.g. FDM), used to process Powder bed fusion methods (e.g. EBM, SLS) process
plastic (ABS), act by deposition of a molten filament. metals; metallic powder is spread within the build
chamber, and a laser binds the grains together.

e 3d printing techniques can allegedly process arbitrarily complex shapes.
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The overhang issue

All additive manufacturing technologies experience trouble when assembling shapes
with large overhangs, i.e. regions hanging over void.

e In the case of FDM processes, this amounts to assembling over void.

e In powder-bed methods, these regions cannot efficiently evacuate heat,
inducing residual stress and warpage during cooling.

e A common, but cumbersome strategy to handle overhangs is to erect a
sacrificial scaffold structure alongside the construction of the shape.

= Desire to add an overhang constraint P(Q2) in the optimal design problem.

(Left) Warpage caused by residual constraints in EBM (from ); (right) Supporting scaffold
structure (from https://filament2print.com).
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e Geometric attempt: P(2) penalizes regions of 90 “close” from horizontal, e.g.

P(Q) = /asz ©(ng) ds, where ¢ : R? — R is given.

e The results are undesirable: such functions induce “many” local minima”, where
the constraint is satisfied “almost everywhere”.

Optimized shape of a 2d MBB Beam (without manufacturing constraint).

%9, d 3 N “’
‘fg‘ffo‘\ 'I/ ’o’o? 000

Optimized shape accommodating a geometric constraint, which is fulfllled almost everywhere”!
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A mechanical constraint for overhang features (1)

Joint work with G. Allaire, R. Estevez A. Faure & G. Michailidis

We rely on a mechanical constraint P(2) which appraises the physical behavior of
the shape at each stage of its construction.

Q is enclosed in the build chamber D = § x
(0, H), where S ¢ R¥71,

o Q= {x=(x1,...,xd) € Q, xg < h} is the in-
termediate shape at height h.

e The boundary 09 is decomposed as 90, = n

Mo UTYUT}, where

- To={x € 02, x4 =0} is the contact region be-
tween Q5 and the build table,

- Ty ={x € 0Qn, x4 = h} is the upper side of Qp,

- T, =0\ (ToUTY) is the lateral surface.
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A mechanical constraint for overhang features (II)

Each intermediate shape Qj is only subjected to gravity effects g € H*(R9)“.

The displacement ug, of Q4 during construction (# final use) satisfies:
—div(Ae(uas)) = g in Qn,

ug, =0 on [,
Ae(ug,)n =0 on M ury,

The self-weight of each intermediate shape Q,, is:

cq, = / Ae(ug,) : e(ug,) dx :/ g - ug, dx.
Qp Qp

The manufacturing compliance of Q aggregates the self weights of its intermediate
shapes:

H
Pul@) = [ iten,) dh
0
where j : R — R is a smooth function.
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e The shape derivative of the constraint Psw(£2) can be calculated.

e Other models may be used for the physical behavior of intermediate shapes Qp, e.g.

- The problem for the displacement ug, of Q4 could be replaced by:

—div(Ae(ud,)) = &n
up, =0
Ae(ufzh)

n=20
Ae(ud,)n=0

in Qh,

on I, [ g if xqe(h—24,h),
on I}, where g5 (x) = { 0 otherwise,

on Iy,

is the force applied by the printing tool on the upper side of Q.

- In

, the constraint P(2) involves the solution Tg, to a thermal

cooling problem posed on Qp, to model residual stresses in the final shape Q.
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Optimized 2d MBB Beams obtained using the modified manufacturing compliance P,;(Q?) and parameters (from
top to bottom) a. = 0.30, ac = 0.10, ¢ = 0.05, and o = 0.03.
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Asymptotic analysis: foreword

Asymptotic analysis generally deals with the effect of “small perturbations” on the
solution to a boundary value problem, indexed by ¢ < 1. They may be

e Regularized versions of a singular boundary value problem,

e Singular perturbations of “smooth" partial differential equations.

A representative issue of the second category is the analysis of the effect of small
inhomogeneities within a background medium.
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e Background situation: wg is the potential associated to a
smooth conductivity 4o within D C RY:

—div(yoVuw)=1f in D,
u =20 on OD.

e Perturbed situation: o is replaced by another smooth
conductivity 71 inside a “small” subset w. € D:

{ —div(.Vue) =f in D, @O y)

u-=0 on 0D,
d

where 7.(x) == { 7(x) if x € we, D

~Yo(x) otherwise.

What is the behavior of the perturbed potential u. by the presence of
inclusions w. of conductivity v1 in the background medium?
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e A general representation formula for u. is (up to a subsequence of the ¢):

e (%) = to(x) + |we| / M(y)Vuo(y) - Ty N(x, y) dpa(y) + of|we1),

where

- p is a positive measure indicating the “limiting position” of the sets w;
- The polarization tensor M(y) encodes the limiting “near field” u. inside we;

- N(x,y) is the Green's function for the background problem.

e Under “mild" conditions, the quantity J(u.) := [}, j(uc) dx has the expansion:

(=) = Juo) — || / M(y)Vuo(y) - Vroly) dpuly) + oflwe]),

—diV(’Y()vpo) = —j/(UQ) in D7

where the adjoint state pg is defined by{ po = 0 on 8D.

Y. Capdeboscq and M. S. Vogelius, A general representation formula for boundary
voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,
ESAIM: M2AN, 37 (2003), pp. 159-173.
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Small inhomogeneities in a background medium (Il1)

Diametrically small inhomogeneities
We = Xo t+ cw,

where w € R9 is a given bounded subset.

e i is a multiple of 6y,

e M involves the solution to an exterior problem,
posed on w and RY \ @.

Wo,e = {x € R, d(x,0) < 5} ,
where o € D is an (open or closed) curve in R,
e 4 is an integration measure on o,

e M is diagonal in a local basis (7, n1,...,n4-1)
attached to o.

e These have been seldom considered [BCGH CGK].

A 3d diametrically small inhomogeneity

- . A 3d tubular inhomogeneitiy. . . .
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Foreword

We investigate two forays of asymptotic analysis in shape and topology optimization.
Optimization of the regions supporting

“Regular” boundary

perturbation / /

\\QQ‘/
N

//,.

/‘ \\‘«\iopological“ derivative

Graft of a thin ligament

—

=)
“\\Q]//
Optimization of the topology of shapes by the graft of thin ligaments

DA
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o Asymptotic analysis for new types of shape variations
@ Optimization of boundary conditions
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Optimization of boundary conditions: examples

Thermal conduction |

e The temperature uq : Q — R inside Q is the
solution to the conductivity equation;

e Dirichlet b.c. account for a known profile;

e Neumann b.c. represent an imposed heat flux.

Structure mechanics

e The displacement ug : Q — R of Q is solution to
the linear elasticity system;

e Q) is attached at the regions equipped with
homogeneous Dirichlet b.c. ;

e Neumann b.c. represent applied surface loads.

PR

Optimization of the screws of a
mandibular prosthesis [|.2/5].

I!2.44

Optimized cooling process for a structure
produced by molding [\W/e\WuShi].

[m] (=) = =

DAy
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e The considered shapes Q are smooth,
bounded domains in RY, with boundaries:

00 =TpUlyuUT.
e We assume that Tp NTy = 0 and denote
ZD = 8|—D7 and ZN = 8I’N.

e The behavior of Q is dictated by the solution
ug € H*(Q) to the conductivity equation:

—div(yVug) =f in Q,

ug =0 on [p,
'yaa“,? =0 onT,
768”,‘17 =g on Ny,

e ~ is the conductivity of the medium,
where o f ¢ [2(Q) is a source (or a sink),

o g c () is a heat flux.
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e We consider a shape functional of the form
J(Q) = /j(uQ) dx, for some smooth j:R — R,
Q

which depends on €2, but also on the repartition of I'p, 'y and I on 9.

e We aim to

Calculate the shape derivative J'(2)(6) when deformations 6 do not vanish
near p.

Calculate “topological derivatives’, measuring the sensitivity of J(Q2) to the
insertion of a small Dirichlet subset w, inside I'.

e The presented methods can be generalized to

- Other types of regions

- Other physical contexts
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Shape derivatives of regions supporting boundary conditions

Joint work with N. Lebbe & E. Oudet

J'(£2)(0) has an intricate expression because of the limited regularity of ug near ¥p:

e There is a neighborhood W of each x € Q\ (Zp UXn) s.t. uq is smooth in QN W.

e ug is weakly singular near £p (i.e. H*27" for all n > 0).

[llustration: In 2d, assuming a flat boundary 9Q near Xp = {so, 51}

si:O r

I'p

- ul belongs to H*(Q N V),

i ici ) . .
ug = u, + ¢'S' near s;, where - ¢ is a scalar coefficient,

- Si(r,v) = ri cos (%).

& P. Grisvard, Elliptic problems in nonsmooth domains, SIAM,-(2011).

DA
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e We introduce a regularized problem:

—div(yVuq.)=f inQ,

mauﬂf

V5o + heug. =0 onTUTlp,
Oug ¢
V- =8 on y.

€

O
o h(x):=1h (er( )) is made from:

- The geodesic signed distance d,‘—aDQ to p,
- A smooth profile h: R — R such that:
h=1 on (—o0,—1],
0<h<1, h(0) > 0,
h=0 on[1,00).

Intuitively,

- h. =0 “well inside” T (= homogeneous Neumann b.c.),

- h. =1 = oo inp (& homogeneous Dirichlet b.c.).

e For a fixed € > 0, standard elliptic regularity implies that ug . is smooth on Q.
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e This approximation gives rises to an approximate shape functional:

1.(Q) = /j(uQ,E) dx.
Q
e Its shape derivative can be calculated by standard adjoint methods and is simple

to handle in algorithms.

e Under “mild" assumptions, the following convergence results hold true:

- The function ug . converges to ug strongly in H*(Q): for any 0 < s < I,
Jug,e — vallh1@)< Ce®llfll2()-

- The approximate functional J.(Q2) converges to its exact counterpart J(Q).

- The approximate shape derivative J.(£2) converges to the exact one J'(Q):

sup [JL(Q)(0) — S ()(0)] =% o.

101l y1,00 (gd gd) <1
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Topological derivatives for boundary condition regions (1)

Joint work with E. Bonnetier, C. Brito-Pacheco & M. Vogelius

e Let we C I be the surface disk with center xo and radius €.

e The background and perturbed potentials ug and u. are the H*(£2) solutions to:

—div(yVug) =f in Q, —div(yVuw:) =f in Q,
ug =20 on p, ue =0 on [p Uw:,
7%3:0 onT, 7%:0 on I\ g,
fyaaif =g on y. 7% =& on Iy.

The following asymptotic expansion holds at any point x € Q, x ¢ ¥ U {xo}:
s 1
S N 1) ifd=2
UQ(X) ||Og8|7(XO)UQ(XO) (X7X0)+O <||0g5|) ! 5

us(x) =
ua(x) — devy(x0)ua(xo)N(x, x0) ifd =3.
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The corresponding perturbed version of J(Q2) reads:

J(s):/ﬂj(us)dx.

The function J(g) has the following asymptotic expansion at 0:

1 L
sy - | O+ gGalnCalpato) + (m) Fd =2,

J(0) + 4e7(x0) ua(x0) pa(xo) + ofc) ifd=3,
where pq is the unique solution in H*(Q) to the boundary value problem:

—div(7Vpe) = —j'(ua) inQ,
pa=0 onlp,

Opg __
Y on = on y.

=- The negativity of the first non-trivial term indicates where to add Dirichlet b.c.
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e Electro-osmotic mixers achieve the mixture of two fluids inside a device Q by
maximizing the electric field induced by electrodes on 09.

e The boundary of € is decomposed as:

0N =TcUTAUT,
- ¢ is the cathode,

where _ 4 is the anode,

- Qs insulated on T.
e The potential inside Q is the solution to:
—div(yVug) =0 in Q,

ug =0 on ¢,
uqg = Uin on Iy,
dug __
Tor =0 onl.

e We aim to maximize the electric power inside Q with respect to 'x and I'c:
J(Q) = —/|’yVUQ\2 dx,
Q

under constraints on the surface measures of ['4 and c.
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Optimization of (top) the anode, (bottom) the cathode of a micro-osmotic mixer.
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Besides boundary perturbations and small holes, there is
one third means to define “small” variations of €:

Qoe = QUuwoe,
where
We,e 1= {x e ]Rd, d(x,0) < E} 5

is a tube with thickness € <« 1 around a curve o.

Such variations pave the way to a notion of topological ligament derivative:
Q) =J(Q) + 971 dU(Q)(o) +o(?H).
zlwu,s‘
This topic has been seldom investigated in the literature. Unfortunately,

e The mathematical derivation of such asymptotic formulas is very difficult.
e The resulting expressions are difficult to use in practice.

S. Nazarov and J. Sokolowski, The topological derivative of the dirichlet integral due to
formation of a thin ligament, Siberian Mathematical Journal, 45 (2004), pp: 341-355.
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A model problem in linear elasticity

Background situation 1

The displacement uq € H'(R2)? is the solution to:

—div(Ae(ug)) =0 in Q,

ug =0 on Ip,

Ae(ug)n=g on Ny,
Ae(ug)n=0 onT,

The performance of Q equals J(Q) = [, j(ua) dx.

I'p

Perturbed situation i,

The perturbed displacement u. € H*(Q,,.)¢ satisfies:

—div(Ae(ue)) =0 in Qop,
u=20 on Ip,
Ae(u)n=g on My,
Ae(u:)n =0 on U dwg,c.

The performance of Q, . reads J(e) := [, _j(ue)dx.

o <& = E T 9ace
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I'p

We approximate this setting by “filling the void” D \ Q with a soft material 74, n < 1.

Q

N
QO

D

—div(Ae(ug)) =0 in Q,

ug =20 on Ip,
Ae(ug)n=g on Iy,
Ae(ug)n =0 onT.

Q

I'p

Q

=~
QO

—div(A,e(uy) =0 in D,

u, =0 on Ip,

Aje(up)n=g only,
Ase(up)n=0 ondD\ (I'pUTly),

>

A — if x € Q,
771 nA otherwise.
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I'p

We may as well use a smoothed Hooke's tensor A,,.

Q

N
QO

D

—div(Ae(ug)) =0 in Q,

ug =0
Ae(ug)n=g
Ae(ug)n =0 onT.

on Ip,
on r/\/7

I'p

—div(A,e(uy)) =0 in D,

u, =0 on [p,

Ase(up)n=g on Ty,
Aye(u)n=0 on oD\ (TpUTy),

){ A ifxeqQ,

An=( nA  otherwise.
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We make a similar approximation for the perturbed problem.

Q D D
r D I D
- ’f\\q\

—diV(Ae(uE)) =0 in ng, _diV(AnAse(Un,s)) =0in D7
Uz = 0 on rD7 Un.e = 0 on rD:
Ae(us)n=g on My, Ance(up:)n=g on Ty, -
Ae(uE)n =0 onlU 80.)0-75. An,se(un,e)n =0 on 0D \ (rD U rN)7

A= A if x € wope,
TE 7 A, otherwise.
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e We make the formal approximations:
4Q) ~ J(0) :/j(un)dx, and J(Q.0) ~ J(e) ::/j(un,g)dx.
D D
e The asymptotic behavior of u,, . as € — 0 boils down to a problem of thin tubular
inhomogeneities for the linear elasticity system.

o A (tedious) analysis yields:

() = () + £ [ My)e(un) s & (N(x,y) dely) + ("),
and
Je) = 40) = [ Mly)ewn) s epr) dU(y) + ofe? ),
where M(y) is a suitable polarization tensor and the adjoint state p, satisfies:

—div(A,e(py)) = —j'(uy) in D,
pn =0 on p, -
A,e(py)n=0 on 0D\ (Fp UTy).

= The negativity of the first non trivial term indicates that it is beneficial to graft a
thin tube based on o to .
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e We minimize the compliance of a shape Q under a volume constraint:

mﬂin J(R) s.t. Vol (Q) < V7,

where J(Q) := / Ae(uq) : e(uq) dx, and Vol(Q2) = / dx.
Q Q

e The optimized shape is prone to falling into local minima with trivial topologies.

e To remedy this, we periodically interrupt the optimization process to insert bars.
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The “benchmark” 2d cantilever test case is considered.

e The shape Q is optimized with a boundary variation algorithm.

e Every now and then, the process in interrupted and a bar is added to Q2 at an
“optimal location”.
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The optimization of a 3d bridge Q is considered.

w""T
T w

Iy

YA S

SOt
A ALY

vy A\g

NN
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%
e
oty

e We minimize the compliance of Q
J(Q) = / Ae(uq) : e(uq) dx.
Q

e A volume constraint is enforced.

e Every now and then, a bar is added to Q at an “optimal location”.
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Application: A “clever” initialization for truss structures (1)

e Truss structures are collections of bars.

e Many truss optimization methods rely on the
ground structure approach: an initial, dense
network of bars is iteratively decimated.

e We propose instead to start from void and

(1)
(2]

Incrementally add bars to the structure.

Take on the optimiza-
tion with a more “classical” boundary-
variation algorithm.

7 l\\oﬂl\\vﬂl\\'ﬂl\\oﬂl\\oﬂl\%

R S ARSI RT LIRS
ST
NN
S EAREILDIAR
ARZAZAZARZATRA

<7
RERBESAA

Initialization of a truss optimization

algorithm by the ground structure approach
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Application: A “clever” initialization for truss structures (II)

We consider the optimization
of the shape of a 2d crane Q.

e The compliance
J(Q) = / Ae(uq) : e(uq) dx
Q

is minimized.

e A volume constraint is
enforced.
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Evolution of shapes via Laguerre diagrams (1)

Ongo

with B. Levy & E. Oudet

e The domain D is equipped with a Laguerre diagram:

N
= S1,...,5y € D are seeds,
b= ULag,(s, %), where { P1,...,Yn € R are weights,

i=1

and the i*" cell Lag;(s, 1) is defined by:

Lag,(s, v) = {x € D, [x—si* =i < |x—5j|*—1y,Vj # i}.

e The diagram can be parametrized by the seeds
$1,...,5y and the measures v, ..., vy of the cells.

A Laguerre diagram of D

e This induces a decomposition of D into convex poly-
gons, with vertices q1, ..., qu. ‘ '
e The shape Q C D is represented as a subdiagram: ‘ ‘

N
o Representation of Q C D as a
Q =|JLag(s,¥).

subdiagram.
i=1
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Evolution of shapes via Laguerre diagrams (1)

We consider a shape optimization problem:

i ) /

where J(£2) involves e.g. the elastic displacement ugq. ‘ = U

Virtual Element solution of the linear
. . ) ) elasticity system.
The discretized version of this problem reads:

min J(s,v).

s, v

The mechanical calculations for uq
hinge on the Virtual Element Method.

This naturally yields the derivatives of J with respect
to the vertices g1, ..., gu of the polygonal mesh.

These derivatives are “transferred” at the seeds s and
volumes v by a suitable adjoint method.

Sensitivity of J w.r.to vertices,
then seed points:
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Evolution of shapes via Laguerre diagrams (IIl): Numerical example

This framework is Lagrangian; yet, it naturally accounts for topological changes.
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