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Abstract

We propose a method for structural optimization that relies on two alternative descriptions of shapes : on the one
hand, they are exactly meshed so that mechanical evaluations by finite elements are accurate ; on the other hand,
we resort to a level-set characterization to describe their deformation along the shape gradient. The key ingredient
is a meshing algorithm for building a mesh, suitable for numerical computations, out of a piecewise linear level-set
function on an unstructured mesh. Therefore, our approach is at the same time a geometric optimization method
(since shapes are exactly meshed) and a topology optimization method (since the topology of successive shapes
can change thanks to the power of the level-set method). To cite this article: G. Allaire, C. Dapogny, P. Frey, C.
R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Optimisation topologique et géométrique de structures élastiques par déformation exacte de maillage
simplicial On présente dans cette note une méthode d’optimisation structurale qui s’appuie sur deux manières
complémentaires de représenter des formes : d’une part, elles sont maillées exactement afin que l’évaluation des
performances mécaniques par éléments finis soit précise ; d’autre part, on utilise leur représentation à l’aide d’une
fonction de lignes de niveaux pour les déformer suivant le gradient de forme. L’ingrédient crucial est un algorithme
de remaillage qui permet de construire un maillage, de qualité appropriée pour les calculs numériques, à partir
d’une fonction ligne de niveaux continue et affine par morceaux sur un maillage non structuré. Par conséquent,
notre approche peut être vue à la fois comme une méthode d’optimisation géométrique (puisque les structures
sont maillées exactement) et comme une méthode d’optimisation topologique (puisque la topologie des formes
successives peut changer grâce à l’utilisation de l’algorithme des lignes de niveaux). Pour citer cet article : G.
Allaire, C. Dapogny, P. Frey, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
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Version française abrégée

Classiquement, l’optimisation structurale repose sur la méthode de Hadamard [1], [12], [17] qui prescrit
la déformation de la frontière d’un domaine Ω (donnant lieu à une suite de formes Ωk) pour que celui-ci
minimise une certaine fonction-objectif. D’un point de vue technique, ceci se traduit par la nécessité
de déformer le maillage de la forme courante (maillage qui permet d’effectuer des calculs par éléments
finis), ce qui s’avère très difficile, voire impossible, notamment en trois dimensions. Pour remédier à cet
inconvénient majeur, de récents développements [2], [3], [19] ont conduit à regarder le problème sous l’angle
de la méthode des lignes de niveaux de Osher et Sethian [13]. Le bord du domaine est représenté comme
ligne de niveau 0 d’une fonction implicite définie sur un domaine de calcul fixe D (maillé typiquement
par une grille cartésienne) dont l’évolution est régie par une équation de type Hamilton-Jacobi. Cela
nécessite de pouvoir donner un sens au problème mécanique considéré sur tout le domaine de calcul et
pas seulement dans la forme Ωk, ce qui dans le contexte de l’élasticité se fait en considérant que le milieu
extérieur D \ Ωk n’est pas vide mais occupé par un matériau “ersatz” très mou.

Dans cette note, on propose une nouvelle approche au confluent de ces deux cadres de travail : d’une
part, comme dans l’approche classique, on continue à mailler exactement chaque forme Ωk à l’itération k
de l’algorithme d’optimisation ; d’autre part, l’évolution de la forme d’une itération à l’autre est toujours
décrite par la méthode des lignes de niveaux, mais sur un maillage non structuré (simplicial) du domaine de
calcul D, que l’on s’autorise à modifier d’une itération à l’autre. Puisque les maillages sont non structurés
la méthode des lignes de niveaux ne peut utiliser des schémas usuels de type différence finies : ici, on
utilise une méthode des caractéristiques [14], [18]. Il n’y a ensuite plus qu’à garder la partie intérieure à la
forme de ce maillage pour procéder à l’évaluation de sa performance mécanique par un calcul d’éléments
finis. Il est ainsi possible de décrire des changements importants (y compris des changements de topologie)
de la forme alors que celle-ci reste maillée exactement à chaque étape. La méthode est présentée ici sur
des exemples en 2d (voir les figures 1 et 2), mais a l’avantage de ne pas présenter d’obstacle conceptuel à
une extension en 3d, contrairement à beaucoup d’heuristiques quant à l’évolution du maillage.

1. Introduction

Since [2], [3] and [19], the level-set method of Osher and Sethian [13] has proved to be a very versatile
tool in the context of structural optimization. Working on a fixed Cartesian grid of a large computational
domain D ⊂ Rd, the authors used a consistant approximation of the mechanical problem at stake -
namely the ersatz material approach - then applied classical shape sensitivity techniques (the so-called
Hadamard method [1], [12], [17]) and described the evolution of the shape Ω ⊂ D by a Hamilton-Jacobi
equation for the associated level-set function. In this note, we propose a new approach where the shape
Ω is exactly meshed and no ersatz material is necessary in the void region D \Ω. We still rely on a larger
computational domain D which is no longer meshed with a fixed Cartesian grid, but rather is endowed
with an unstructured mesh that is notably changed at each iteration of the optimization process (using
local mesh modification techniques [9]) so that the shape Ω is precisely captured, i.e. its boundary is
a collection of internal edges (in 2d) or faces (in 3d) of the mesh. The level-set method is still a key
ingredient for mesh deformation and, as such, allows for topology changes from one iteration to the next.
However, we are inherently working on unstructured meshes, hence we cannot rely on finite difference
schemes and we rather use a method of characteristics [14], [18]. We emphasize that, even though all our
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numerical examples here are in the 2d setting, the whole method has been devised so that there is no
additional conceptual difficulty for the 3d case, especially as regards the strategy for mesh evolution.

2. Description of the problem and notations

As a model problem, we are interested in the optimization of a shape Ω, that is, a bounded domain of
Rd, made of a linear isotropic material, with Hooke’s law A. Such a shape is clamped on a part ΓD of its
boundary ∂Ω, and submitted to surface loads g ∈ H2(Rd)d on the complementary part ΓN = ∂Ω \ ΓD

(with ΓD and ΓN being of positive (d − 1)-measure in ∂Ω). For the sake of simplicity, we neglect body
forces and restrict ourselves to linearized elasticity. In this context, the displacement field u = uΩ of the
shape is the unique solution in H1(Ω)d of the elasticity system −div(Ae(u)) = 0 in Ω,

u = 0 on ΓD, Ae(u) · n = g on ΓN ,
(1)

where e(u) = 1
2 ((∇u)t +∇u) is the strain tensor and n is the outer unit normal to ∂Ω. We aim at finding

a shape Ω that minimizes a given objective function J(Ω) in a set Uad of admissible shapes which may
involve geometric constraints such as Ω ⊂ D and a fixed total volume V (Ω). In this note, we restrict
ourselves to the compliance (which is a global measure of the rigidity of the structure Ω) and the volume
constraint is taken into account through a Lagrangian with a fixed positive Lagrange multiplier `, so that
the optimization problem becomes

inf
Ω⊂D

(
J(Ω) + ` V (Ω)

)
with J(Ω) =

∫
ΓN

g · uΩ ds. (2)

As explained in [3], there are no difficulties to extend our approach to more general objective functions,
to additional constraints and to non-linear elasticity.

3. Two complementary ways for representing shapes

We alternatively represent a shape Ω ⊂ D as a mesh TΩ of the whole computational domain D in which
Ω is explicitly discretized (so that a mesh of Ω is included in TΩ as a submesh - see figure 2) and as a
level-set function ψΩ, defined on D (in numerical practice it is a P1-Lagrange finite element function on
an unstructured mesh), enjoying the properties

Ω = {x ∈ D \ ψΩ(x) < 0} ; ∂Ω = {x ∈ D \ ψΩ(x) = 0} . (3)

Both representations are used at different steps of our method: thus, a crucial ingredient is an efficient
algorithm for passing from one characterization to the other.
Generating a level-set function associated to a shape. Let Ω ⊂ D be a subdomain, explicitly
discretized in the mesh T of D (even though the method straightforwardly extends to the case of a
non-discretized interface). It is classical to generate a corresponding level-set function by computing the
signed distance function to Ω, at least near the interface ∂Ω [6]. To this end, we use a numerical scheme
for unstructured (simplicial) meshes, based on some properties of the unique viscosity solution of the
time-dependent Eikonal equation, which is described in detail in a previous work [7] (see e.g. [15] for an
alternative).
Meshing the negative subdomain of a level set function, ensuring conformity with the posi-
tive subdomain. Given an initial triangular mesh T of D, the 0 level-set of a P1 finite element function
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ψ is a piecewise affine curve (surface in 3d). To obtain a (new) mesh of the shape Ω, corresponding to ψ
through (3), we proceed in two (or three) steps :

(i) Each simplex K ∈ T , crossed by the 0 level-set of function ψ is cut in such a way that K ∩ ∂Ω

belongs to the resulting mesh T̃ , which has to remain conformal. To this end, a pattern which
enumerates the various possible configurations is used [9]. Unfortunately, the intersections of ∂Ω

with the mesh T are not controlled and the obtained mesh T̃ is bound to be of very poor quality
as far as finite element computations are concerned (ill-shaped elements, e.g. very flat or small, are
likely to appear).

(ii) A local mesh improvement is performed, so that a new improved quality mesh T ′ is created. This
step relies on local mesh modification operators (collapse of close points, points relocations,...)
described in [9].

(iii) (Optional) The mesh T ′ is smoothed, especially near the boundary ∂Ω, with a mesh regularization
procedure [9] to remove small angles or bumps on ∂Ω that could impair the accuracy of the finite
element computations to come.

4. Shape and topological sensitivity analysis

Shape sensitivity analysis. This is the so-called Hadamard method [1], [12], [17] which has already
been implemented in the context of level-set methods [2], [3]. Given a reference bounded domain Ω0, for
θ ∈W 1,∞(Rd,Rd) small enough, (I+θ) is a Lipschitz diffeomorphism of Rd, with Lipschitz inverse and we
consider variations of the form Θad 3 θ 7→ (I + θ)Ω0 ∈ Rd, where Θad is a subset of W 1,∞(Rd,Rd) corre-
sponding to admissible variations of the shape. An objective function J(Ω) is called shape-differentiable at
Ω0 if the application θ 7→ J((I+θ)Ω0) is Fréchet-differentiable at 0 and the associated Fréchet differential
J ′(Ω0)(θ) is the shape derivative of J at Ω0.

Let Ω ⊂ Rd be a smooth domain, it is well-known [3] that the compliance J(Ω) is shape-differentiable
at Ω. Denoting by κ the mean curvature of ∂Ω, for any θ ∈ Θad, its shape derivative reads

J ′(Ω)(θ) =

∫
ΓN

(
2

(
∂(g · uΩ)

∂n
+ κg · uΩ

)
−Ae(uΩ) : e(uΩ)

)
θ · n ds+

∫
ΓD

Ae(uΩ) : e(uΩ) θ · n ds. (4)

This yields a continuous velocity field θ (which is then to be numerically discretized in the finite elements
framework), equal to minus the scalar integrand multiplied by the normal n, a priori defined on the
boundary ∂Ω, according to which this boundary has to be deformed so as to decrease the objective
function under consideration. Note that because this deformation is accounted for by level set methods
in our context, this velocity field has to be extended to the whole computational domain, following a
regularization process described in [5], [11].
Topological sensitivity analysis. The previous method produces a deformation of the boundary ∂Ω
that allows us to decrease the value of J(Ω), but forbids the creation of new holes in the domain: the
resulting shape is thus strongly dependent on the initialization of the algorithm. As proposed in [4]
it should be coupled with the so-called topological gradient [8], [10], [17] which is a mechanism that
evaluates the benefit of the formation of a small hole. This coupled strategy has the effect of making the
optimization process less dependent on the initialization (especially in 2d). Its implementation is similar
to that in [4]: every 5 or 10 iterations of the optimization process, we compute the topological gradient
and select the 2 or 3% most negative locations where we change the sign of the level-set function, thus
creating holes in the current shape. After discretizing on the mesh of D the resulting 0-level set of this
modified function, we start again the geometric optimization process.
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5. Numerical algorithm

Starting from an initial shape Ω0 (e.g. the full computational domain D), we get a decreasing sequence
Ωk of shapes with respect to function J by applying a shape-sensitivity analysis (section 4) on the actual
domain discretized under the form of a computational mesh, and evolve it with respect to the obtained
shape derivative resorting to a level-set description. From times to times (say, every ktop step), we perform
a topological sensitivity analysis instead of a shape sensitivity analysis so as to change the topology of
the shape if need be. The proposed steepest-descent algorithm reads as follows (for clarity, we reported
only the steps related to shape-sensitivity analysis, the other ones being easier) :

Figure 1. Initial (left), intermediate (middle) and final (right) iterations of the optimization of a 2d cantilever.

For k ≥ 0, until convergence, start with a shape Ωk ⊂ D, the latter being equipped with a mesh T k

which encloses a mesh of Ωk.

(i) Consider only the part related to Ωk in the mesh T k, and compute the solution uΩk to the elasticity
system (1) on this submesh.

(ii) Generate the signed distance function ψΩk associated to Ωk, on mesh T k.

(iii) Infer from (4) the vector-valued velocity field θk for the advection of the shape to come.

(iv) Solve the following level set advection equation on the time interval [0, τk] (τk > 0 being a descent
step for the gradient algorithm)

∂ψ

∂t
(t, x) + θk(x).∇ψ(t, x) = 0 in (0, τk)×D

ψ(0, x) = ψΩk(x) in D
. (5)

with the method of characteristics [14] (which can be interpreted as a linearly implicit scheme
for the true nonlinear Hamilton-Jacobi equation [18]) to get the level set function ψ(τk, .) which
corresponds to the new shape Ωk+1.

(v) Discretize the 0-level set of ψ̃Ωk+1 = ψ(τk, .) in the mesh T k as in section 3, to get the new mesh
T k+1 of D, the interior part of which yields a mesh of Ωk+1.

Note that while this algorithm is quite similar to a mesh adaptation technique, it does not require any
interpolation whatsoever between two successive iterations.

Figure 1 depicts a classical numerical example for the compliance objective function (details of the
test-case are reported on the first picture) - the so-called cantilever problem. Here we take a normalized
Young modulus E = 1 and a Poisson ratio ν = 0.3. The Lagrange multiplier is set to l = 3 and we perform
200 iterations of the above algorithm, without using the notion of topological gradient. Each mesh T k

has about 1500 vertices (≈ 3000 triangles) and the whole process takes around 3 minutes on a laptop
computer. Figure 2 focuses on a single iteration of the process. Figure 3 presents another benchmark
test-case, where we use the topological gradient every ktop = 10 iterations.
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Figure 2. The 0-level set of ψ̃Ωk+1 (in thin line), after advection on the mesh T k (thick line ; left), and the mesh T k+1,

with its associated shape Ωk+1 (right).

Figure 3. Initial (left), intermediate (middle), and final shape (right) of the bridge optimization problem.
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