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Foreword: shape optimization in the industrial context

• Shape and topology optimization techniques
have aroused a tremendous enthusiasm within
the engineering and industrial communities.

• One drawback of these methods is that the
optimized designs are often too complicated
to be constructed by traditional methods such
as milling or casting.

• The recent headway made by additive
manufacturing methods allow to assemble
structures with a high degree of complexity.

• These techniques impose new constraints on
the manufactured components.

Typical ‘truss’ designs resulting
from shape and topology
optimization processes.

Part produced with an additive
manufacturing method (from
http://www.autodesk.com/).
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Additive manufacturing in a nutshell

• All the additive manufacturing processes begin with a slicing stage: the input
shape is decomposed into a series of horizontal layers.

• These 2d layers are built one on top of the other according to the selected
technology, e.g. material extrusion, or powder bed fusion methods.

Sketch of the slicing procedure, initiating any additive manufacturing process.
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The overhang issue (I)

All additive manufacturing technologies experience trouble in the assembly of shapes
showing large overhangs, i.e. regions hanging over void.

• in the case of material extrusion methods, this amounts to assembling over void.

• In the case of powder-bed methods, the rapid melting then solidification of the
powder induces residual stress, especially in regions unanchored to the lower
structure. This may cause warpage of such parts upon cooling.

(Left) short overhang; support from the lower structure is sufficient to guarantee
manufacturability; (right) large overhang.
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The overhang issue (II)

• The most common strategy to deal with overhangs is to erect a sacrificial
scaffold structure alongside the construction of the shape [DuHeLe].

• This scaffold structure has to be removed as a post-processing, which is costly
and cumbersome.

(Left) Warpage caused by residual constraints in an EBM assembly (from [CheLuChou]),
(right) scaffold structure in the construction of a part (from
https://hyrulefoundry.wordpress.com/).
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Shape optimization of linear elastic shapes (I)

In the context of its final use, a shape is a bounded
domain Ω ⊂ Rd , which is

• fixed on a part ΓD of its boundary,
• submitted to surface loads f , applied on

ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:

−div(Ae(uΩ)) = 0 in Ω
uΩ = 0 on ΓD

Ae(uΩ)n = f on ΓN

Ae(uΩ)n = 0 on Γ

,

where e(u) = 1
2 (∇uT + ∇u) is the strain tensor,

and A is the Hooke’s law of the material:

∀e ∈ Sd(R), Ae = 2µe + λtr(e)I .

�D
�N

•

f

A ‘Cantilever’

The deformed cantilever
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The shape optimization problem

The shape optimization problem of interest reads:

min
Uad

J(Ω), s.t. P(Ω) ≤ α,

in which

• Uad is a set of (smooth) admissible shapes,

• The objective function J(Ω) is the structural compliance of shapes:

J(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx =

∫
ΓN

f · uΩ ds,

• The constraint P(Ω) enforces the constructibility by additive manufacturing
processes,

• Other constraints may be added to the problem, e.g. on the volume Vol(Ω) of
shapes.
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Differentiation with respect to the domain: Hadamard’s method

Hadamard’s boundary variation
method describes variations of a
reference, Lipschitz domain Ω of the
form:

Ω→ Ωθ := (Id + θ)(Ω),

for ‘small’ θ ∈W 1,∞ (Rd ,Rd
)
.

⌦

⌦✓

✓

Definition 1.
Given a smooth domain Ω, a function J(Ω) of the domain is shape differentiable at Ω
if the function

W 1,∞(Rd ,Rd) 3 θ 7→ J(Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds around 0:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd )

)
.
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Differentiation with respect to the domain: Hadamard’s method

Techniques from optimal control theory make it possible to calculate shape
derivatives; in the case of ‘many’ functionals of the domain J(Ω), the shape
derivative has the particular structure:

J ′(Ω)(θ) =

∫
Γ

vΩ θ · n ds,

where vΩ is a scalar field depending on uΩ, and possibly on an adjoint state pΩ.

Example: If the objective function

J(Ω) =

∫
ΓN

f · uΩ ds

is the compliance, vΩ = −Ae(uΩ) : e(uΩ) is the (negative) elastic energy density.
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The generic algorithm

This shape gradient provides a natural descent direction for J(Ω): for instance,
defining θ as

θ = −vΩn

yields, for t > 0 sufficiently small (to be found numerically):

J((Id + tθ)(Ω)) = J(Ω)− t

∫
Γ

v2
Ωds + o(t) < J(Ω)

Gradient algorithm: For n = 0, ... until convergence,
1. Compute the solution uΩn (and pΩn ) of the elasticity system on Ωn.

2. Compute the shape gradient J ′(Ωn) thanks to the previous formula, and
infer a descent direction θn for the cost functional.

3. Advect the shape Ωn according to θn, so as to get Ωn+1 := (Id + θn)(Ωn).
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The ‘naive’, geometric attempt (I)

• Most approaches in the literature rely on the angle between ∂Ω and the
(vertical) build direction to detect and penalize overhangs.

• An intuitive approach relies on anisotropic perimeter functionals of the form:

Pg (Ω) =

∫
∂Ω

ϕ(nΩ) ds, where ϕ : Rd → R is given.

Example The choice ϕa(n) := (n · ed + cos ν)2
−, where (s)− := min(s, 0),

penalizes regions of ∂Ω where the angle n · (−ed) is smaller than a threshold ν.

⌦

n⌦

⌦

n⌦
⌫

�ed

Parts of ∂Ω (left) violating and (right) satisfying the angle-based criterion.
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The ‘naive’, geometric attempt (II)

Proposition 1.

The functional Pg (Ω) is shape differentiable at any admissible shape Ω ∈ Uad, and its
shape derivative reads:

P ′g (Ω)(θ) =

∫
Γ

κ ϕ(n) θ · n ds −
∫

Γ

∇(ϕ(n)) · ∇∂Ω(θ · n) ds,

where ∇∂Ωψ := ∇ψ − (∇ψ · n)n is the tangential gradient of a smooth enough
function ψ : ∂Ω→ R.

• Unfortunately, this approach gives unsatisfactory results.

• We will propose instead a general idea for modeling overhang constraints,
which appeals to their mechanical origin.
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Geometric constraints; the ‘dripping effect’ (I)

We consider the two-dimensional MBB Beam example.

6

1

f

Setting of the two-dimensional MBB beam example.

We first solve the compliance minimization problem:

min
Ω

J(Ω),

s.t. Vol(Ω) ≤ αvVol(D).
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Geometric constraints; the ‘dripping effect’ (II)

(Top) initial shape Ω0 and (bottom) optimized shape Ω∗ for compliance minimization in the
two-dimensional MBB Beam example.

The optimized shape Ω∗ presents large nearly horizontal bars which are very
important for the structural performance.
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Geometric constraints; the ‘dripping effect’ (III)

To help in removing these overhangs, we rather solve the problem:

min
Ω

(1− αg ) J(Ω)
J(Ω∗)

+ αg
Pg (Ω)

Pg (Ω∗)
,

s.t. Vol(Ω) ≤ αvVol(D).

Optimized shape using αg = 0.5.

The shape develops an oscillatory boundary so that:

• The angle requirement is (approximately) satisfied,

• The structural performance is not too much altered: the large bars connecting
loads to anchor points have not disappeared.
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Definition of the mechanical constraint (I)

The mechanical constraint P(Ω) relies on the physical behavior of the shape at each
stage of its construction.

• Ω is enclosed in the build chamber
D = S × (0,H), where S ⊂ Rd−1,

• Ωh := {x = (x1, ..., xd) ∈ Ω, xd < h} is the
intermediate shape at height h.

• The boundary ∂Ωh is decomposed as
∂Ωh = Γ0 ∪ Γu

h ∪ Γl
h, where

• Γ0 = {x ∈ ∂Ωh, xd = 0} is the contact
region between Ω and the build table,

• Γu
h = {x ∈ ∂Ωh, xd = h} is the upper side of

Ωh,

• Γl
h = ∂Ωh \ (Γ0 ∪ Γu

h) is the lateral surface.

D

h

e1
e2

e3

�u
h

�0

�l
h

`h
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Definition of the mechanical constraint (II)

• Each intermediate shape Ωh is only subjected to gravity effects g ∈ H1(Rd)d .
The elastic displacement of Ωh satisfies:

−div(Ae(uΩc
h
)) = g in Ωh,

uc
Ωh

= 0 on Γ0,

Ae(uc
Ωh

)n = 0 on Γl
h ∪ Γu

h.

• The self-weight of each intermediate shape Ωh is:

cΩh :=

∫
Ωh

Ae(uc
Ωh

) : e(uc
Ωh

) dx =

∫
Ωh

g · uc
Ωh

dx .

• The (self-weight) manufacturing compliance of a final shape Ω aggregates the
self weights of all its intermediate shapes:

Psw(Ω) =

∫ H

0
j(cΩh ) dh,

where j : R→ R is a smooth function.
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Shape derivative of the manufacturing compliance (I)

• We consider a fixed shape Ω ∈ Uad.

• Perturbations θ are confined to a class X k of vector fields of class Ck , which
identically vanish near the ‘flat regions’ of ∂Ω.

Theorem 2.

The manufacturing compliance Psw(Ω) is shape differentiable at Ω, in the sense that
the mapping θ 7→ Psw(Ωθ), from X k into R is differentiable for k ≥ 1. Its derivative
is:

∀θ ∈ X k , P ′sw(Ω)(θ) =

∫
∂Ω\Γ0

DΩ θ · n ds,

where the integrand factor DΩ is defined, for a.e. x ∈ ∂Ω \ Γ0, by:

DΩ(x) =

∫ H

xd

j ′(cΩh )
(
2g · uc

Ωh
− Ae(uc

Ωh
) : e(uc

Ωh
)
)

(x) dh.
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Shape derivative of the mechanical constraint (II)

The proof is not completely standard since cuts (Ωθ)h of variations of Ω are not
‘classical’ variations of shapes.

�0

⌦h

�u
h

⌦

⌦✓

(⌦h)✓

✓

(⌦✓)h

In general, cuts (Ωθ)h cannot be described as variations (e.g. (Ωh)θ) of Ωh.
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Other models

Other models may be used for the physical behavior of intermediate shapes Ωh. For
instance,

• The definition of uc
Ωh

could be replaced by:
−div(Ae(ua

Ωh
)) = gh in Ωh,

ua
Ωh

= 0 on Γ0,

Ae(ua
Ωh

)n = 0 on Γl
h,

Ae(ua
Ωh

)n = 0 on Γu
h,

where gh(x) =

{
g if xd ∈ (h − δ, h),
0 otherwise,

is an artificial force acting on the upper side of Ωh. As we shall see, this
formulation is better at penalizing perfectly horizontal parts hanging over void.

• The mechanical constraint P(Ω) could involve the solutions vΩh to a thermal
cooling problem posed on Ωh, to model e.g. residual stresses in the final shape
Ω; see [AlJak].
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Numerical evaluation of Psw(Ω) and P ′sw(Ω)(θ)

• The expressions for Psw(Ω) and its derivative P ′sw(Ω)(θ)

Psw(Ω) =

∫ H

0
j(cΩh ) dh, and P ′sw(Ω)(θ) =

∫
∂Ω\Γ0

DΩ θ · n ds,

where

DΩ(x) =

∫ H

xd

j ′(cΩh )
(
2g · uc

Ωh
− Ae(uc

Ωh
) : e(uc

Ωh
)
)

(x) dh.

involve a continuum of shapes Ωh via the self-weights cΩh and the elastic
displacements uc

Ωh
,

• Hence the need for a suitable discretization of h 7→ cΩh and h 7→ uc
Ωh
.

• We present:

• 0th-order approximations P0
N and D0

N of Psw(Ω) and DΩ,

• First-order approximations P1
N and D1

N based on an interpolation procedure.
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The ‘naive’, 0th order method

• The height interval (0,H) is discretized with a sequence:

0 < h1 < h2 < ... < hN = H.

• On each interval Ii := (hi , hi+1), we approximate h 7→ cΩh and h 7→ uc
Ωh

by
constant quantities:

cΩh ≈ cΩhi+1
, and uc

Ωh
≈ uc

Ωhi+1
on Ωh, for h ∈ (hi , hi+1).

• These approximations are used in the formulas for Psw(Ω) and P ′sw(Ω)(θ) to
obtain the reconstructions P0

N and D0
N .

• This method is costly in practice, since it requires a fine discretization {hi} of
(0,H) to be accurate enough.
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A first-order interpolation method (I)

• On each interval Ii , we approximate h 7→ cΩh by a cubic spline h 7→ c̃i (h) by
using the data:

c̃i (hi ) = cΩhi
, c̃i (hi+1) = cΩhi+1

, c̃i
′(hi ) =

d

dh
(cΩh )

∣∣∣∣
hi

,

and c̃i
′(hi+1) =

d

dh
(cΩh )

∣∣∣∣
hi+1

.

• On each interval Ii , we approximate h 7→ uc
Ωh

by:

uc
Ωh
≈ uc

Ωhi+1
(x) + (hi+1 − h) UΩhi+1

(x), a.e. x ∈ Ωh,

where UΩh is the ‘derivative’ of the mapping h 7→ uc
Ωh
... in a suitable sense.

• These quantities are used in the definitions of Psw(Ω) and P ′sw(Ω)(θ) to obtain
the approximations P1

N and D1
N .
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A first-order interpolation method (II)

The derivative of h 7→ uc
Ωh

may be thought of as the shape (or Eulerian) derivative of
the mapping t 7→ uc

Tt (Ωh), where Tt : Ωh → Ωh−t is ‘any’ diffeomorphism from Ωh

onto Ωh−t .

�h

�h�t

•

•

h

h � t

x

Tt(x)
•

V (x)

•
•

•

•
•

One diffeomorphism Tt mapping Ωh onto Ωh−t .
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Mechanical approach: the manufacturing compliance (I)

Still in the setting of the two-dimensional MBB Beam example,

6

1

f

we now solve the constrained optimization problem:

min
Ω

J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Psw(Ω) ≤ αcPsw(Ω∗),

where αc ∈ [0, 1] is a user-defined tolerance, and Ω∗ is the optimized shape for the
compliance under volume constraint (without additive manufacturing constraint).

34 / 45



Mechanical approach: the manufacturing compliance (II)

Optimized shapes for the two-dimensional MBB Beam example; (top) optimized shape Ω∗,
without additive manufacturing constraints, and optimized shapes using parameters (from
top to bottom) αc = 0.50, αc = 0.30, and αc = 0.10.
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Mechanical approach: the manufacturing compliance (III)

This new approach yields better results; yet, it raises two issues:

1. Psw(Ω) inherently favors structures whose lower part is stronger.

2. The optimized shapes still show large, completely horizontal overhangs. This is
a flaw in the modelling of Psw(Ω), which assumes that each layer of material is
assembled instantaneously.

Completely flat overhangs are not so weak because of the instantaneous layer deposition
assumption.
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Mechanical approach: the modified manufacturing compliance (I)

We now solve:
min

Ω
J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Puw(Ω) ≤ αcPuw(Ω∗),

where the modified (upper weight) manufacturing compliance Puw(Ω) brings into
plays elastic displacements of the intermediate shapes ua

Ωh
involving an artificial load

concentrated on their upper side:


−div(Ae(ua

Ωh
)) = gh in Ωh,

ua
Ωh

= 0 on Γ0,

Ae(ua
Ωh

)n = 0 on Γl
h,

Ae(ua
Ωh

)n = 0 on Γu
h,

where gh(x) =

{
g if xd ∈ (h − δ, h),
0 otherwise.
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Mechanical approach: the modified manufacturing compliance (II)

Optimized 2d MBB Beams obtained using the modified manufacturing compliance Paf(Ω)
and parameters (from top to bottom) αc = 0.30, αc = 0.10, αc = 0.05, and αc = 0.03.
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Mechanical approach: the modified manufacturing compliance (III)

We now consider the design of a three-dimensional bridge.

1

1
6

f

Build
direction

We solve the following shape optimization problem:

min
Ω

Vol(Ω),

s.t. J(Ω) ≤ J(Ω∗),
Puw(Ω) ≤ αcPuw(Ω∗).
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Mechanical approach: the modified manufacturing compliance (IV)

The optimized shape Ω∗ without manufacturing shows several large overhangs.

Different views of the unconstrained optimized shape Ω∗.
41 / 45



Mechanical approach: the modified manufacturing compliance (V)

These large overhangs are completely removed by imposing the manufacturing
constraint Puw(Ω).

Different views of the optimized shape for αc = 0.1.
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Thank you !

Thank you for your attention!
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