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Abstract.

In the present paper, a mesh adaptation process for solving the advection equation is presented, with a par-
ticular emphasis on the case it implicitly describes an evolving surface. It mainly relies on a numerical scheme
based on the method of characteristics. This low-order scheme is thoroughly analyzed on the theoretical
side. An anisotropic error estimate is derived and interpreted in terms of the Hausdorff distance between the
exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied
by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned.
Some numerical features are discussed and several classical examples are presented and commented in two
or three dimensions.
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1. INTRODUCTION

Since the seminal work in [28], implicit descriptions of surfaces or interfaces between different domains
have become increasingly popular. Roughly speaking, it amounts to considering a surface embedded in R?
as the zero level set of a scalar function defined on the whole ambient space. The motion of such a surface
through a given velocity field turns out to be parameterized by an advection equation for the associated
scalar function : see [34] or [29] for various topics around the level set method, or applications to physical
problems. On the other hand, numerous methods are available when it comes to solving the advection equa-
tion : see [18] for a review on the topic, or [21] for numerical comparisons between several existing methods
for the advection equation in the context of level set methods.

In the present paper, we mean to solve the standard advection equation associated to a given velocity

field V 9
u

in the particular case the advected scalar function u(t,z) is a level set function associated to an evolving
domain €(t), that is, for all t > 0, x € R? (d = 2,3 in our examples)
t

u(t,z) <0 if  xeQ)
(1) u(t,z) =0 if x€ ) .
u(t,z) >0 if x€°Q(t)

Celebrated methods are available in case the numerical approximations are held on a cartesian grid (see
e.g. [17] [27]). On the contrary, the whole work of this paper unfolds in the context of fully unstructured
background mesh, for we believe it is of independent relevance. For instance, it can be used for tracking an
interface which evolves in a computational domain with a complex geometry (as often happens in industrial
computations) that is more accurately described by an unstructured mesh. Furthermore, in several applica-
tions, the velocity according to which the interface evolves stems from mechanical computations (flow solvers
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in computational fluid dynamics, shape-sensitivity analysis in shape optimization,...) that require a mesh of
the implicitly-defined domain §2 at each step of the process. It may thus be desirable that the computational
mesh used for advection also encloses a discretization of this domain as a submesh, and this is only possible
for it is fully unstructured. Actually, the process described in this paper has already been used in such cases
in the previous works [11] [3].

We aim at getting a sharp approximation of the domain €(¢), hence the choice of conforming finite ele-
ments for the discretization of u, although discontinuous Galerkin methods generally prove very efficient in
this context (see [26] for instance). Furthermore, the surface under evolution may or may not be related to
a physical problem (e.g. fluid mechanics) ; for this purpose, we undertook not to address mass conservation
enforcement, however crucial this aspect might prove in several applications. Of course, it is possible to
couple the proposed method with a mass conservation, or mass restoration scheme.

Our main goal is to suggest a mesh adaptation process so as to control the accuracy of the computation.
To achieve this, we rely on the classical method of characteristics (see [30] for an exhaustive review of its
use in many fluid problems) to solve the advection equation. Although it is admittedly low-order as well
as very diffusive, it is simple to implement numerically, and we will see it is amenable to an error analysis
which yields straightforwardly an anisotropic error estimate for the Hausdorff distance between the evolving
interface and its computed approximation. Then, using anisotropic mesh adaptation on the computational
mesh according to the obtained estimate brings a close approximation of the advected quantity where it is
needed.

The outline of this paper is as follows : in section 2, we briefly recall some basic theoretical facts around the
advection equation that will be extensively used. Section 3 is devoted to deriving a numerical method for the
considered advection equation : this method is presented in subsection 3.1, then analyzed in both subsection
3.2, where an a priori error estimate is proved, and subsection 3.3, where this estimate is specialized to the
case of interest, that is when the advected scalar function is a level-set function associated to an evolving
interface. Section 4 tackles the issue of deducing a mesh adaptation process from the previous error estimate.
After recalling some classical material about metric-based mesh adaptation in subsection 4.1, an appropriate
adaptation method is detailed in subsection 4.2. In section 5, we emphasize on two crucial numerical aspects
of the proposed technique : the need for a mesh gradation control in the way the computational mesh is
adapted, and the role played by redistancing in our computations. Eventually, in section 6, several numerical
examples in 2d and 3d are developped to assess the proposed method.

2. SOME THEORETICAL FACTS AROUND THE ADVECTION EQUATION

Given an initial function 4" : R? — R and a velocity field V : R? — R? defined on the whole space, we
consider the Cauchy problem for the advection equation : find u € C1([0, T] x R?) such that

2) { O (t,2) + V{t,2).Vult,2) =0, (t,2) € (0,T) x R

ot )
u(0,x) = u"(z), r € R4

Throughout this paper, unless stated otherwise, we will make (at least) the following assumptions on the
velocity field V : [0,7] x R? — R? :

(3) V and VVare continuous over [0, 7] x RY,

(4) There exists & > 0 such that ||V (¢,z)|| < & (1 + ||z||) for all (t,z) € [0,T] x R%.

We then recall the following classical result ([22]) related to the advection equation.

Theorem 2.1. Suppose (3) and (4) hold, and let u'™ € C* (R?). For all 0 <t < T and x € R, denote

s = X(s,t,x) the characteristic curve emerging from point x at time t, solution to the ODE

(5) {(fi)s((s’t’x) - V(S,X(S7t,.’L‘))
X(t,t,x) = X

)



then
e For every point x € R? and every time t € [0,T], the curve s +— X(s,t,x) is well-defined over
[0,T). Furthermore, for every s,t € [0,T], the application R® > z + X(s,t,x) € R? is a C!,
orientation-preserving diffeomorphism.
e Cauchy problem (2) has a unique solution u € C1([0,T] x R?), given by

(6) u(t, ) = u™(X(0,t,2))

Note that the above result holds for the advection equation over the whole space R?, and for an evolution
driven by a (smooth) velocity field which satisfies some kind of 'non blow-up’ behaviour at infinity. In nu-
merical practice, we restrict ourselves to a (large) bounded computational domain, so that this property will
always prove 'numerically true’. However, we will still solve the advection equation as if it were considered
over R?, so that formula (6) will stand, the reason being that in this work, we are mainly interested in the
motion of a surface evolving ’far’ from the boundary of the computational domain, so that the values at
stake do not see the boundary. Actually, Cauchy problem (2) is ill-posed on a bounded domain, and its
analysis is far more difficult : one has to introduce boundary conditions in the so-called reentrant boundary
where the velocity field V' requires information from outside the domain. See [6] for a complete study of this
general problem.

In particular, Theorem 2.1 has the following interesting consequence in case the scalar quantity at stake
stands for a level-set function associated to a smooth surface :

Corollary 2.2. Under the hypothesis of theorem 2.1, suppose u'™ is a level-set function associated to a reqular
domain Q" C R in the sense that (1) hold, such that for all x € O™, Vu'™(x) # 0. Then for allt € [0,T],
Q(t) == {z € RN\u(t,z) <0} is a regular domain with regular boundary O(t) := {z € RN\u(t,z) =0}, and
is diffeomorphic to Q™ through the mapping X (0,t,.).

3. THE PROPOSED NUMERICAL METHOD, AND ITS ERROR ANALYSIS

3.1. A numerical method for the advection equation based on the method of characteristics.
Suppose the whole space R? is endowed with a mesh 7, and consider an associated Lagrange finite element
space V1 (e.g. P! or P2 finite elements). Given a time step At and an interval [T”7 T”“}, T =Tm 4+ At
(see remark below for a discussion), and an initial state w(7™,.) which fulfills the hypothesis of Theorem 2.1,
we intend to approximate the function u(7T"*!,.), where u(t,.) is the unique solution to the Cauchy problem

0

ait‘(t,x) LVt 2).Vault,z) =0, (tz)e (T, T") x R
u(Tm, x) = u™ Vz € R?

To this end, we only have an approximation V of vector field V', as well as a piecewise affine approximation

uT" € Vi of u(T™,.) = u™, and we also look for an approximation of u(7"*!,.) as a function u”"" € Vi,

that is to say we only need to compute the desired approximation ul™ ! (x) for every degree of freedom x of
T. In order to mimic the exact formula (6), as is well-known with the method of characteristics, we carry
out two steps :

e In a first step of time discretization, we compute an approximation ?(T",T"“,x) of the solution
Y(T", T", z) to the approzimated characteristic curve at time 7™ :

dY ~
7(3aTn+la'r) = V(S,Y(S,Tn+1,1‘))
s

YTt ) = 2
To achieve this, any classical method for solving ordinary differential equations can be used (Euler’s
method, or a more accurate Runge-Kutta method, see [16]). For instance, introducing a subintegra-
tion time step 6t << At and subdividing |77, T+ [= UL Jt!, ¢7H1[) with ¢! :=T™ +16t, 1 =0, ..., L,
Euler’s method yields

V(T T ) = o

Y(#, T+ 2) = Y (4, Tt z) — 6tV (Y (#+, T+ 2)) for 1=0,...,L — 1
3



e Then, a spatial approzimation step is to be performed ; in other words, if K is a simplex of 7 such
that Y (T™, T 2) € K, we have

Uin(X(Tn,TnJrl,(E)) ~ uin (Y(Tn’Tn+1’x))
’U,T" ('va(Tn’ T"+1, ZL‘))

9

Q

the latter expression being evaluated on basis of the discrete set of values of u™ at the degrees of
freedom belonging to simplex K.

Remarks

(1) Time-stepping. The above method uses two different time steps. The first one, At = T"1 —T" is a
‘large’ time step, mainly related to physics : in most interesting problems, the velocity field V' used
for advection over [T’HT”H} stems from a mechanical computation at time 7. Time step At is
then the period of time for which we assume this velocity physically relevant. The second one, dt is a
subintegration time step ; it is fictitious and merely involved for the integration of the characteristic
curves. It is the only one really involved by the method of characteristics. In the sequel, we will
often focus on a generic period of time [0, T], standing for any [T”, T"“].

(2) About numerical discretization. The above method amounts to solving an ordinary differential equa-
tion at each degree of freedom of the computational mesh, and involves neither matrix inversion,
nor quadrature formulas for approximating integrals. Consequently, it is computationally efficient
en practice, and as accurate as can be a spatial first-order scheme, as will be seen. However, as
is, it is not readily extended to more general problems, such as convection-diffusion-reaction prob-
lems. Moreover, it has been observed (see [31]) that simple first-order characteristic-based numerical
scheme for treating a convection term are generally very diffusive, which could be unacceptable for
several applications (such as fluid dynamics). For these reasons, characteristic-Galerkin numerical
schemes are often used in combination with higher-order finite elements. See [8], [9] for an exhaus-
tive presentation of several aspects of general characteristic-Galerkin finite element methods. In this
paper, we will overcome this low-order drawback resorting to a mesh adaptation procedure.

3.2. A priori error analysis of the proposed method. The goal of this section is to develop an a priori
error estimate for the scheme presented in section 3.1. As already mentioned, neither the idea of using the
method of characteristics for advection, nor its error analysis is new : see e.g. [30] [32] for considerations in
a far more general context. However, to our knowledge, the following a priori error estimate, on which relies
our adaptation scheme, is not so classical under this form (even if it is actually a variation of existing ones).

In the following, we still consider equation (2) for a generic period of time [0,7] and over the whole
space R?, which is endowed with two separate simplicial meshes 7~ (which is to carry the approximations of
functions u(¢,z)) and 77, on which we have an approximation V of a continuous vector field V. We denote
Vr (resp. V) the space of continuous functions over R?, whose restriction to every simplex K € T (resp.
K’ € T') is a P! polynomial function. For every continuous function f over R?, we denote w7 (f) (resp.
77 (f)) the Pl-interpolate of f over T (resp. T), i.e. the unique function in V7 (resp. V) which coincides
with f at every node of T (resp. T7).

Theorem 3.1. Assume moreover that V is a stationary, uniformly Lipschitz continuous vector field over RY,
with constant k, and u'™ is a C%, uniformly Lipschitz continuous function over R® with constant k' (so that
(3) and (4) are satisfied). Assume as well the approzimation V of V is such that both sup,cpa ||V (z) — V(z)||
and supg ey Lex |[VV(2) — VV|r|| are bounded.

Let 6t be a time step, and consider the sequence of times t™ = ndt, 0 = t° < t' < ... < tN = T. Denote
uN € Vi the sought approzvimation of u(T,.) defined as

(7) For each node x of T, u" (z) = 77 (u'™)(Y (0, T, z)),
4



where Y (0, T, z) is the approzimation of the solution Y (0,T,x) to the ODE

- {‘Z(S,T,x) = V(s T)
Y(T,T,2) = «

at time s = 0 by means of Euler method with time step 0t. Then there exists a constant C' which only depends
on V', such that

(T, .) — || poo(ray < (T, ) = m7u(T, )| oo ey + [ — 77u™|| oo (ray
9) %

+7

~ k'
(e T— DV = V|| poo(ray + ECTeC‘”(St

Proof. The proof will be split into two steps.

Step 1 : time approzimation of the integral curves of vector field V. Given x € R?, the aim is to esti-
mate the approximation of X (0,T,x) by Y (0,7, z). Here, X stands for the exact integral curve associated
to vector field V', solution of (5), and Y is the exact integral curve associated to the approximated vector
field V (solution of (8)), which is itself to be numerically approximated by )7(0, T, x), obtained with a first-
order Euler scheme. First, the use of Lemma 3.2 below allows to quantify the gap between Y (0,7, z) and
Y(0,T,z) :
I[Y(0,T,z) — Y (0,T,)|| < CTe®% 5t

for a constant C' which only depends on ‘7, or alternatively on V', owing to the asumptions made over the
approximation of V' by V. Then, thanks to a variation of Gronwall’s lemma recalled in appendix (see Lemma
7.1) for the approximation of X (0,7, z) by Y (0,T,x), we get

|X(0,T,2) - Y(0,T,2)|| < ||X(0,T,z)—Y(0,T,x)||+ CTe %5t
kT .
= SN — mn V|| poe may + CTeC%5t

Step 2 : spatial appromimation on mesh T. We now turn to the error carried by the definition of the
approximation u”™ of function u(T,.), for a node x of mesh T :

(10)

[u(T,2) —u¥ @) = [ (X(0,T,2)) = 7ru’ (Y(0.T,) ) |
<l (X(0,T,2))) = u (V(0,T,2)) |
+ [l (V0,1 x)) ™ (V(0,7,2)) |
< KIXO,T,2) = VO, T,a) || + [0 = m7u™ || sy
< %(e =DV =7 V|| oo (may + %CT@C‘”& + [|u™ — U™ || oo (Ra)-

Eventually, consider any point x € R%, and let K € T any simplex containing . Denote ag, ..., aq its vertices,
and A, ..., \¢ the associated barycentric coordinates. It stems from the definition of u that

d
w(T,z) —ulV(z) = u(T,x) — Z i (z)uY
d
= U(T, .’E) - TrTU’(Ta JT) + Z Al(x) (U(T, ai) - uN(al))
i=0

Finally, we get the following estimate
/

k ~
(T, ) = u™| poe ray < ||u(T,.) = wru(T, )| Lo ey + E(@'“T = DIV = VL ra

K ; ;
—i—ECTeC‘St(St + [[u'™ = Tru'™ || oo (ray-



In the first step of the above proof, we made use of the following lemma which is a version of the well-
known estimate for Euler’s method for an ODE, in case the velocity field is only continuous and piecewise
differentiable, and its proof is a mere variation of the arguments in [16] for instance.

Lemma 3.2. Let x € R, and V € (VT/)d a continuous and piecewise affine vector field over R?, such that

(11) Cy := sup ||[VV]k|| < +o0 ; Co:= sup ||V(2)]| < +o0.
KeT’ z€R?

Denote y the exact solution to the ODE

12) {Z(% = V) |

and y° its approzvimation at time t° = 0 obtained by a simple Euler method over the interval [0, T), with time
step 6t. Then,

(13) 1y(0) — 4°]] < 2C1Cy Te st

Proof. As the vector field V is continuous and uniformly Lipschitz over R? because of assumption (11), the
exact solution y to the ODE (12) exists over [0, 7], is unique, and differentiable on this interval.

Introduce the sequence 3°, ...,y = x of approximated values for y at times ¢, ..., obtained by Euler’s
method with time step §t. For any n =0, ..., N — 1, this means

(14) yt =y =6tV (ynt)
Next, subdivide the time interval [t",t""!] as t" =10 <r! < ... <P =¢""! for a certain p in such a way

that for all j = 0,...,p—1, y ([r7,777!]) is included in a single simplex K7 of 7'. Then, y being differentiable
on each subinterval [rd, rit1],

ytn) = s + 37 (6) — y( )
(15) =0 :

=yt +Z< (y(r 7)) (17 rf+1)+/01<1—s)f;'(s)ds>

where we introduced f;(s) =y (r’* + s(rf — riT1)). Substracting (14) to (15) yields

W) -yt =yt "+1+Z(( ) =V @ = 4 [T g ) )

Y+ "+1+Z((V<y () = V) ¢ = 4 [T )
p—1

+30 (V@) = vtth) oF

Jj=0

Subdividing segment [y(t”+1), y"“‘l] into smaller subsegments, each one being included into a single element
K € T, the last sum is such that

(16) IIZ y(t" ) = V(") (7 =< Crot|ly () — ]

Furthermore, using the same argument of decomposition over smaller subsegments of each interval [rj, t”“] ,
7=0,...,p— 1, we have, thanks to the hypothesis involving constants C7, Cs,

(17) IIZ y(r ™)) = V(y(t")) (7 — || < C1C6t?

Eventually, from the definition of f;, we infer f7'(s) = (17 — r7t1)2VV |7, .V (y (17 4 s(r/ — r7+1)). Thus,
gathering (16), (17) and the latter, it comes

ly(t") = "] < (1 + Crat)|[y(t" ™) — y" | + 201 C20¢2
6



From the so-called discrete Gronwall lemma (see [16] for instance), we conclude that

N-—1
Hy(O) - y0|| < eCITHy(T) B yN|| + 201C2Z £C10t 542
7=0
QCngTecl‘stét

(18)

Y

IN

which is the expected estimate. (Il

Remarks

e This estimate is low-order. As pointed out by Pironneau [30] [31], the presented method can be
greatly improved by the choice of higher order methods in time, or spatial approximation. Thus,
approximation of the integral curves of vector field V with a 4*" order Runge-Kutta scheme, or of the
functions at stake by means of Lagrange P?-finite elements tremendously improves the quality of the
obtained results. Unfortunately, there is no formal proof of these assertions (note that the previous
proof cannot be generalized to those cases), however relevant they are in numerical practice.

e Many variations over this result are available : the vector field V' could be analytically prescribed (as
will be the case in the examples of section 6), and the same estimate holds, except that, understand-
ably enough, the term ||V — V||« (r¢) vanishes ; it could also arise from a finite elements analysis

(e.g. solution of Stokes’ problem) on mesh 77, in which case ||V — V| | o< (re) should be controlled by
the interpolation error ||V — 77+ V|| Lo (ray (generally, it is the case in other norms, thanks to Cea’s
lemma).

e Theorem 3.1 holds for a generic period of time [0,7], subdivided into smaller intervals of length
dt. Going back to the general case of section 3.1, we have to apply it successively on each interval
[T™, T ; the errors in the right-hand side of (9) will then sum up, and it is not difficult to see
that the accumulation of spatial errors will become dominant : understandably enough, the intervals
on which we backtrack the characteristic curves should be as large as possible, and follow the time
step At prescribed by the physics of the studied problems.

3.3. A priori error estimate in terms of Hausdorff distance in the case of level-set functions. As
already pointed out, we are especially interested in the case when the advected scalar function - which we
denoted u(t, .) in the previous section - is a level-set function associated to an evolving (regular) domain Q(t).
The control conveyed by Theorem 3.1 results in that case - at least formally speaking - in an estimate of the
Hausdorff distance (whose definition is recalled below) between the continuous evolving interface 992(¢) and
its approximation as the 0O-level set of the approximated level-set function.

Definition 3.1. Let Ky, Ky two compact subsets of R%. For any x € R?, denote d(x, K1) = infg d(z,y)
YyeEK,

the Fuclidean distance from x to K1 and :

p(K1, K2) := sup d(z, Ks).
rzeK,

The Hausdorff distance between Ki and Ko , denoted by d (K1, K3), is the nonnegative real number
dH(Kl, Kg) = max(p(Kl, KQ), p(Kg, Kl)) .

With the notations of the previous section, and under the hypothesis of theorem 3.1, suppose moreover
that u'™ is a level-set function associated to a regular bounded domain Q™ C R? in the sense (1) holds,
and that '™ does not admit any critical point in a vicinity of 9. According to the material presented
in section 2, it follows that for all ¢ € [0,7T], Q(¢) := {z € R"\u(t,z) < 0} is a bounded regular domain,
with smooth boundary 9Q(t) := {z € R"\u(t,z) = 0}, and u(t,.) does not admit any critical point within a
vicinity of 9Q(t). We also denote, for n =0, ..., N, Q™ and 9Q" the piecewise affine reconstructions of Q(¢™)
and 0Q(t") obtained as

Q"= {z e RN\u"(z) <0} ; 90" :={zeRNu"(z)=0}

Recall the previous result from [14] :



Lemma 3.3. Let u € C'(R?), without any critical point within a certain tubular neighbourhood W of 052,
so that 0 is a submanifold of R%, and Q is a bounded subdomain of R® with C' boundary. For any point
x € W we have the estimate :
sup [[Vu(z)||
19 d(z,00) < 22—
(19) (@.00) < S5 (o)
zeW
A formal use of this lemma yields :

sup ||Vu™ |||

oUT),00N) < sup KET— u"(z
P( (T) ) 2eB(T) IggT||VUN|K||2| ()]

sup ||Vu™ |||

N
= sup ————-v—-s|u (z) — u(T, x)]
f N2
2€d(T) IgéTHVU |l
sup ||Vul¥| k||

KeT N

- —u(T, )| oo (ra
R g llu™ —u(T, (RY)
Tl (Ve ]

And now, symmetrically :
sup [|[Vu(T,2)[|  sup ||V |||

2 d" (09(T), 00" < = KeT N (T, )| poo ()
( 0) (a ( )78 ) = sup inf ||VU(T, Z)||27 inf HVUN|K||2 ||U u( ) )HL (R4)
z€R4 KeT

Therefore, the estimate provided by Theorem 3.1 allows for a control over the discrepancy, measured in
terms of Hausdorff distance, between the interface of interest 9Q(T"), and its piecewise affine approximation
OQN, that is actually computed.

4. MESH ADAPTATION FOR THE ADVECTION EQUATION

4.1. Metric-based mesh adaptation. The main goal of mesh adaptation is to alter an initial mesh 7 in
such a way its elements’ size and orientation allow to perform the computation of interest with optimal effi-
ciency -i.e. fewer elements, and an enhanced accuracy. Since [36], the idea of metric-based mesh adaptation
has been increasingly popular : the local desired size, shape and orientation related information at a node
2 of mesh T are stored in a Riemannian metric tensor field M (z), which may arise from various possible
preoccupations : a posteriori geometric error estimates, analytic error estimates, etc... (see for instance [2],

[4], [23]).

Given a metric tensor field M (z), defined at each point x € R (notice that in practice, M(x) is de-
fined only at the nodes of 7 and then interpolated from these values [19]) we consider respectively the length
Ia (7) of a curve v : [0,1] — RY, the volume Vys(K) of a simplex K, and the distance dps(z,y) between two
points z,y € R? in the Riemannian space (Rd, M):

() = / VTG OW O Ot . Vag(K) = /K /et (M (x))dz,

dy(z,y) = inf I ().
veC([0,1],R?)
v(0)=z,v(1)=y

We aim at modifying mesh T so as to make it quasi-unit with respect to the metric M(z), that is to say

all its simplices K have edges lengths lying in [%, \/ﬂ What is more, we expect the anisotropic quality
measure:

QM(K) = Qyq

of all elements of the mesh (where na = d(d+ 1)/2 is the number of edges of a d-dimensional simplex, e; are
the edges of K and oy is a normalization factor) to be as close to 1 as possible. The underlying geometrical
8



interpretation is that for any given node zg of a quasi-unit mesh 7 with respect to M (x), every element
K € T which shares g as a vertex fits ’at best’ in the unit pseudo-ellipsoid

P (o) = {z € RNd s (z, o) = 1},

which reduces to a true ellipsoid when M is constant over R?. In this latter case, the eigenvectors ey, ..., eq
of M give the directions of the principal axis of this ellipsoid, while the associated eigenvalues A1, ..., A\g
are linked to the principal radii (or characteristic lengths) hq,..., hq in direction eq,...,eq by : h; = \k,
i=1,..,d.

For several applications (see the next sections), it may be desirable to adapt a mesh at the same time
to several a priori independent information, supplied by two (or more) metric tensor fields My, My. This is
classically achieved resorting to a so-called metric intersection procedure : operating on the simultaneous
reductions of Mj(z) and My(x) at any point z € RY,

A(@) - 0 pa(z) - 0
My(z)="P@) [ =+ . ¢ | P@,M="P@| : .. |P)
0 - Aala) 0 - palz)
where P is an invertible matrix, Ay, ..., Ag, g1, ---, tg > 0, the intersected metric
sup (Ai(z), pa(x)) - 0
My N My(z) :="P(z) P(x)
0 o sup (Aa(z), pa(w))

carries both sets of information in the sense that its unit pseudo-ellipsoid ® s, nas, () is a maximal pseudo-
ellipsoid enclosed in both @y, () and @y, (2), at least if M; and M, are constant over R? (see [19] for details).

Several techniques have been thought up for generating anisotropic meshes according to a metric tensor
field, that can be roughly classified into two categories. On the one hand, global methods, such as Delaunay-
based methods and advancing-front methods, perform the same kind of operations as in the classical case
with adapted notions of length and volume. On the other hand, local mesh modification methods [20] - to
which belongs the approach followed in this paper - start from an existing non-adapted mesh and adapt it
so that it fulfills at best the above conditions.

4.2. The proposed adaptation method. In this section, we use back the framework of sections 3.2 and
3.3 and intend to use the previous error estimates (9) and (20) to infer a mesh adaptation method which
allows for a good discrete approximation 9Qr of 9Q(T). For the sake of clarity we shall now denote ur the
approximation of u(7T,.) obtained by the algorithm of section 3.1 and

Qr = {z e RN\ur(z) <0} , 9Qr = {z € R\ur(z) =0}
the associated polyhedral domain and surface. From formula (9), the control we get over ||u(T),.)—ur|| Lo (RY)
-or indifferently d (9Q(T),dQr) - consists of three independent contributions :
(1) The first one
([l(T,.) = T7u(T, )| poo may + U™ — 77U || oo (ra))
is only linked to the way mesh 7T is adapted to the interpolation of functions u(7,.) and u‘. The
proposed adaptation method focuses on dampening this part of the error.
(2) The second one
k.l
k
is solely related to the time discretization of interval [0, 7] with the substep dt, and for this contri-

bution to be decreased, substep §t has to be decreased.
(3) The last part

CTe0t 6t

k/

i (T =1V - VHL“’(Rd)
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is connected to the quality of the approximation of velocity field V. If this vector field is to be
obtained by means of a finite element computation on mesh 7, this has to do with the quality of
T’ as regards this computation, and we do not intend to discuss these aspects. As said previously,
in all our numerical examples, we only considered analytically prescribed velocity fields, and this
contribution actually does not appear.

This leaves us with the objective of adapting mesh T in such a way both interpolation errors ||u(T,.) —
Tru(T, )| oo (rey and |[u" — w7u"™ || oo (ra) are made small. In other words, in view of the estimates in
section 3.3, this means that mesh 7 allows for a good approximation of the 0-level sets of both u™ and
u(T,.) by the O-level set of their respective Pl-interpolate m7u'™, mru(T,.). This is actually very intuitive :
neglecting the errors on the knowledge of the velocity field, the accuracy of the process is controlled by how
well mesh 7 allows for a good knowledge of the initial surface, and how well it fits a description of the final one.

To achieve such a mesh, we recall the classical L> error estimate for the Lagrange finite element P!-
interpolation error of a function u of class C? [15] :

Theorem 4.1. Let T a simplicial mesh of R? (or a polyhedral subset of it) and u a C? function on R?.
Then for every simplex K € T,

1/ d \°
|u—wTunwmjs2(d+1)1g%$g§<ﬂw>mwayw
where H(u) is the Hessian matriz of w and, for a symmetric matriz S € Sy(R) which admits the following
diagonal shape in orthonormal basis S = P diag({\i},<;<4) ‘P, we denote |S| := P diag({|\i|},<;<q) ' P-

According to [2], this theorem expresses the idea that a mesh 7 suitable for the Lagrange P!-interpolation
of a smooth function w -i.e. such that ||u — m7u|[~ k) < € for a given tolerance ¢ > 0 and every simplex
K € T - can be roughly obtained as a quasi-unit mesh for the metric M,, defined at each node x of T by :

N OO0 - 0
(21) M, (x) = "P(x) P(x)
0 0 A
where
M 0 - 0
Kommin (mae (B L) L) i@ =@ | | P
€ hmaz hmin 0 0 |l

being an approximation of the Hessian of u around node z, written here in diagonal form in an orthonormal
basis, hmin (r€Sp. hmaz) being the smallest (resp. largest) size allowed for an element in any direction, and
¢ being the above constant.

Remark Actually, we do not need to adapt the whole mesh T with respect to metric M, : as we are mostly
interested in an accurate approximation of the zero level set of the considered functions by the piecewise
affine zero level set of their Lagrange P!-interpolate, we only need to have a quasi-unit mesh 7 according to
M, in a vicinity of the 0 level set of u. See section 5.1 for a further discussion on this point.

In our applications, we are interested in modifying mesh 7 so that it becomes adapted to both Lagrange
P! interpolation of functions u*® and u(T,.). Such a mesh is built as a quasi-unit mesh according to the
intersection M in N M7,y of metrics Myin and M, (r, ), respectively adapted to u'™ and u(T,.) (see figure
1 for an example).

In practice, our adaptation procedure is iterative : it starts with an initial function 4", on an adapted
mesh 7" adapted to metric M, and in order to compute an approximation ur of u(T,.), the advection
equation is solved up to m times over the period [0,7] : the first m — 1 times are ’virtual’, and aimed at

10



FIGURE 1. Rotation of Zalesak’s slotted disk of angle T : (a) adapted mesh at time t = 7,
(b) adapted mesh at time 5, (c) mesh adapted to both interfaces Q™ and OQ(T) (displayed

in red), (d) zoom on the mesh.

getting an increasingly accurate approximation u% (k = 0,...m —1) of u(T,.), as well as an increasingly well-
adapted mesh 7% to the intersected metric M, in N My (r,.). Eventually, the m-th resolution of the advection
equation is carried out on a well-adapted mesh 7 ~! and yields a close approximation uz = u7T” of uw(T,.).
Such an iterative procedure is absolutely crucial, because the time period [0, 7] can be very large. Thus, the
sought 9Q(T) is likely to be located very far from 92", i.e. in an area where the initial mesh is very coarse.

All things considered, the proposed adaptation method for advection equation is summed up in algorithm
(1), for a generic time interval [0, T']. Of course, in the general case, when several such time periods [T", T"‘H]
follow one another, this process has to be applied successively to each one of them.

5. ADDITIONAL NUMERICAL FEATURES

5.1. The need for mesh gradation control. Considering a function u, we are mainly interested in its 0
level set. Thus, we only need to adapt our computational mesh 7 with respect to the metric M,, defined in
11



Algorithm 1 Adaptation method for advection equation over [0, 7.

1: Start with an approximation ug (e.g. Pl-interpolate) of function u‘™ on mesh 7.
2: for k=0,....m—1do
3: if k=0 then o

Set 79 = T and u™0 = wuy.

4

5:  end if

6 S/(zh/e the advection equation with velocity field V' and initial state .
uimk over [0,T], on Tk . uk,

7. Compute the intersected metric M* = M;E N MJ&;

8: Adapt T* with respect to M*. ThF1

9: if k+1 < m then o

10: Project up on mesh 75+1, yink+1

11:  else N o

12: Project uk on Tk+1, (T, u)

13: Adapt T with respect to 1;?, and project this function on the final mesh. (Tr,ur)

14: end if

15: end for

16: return (77, ur)

the previous section on a neighborhood of 952 := {ac € R\u(z) = O}. As is classical in mesh adaptation, we
may ask T to show very large, isotropic elements ‘far’ from this interface, in such a way 7 consists of very
few elements, with optimal size and orientation. However, doing so, variations in the size and orientation
prescriptions are bound to be very sharp, resulting in a shock of features which can yield severe instabilities
during the mesh adaptation process (see figure 5 for an example). To get past this difficulty, we impose
a control over mesh gradation near the interface [10]. One possible way to do this consists in, roughly
speaking, bounding the allowed ratio between lengths Ijs(e1) and ljs(e2) of any two edges e1, ea belonging
to a common simplex K by a constant value r (in the examples of section 6, we used r = 4), i.e.

1 lM(el) <r
. <r

= (o)

5.2. Importance of redistancing. In the context of level set methods, it has been observed that too steep
or too loose variations in the level sets of the function w(t,.) under evolution may jeopardize the accuracy
of the computation. To overcome this feature, since [13], a great attention has been paid to maintaining
or restoring u(t,.) as the signed distance function to its 0 level set 0€Q(t) at least near 0€2(t) (so that
[|[Vu(t,.)|]| = 1 in a vicinity of 9€(t)), even though, doing so, the handled interface may inevitably end
up perturbed : see for instance [35], [5] for mass-preserving approaches, or [7] for a smoothing redistancing
process. Here we apply the previous study of [14], merely replacing the computed approximation ur of u(T},.)
by the signed distance function ur to Q7. Given a small time step dt, ur is computed as the steady state
of the sequence of P!-finite element functions u™ defined in algorithm 2, which is based on the properties of
the unsteady Eikonal equation.

As discussed in [14], time step dt must be chosen small enough so that the updating of u™(z) with the
formulae of algorithm 2 does not require values of 4™ ~! lying ’too far’ on the other side of the boundary.
For this reason, dt should be taken of the order of the local mesh size near the interface 0Q27. However,
this time step can be steadily increased, as values of the sequence u™ converge near the interface. What is
more, we actually need ur to enjoy the distance property only in a neighborhood of Q. For this reason,
in practice, we limit ourselves to performing a fixed number of the iterations of this algorithm.

12



Algorithm 2 Redistancing of the level-set function

1: Initialize function u® with :

u’(x) = approvimation of the signed distance functiontoQrif x
belongs to a simplex of T intersecting OQr

ul(z) = +uprax otherwise
2: for n =1, ... until convergence do
32 u™(x) = u"(x) for each node x of T
4:  for each node x of T which does not belong to a simplex intersecting 0y do
5: if © ¢ Q then

. — . — V(u™ "t
6: un(lﬂ) = min | u” 1($)7 KeT s.t. :vnilslg1 node of Kun ' (iC - ||vEu”71i§§Hdt) i dt) ’
7 else
-1 1 V(u" Yk

8 Un((.U) = max (un (:E)7 KeT s.t. wnilsaz}fnode of Kun ({IJ + Wdt) N dt) ’
9: end if
10:  end for
11: end for

12: return u”

The study carried out in [14] showed that doing so yields formally an error in terms of Hausdorff distance
between 0Qr and the new interface 0Qr :
sup [[Vur|k||  sup [[Vur|k||
T KeT

— max max {|H(ur)|yz,yz).
inf [Vurlxl?” inf [Var |l | REF 2k (POl v2)
KeT KeT

(22) d? (89’]“,8/5;“) < sup

Consequently, given mesh 7 is adapted to |H(ur)| ~ |H(ur)| in the sense of section 4.2, this error is actually
very small, controlled by the fixed precision parameter e.

Note that in the proposed context, the redistancing process is twice as important as in the case of level
set methods performed on a fixed mesh Indeed, the narrow band on which we impose our mesh to be
adapted with respect to a metric M,, as in section 4.2 is numerically identified according to the values of u.
Hence, very stretched level sets of u would also cause mesh adaptation to be performed on an ill-identified
narrow band around 0f2.

6. NUMERICAL EXAMPLES

In this section, we present several numerical examples in two or three dimensions in order to assess the
validity of the proposed adaptation method for the level set advection equation. Each one of them consists
in letting evolve an initial interface 9Q'" submitted to a more or less deforming velocity field V from time 0
to a final time T, cooked up in such a way the final surface 9Q(T) coincides with Q.

As presented in the analysis of section 3.2, all functions are approximated by P! Lagrange finite element
functions, and we discretized the ODFE (5) with a 4-th order Runge-Kutta method. As hinted at previously,
the use of higher order spatial approximation (e.g. resorting to P¥ Lagrange finite element functions ) would
improve the method. It is also worth mentionning that we used the aforementioned redistancing procedure
at each step, even for the cases (e.g. rigid-body motions) that do not theoretically bring about any distortion
of the level sets of the evolving function.

The accuracy of the computation is evaluated in terms of the Hausdorff distance between the numerical
initial interface associated to Q™ and the computed final interface 9§27, which is computed with a brute-
force approach (in 2d only). We believe this is the relevant way to measure the error entailed by the method,
inasmuch as it is the quantity we mean to control with our mesh adaptation procedure, through estimate
(20). We are however well aware this is not so classical an error measure, and propose also more standard
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error measures. Although no particular attention has been paid to mass conservation during this work, we
also display the loss of mass between initial and final step for the sake of completeness.

All our 2d examples were run on a MacBook Pro, 2.66 Ghz, (4 Go), and our 3d examples on an OPTERON
2.1 Ghz.

Rotation of Zalesak’s slotted disk. As initially proposed in [38], consider a unit square as a computa-
tional domain, in which lies a disk of radius 0.15 centered at (0.5,0.75), with a slot of length 0.25, submitted
to a uniform rotation of center (0.5,0.5), corresponding to an evolution under velocity field :

V(t,x,y) = ( _(;y—_o%i) )

between 0 < t <T = 2m, so that the final interface should theoretically overlay the initial one. This test-case
classically allows for an assessment of the well-preservation of the sharp features of an interface through an
evolution. We subdivide the time interval into 8 time periods on which algorithm 1 is successively applied.
We perform two computations with different parameters as regards the mesh size prescription so as to test
the scaling of the method. Figure 2 displays a comparison between both interfaces. In table 1, we provide the
associated parameters (precision parameter e, minimum size parameter A, ), along with their translation
in terms of mesh size : maximum number np of points of a mesh adapted to a single interface (the number
of points of a mesh adapted to both interfaces being approximately equal to twice this number), as well as
the error estimates of interest : we compute the Hausdorff distance between the initial interface, as well as
two error measures that are more classical in the literature [1] [12] [27] [24] : the measure of the symmetric
difference between the initial and final domains Q2" and Qr, (or sometimes referred to as L!-error measure)

Egq(Q™,Qr) = | (Qin UQ7T) \ (in N Q) |
and the L -error measure between both numerically obtained corresponding level-set functions v'" and wup :
Foo(u'™, ur) := sup |[u™ — ur|| Lo (k)
Kek

K C T being the set of simplices crossed by the O-level set of either u’™ or up. The whole computation of
the first test takes roughly 5 minutes, while it takes about 8 minutes for the second.

1 . 0.86 — .
initial interface initial interface

: : : :
final interface - 09 i — el erate final interface -
finakigterface -
y
085 - \ B
08 1 085 - / — ]

0 I I L . 0.6 I M 1 L 0.8 L L I I L . .
0 0.2 0.4 0.6 08 1 0.35 0.4 0.45 05 0.55 06 0.65 046 047 048 049 05 0.51 052 053 054

FIGURE 2. (left) Superposition of the slotted disk after one complete revolution (blue line)
over the initial one (red line), and zoom on the surfaces (middle and right).

We notice that a very nice accuracy can be obtained with a very small number of points. The sharp features

of the slotted disk are well preserved, and the final interface presents no oscillation whatsoever. However, it

seems difficult to say much more than that, especially when it comes to comparison with other methods, or

order computation of the process : we use a numerical scheme for the advection equation that is admittedly
14



€ Romin np Volume loss dH((?Qm7 0Q7) | Esq(Q™, Q1) | Eoso (U™, ur)
(% initial vol.)
Test (1) | 1e=3 | 1e=3 | 5699 —0.889 2.08¢=3 3.36e~3 2.60e=3
Test (2) | 1e=% | 1e=% | 14477 —0.299 8.61e— 1 2.18¢3 1.34e=3

TABLE 1. Details on the two-dimensional test of Zalesak’s slotted disk.

low-order, and the accuracy of the process stems from the mesh adaptation process. The number of points
(or triangles) of the meshes at hand can vary considerably from one iteration to the other depending on the
‘wildness’ of the interface to be captured ; they also depend in an unclear way of the precision parameters e
and h,in-

Time-reversed vortex flow. The second test-case, proposed in [25], is a very good opportunity to in-
vestigate the behaviour of our method when dealing with velocity fields entailing serious deformations of
the initial shape. In a unit square domain, consider a disk of radius 0.15, centered at (0.5,0.75), evolving
according to the velocity field

—sin?(mwx)sin(2my)cos( Tt
Vit 2.y) = ( sm2(7(ry)im(;7m))cos(g}?)) ) ’

for 0 <t < T = 8. Because of the vorticity of the velocity field, some parts of the initial disk are compressed,
while some others become very stretched. What is more, the shape tends to become a more and more thin
filament, and very small (or, in our case, very elongated) elements have to be put so that mesh resolution
allows for a description of these parts. Because of the modulation in time, the shape reaches its most dis-
torted state at time ¢t = T'/2, and has returned to its initial state at time 7. We performed 20 intermediate
time steps on this test-case, and the whole computation takes about 40 minutes. Figure 3 shows four steps
of the computation. Comparison between the initial and final state is reported in figure 4, and subsequent
details and error measures on this test-case can be found in table 2.

In order to emphasize the importance of mesh gradation, as discussed in section 5, we report in figure 5 the
comparison between the first step of the presented computation, and the first step of the same computation,
performed with the same parameters, but without any mesh gradation. Note that the 0 level set of the
evolving function has not been represented in the latter case for it has been utterly ’lost’ ! This shows that,
even with a correct minimum size allowed, and with relevant precision parameters, the mesh adaptation
process needs such a gradation in the mesh, for the sake of robustness : indeed, at the beginning of each
iteration, the 0-level set of the evolving function is advected towards an area where the computational mesh
is likely to be coarse, then refined with the m internal iterations, as expressed in algorithm 1. If no gradation
in the mesh is enforced, this first ’virtual’ advection may be too rough for capturing small details, that will
be missed by the subsequent iterations.

€ Romin np Volume loss | d7 (9Q™,0Qr) | Esq(Q7, Q1) | Eoo(u™,ur)
(% initial vol.)
le= T | 3% | 34862 —0.380 1.81e3 8.56e 7 1.83¢=3

TABLE 2. Details on the two-dimensional time-reversed vortex flow test-case.

Remark We hinted at the fact that, during a single iteration of the process, the 0 level set of the considered

scalar function may be advected from an area where the mesh is suitably refined, towards an area where it is

dramatically under-sampled (this is particularly likely to happen if the physical time step At is chosen very

large). One could wonder whether it could prove beneficial to make a first refinement of the ‘landing area’,
15



© (@

FIGURE 3. Three steps of the computation for the time-reversed vortex flow, (a-b) t = 0.8,
(c-d) t =4, (e-f) t = 5.6 together with the corresponding isovalues

which could be achieved by applying the numerical scheme for advection to the size prescription (which is
computationally unexpensive), before turning to the first internal iteration, just so as to get a well-sampled
landing area. This merely amounts to roughly adding some degrees of freedom where we know the next
0 level set of interest will be located. Actually, this process is rather easy to implement numerically, at
least when it comes to transporting the sole size prescription ; things grow more tedious if we are to advect
both size and orientation prescriptions. However, this yields disappointing numerical results : almost no
improvement on the method has been observed when resorting to this technique.

Deformation test flow. An even more serious test case when it comes to shape distortion has been
proposed by [33]. In a unit square domain, a disk of radius 0.15, centered at (0.5,0.75) is evolved according
16
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FIGURE 4. Superposition of the final disk (blue line) over the initial one (red line), and
zoom on the comparison (right)

FIGURE 5. Fuvolving surface at time t = 0.4 with (left) and without (right) mesh gradation control.

to the following velocity field :

sin(4n(x + 1))sin(4n(y + l))COS(WTt) >

Vi(t,z,y) = < cos(4m(x + %))cos(47r(y - §>>cas<%>

for 0 <t < T = 3. Periodicity of the domain with respect to the top and bottom sides is enforced. Roughly
speaking, this velocity field makes the domain composed of 16 vortices, and several parts of the disk are
dragged by different ones, literally tearing the shape into pieces. See figure 6 for some illustrations of this
test case, and figure 7 for a comparison between the initial and final interfaces. The whole computation
takes around 70 minutes, and details as well as error measures regarding this test-case are to be found in
table 3.

Rotation of Zalesak’s sphere. Very similarly to the first two-dimensional example comes the rotation

of Zalesak’s slotted sphere in 3 dimensions. In a unit cube, a sphere of radius 0.15 with a slot of width

0.15 is initially centered at (0.5,0.5,0.25), and undergoes a uniform rotation with respect to the z-axis,
17



FIGURE 6. (a) Mazimum elongation step (t = T/2), (b) corresponding 0-level set, (c) in-
tersected mesh, adapted to both stepst = 0.9 and t = 1.2, (d) zoom on the intersected mesh
(the surface associated to t = 1.2 is displayed in red).

€ hmin np Volume loss dT(0Q™,0Q7) | Esq(", Q1) | Eco(u™™,ur)
(% initial vol.)
le=3 | 5e=° | 56536 —0.097 4.81e3 6.77e=3 4.09¢=3

TABLE 3. Details on the two-dimensional deformation flow test-case.

corresponding to a velocity field :

V(t,z,y,2) = | —(2—0.5)

(y — 0.5)
18
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FIGURE 7. Superposition of the final disk (blue line) over the initial one (red line), and
zoom on the comparison (right)

over 0 < ¢t < 2m. This sphere shows both ridges and triple points, that are naturally the most difficult
features to preserve throughout the advection process.

We split the time interval into 8 subperiods, and work with parameters ¢ = 0.005, h,;, = 0.005, in such a
way each computational mesh has about 200, 000 points (= 1,200, 000 tetrahedra).The sequence of obtained
surfaces is displayed on figure 8, while a zoom on both initial and final states is to be found on figure 9,
and several cuts into an ’intersected mesh’ are to be found on figure 10. The whole computation process
takes about 100 minutes. Comparison of the initial and final interfaces demonstrate a good accuracy of the
method, even though, of course, the ridges and triple points of the surface have been a little smeared.

Three-dimensional deformation test case. Eventually, we turn to yet another test case proposed in
[25]. In a unit cube, a sphere of radius 0.15, centered at (0.35,0.35,0.35) is made evolved according to the
following velocity field :

2sin? (ra)sin(2my)sin(2mz)cos( %)
—sin(2mx)sin? (my)sin(2nz)cos(5E)
—sin(2mx)sin(2ry)sin® (7z)cos( L)

o+

V(t7 x? y7 Z) =

for 0 <t <T = 3. We split the time interval into 10 subperiods, and the results are reported in figure 11.
Figure 12 displays two cuts in the most stretched interface of the evolution (the one at time ¢t = 1.5), while
figure 13 displays two cuts in two different adapted meshes (one is anisotropic, the other is isotropic) to the
latter interface. The results presented in figure 11, which are the best obtained among different tests carried
out with different parameters, are those corresponding to a computation held with isotropic adaptation with
a minimum size parameter A,;, = 0.002 (which amounts to anisotropic adaptation with very small precision
parameters). The largest mesh of the computation is worth 3, 763,497 vertices, and the whole computation
took about 21 hours.

Taking a close look at the displayed sequence, one realizes that the final interface is not exactly as smooth
as the initial one, notably near its horizontal diameter ; actually, this area corresponds to the most stretched
zone at the maximum elongation time ¢t = T'/2, and is the most difficult to track accurately (see the results
in e.g. [24] or [5] for similar behavior) ; of course, this effect vanishes with enhanced resolution.
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FIGURE 8. Rotation of Zalesak’s sphere : sequence of computed surfaces.

The proposed method for solving the level set advection equation brings into play various tools, and it
is interesting to wonder which parts exactly take most of the computational expense. For each example,
we reported in table 4, the details of the longest iteration of the process, that is, the total time At;; of the
iteration, and the percentage of it which has been spent in each main step of the process (note that the
interpolation steps have been neglected). We notice that, understandably enough, the remeshing procedure
is by far the most costly in every case, which is quite understandable since it is the point in where lies the

main complexity of the method.
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FIGURE 9. Zoom on initial Zalesak’s sphere (left) and on Zalesak’s sphere after a whole
rotation (right)
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FIGURE 10. Cut on a mesh adapted with respect to both surfaces at t =T/2 and t = 5T/8,
following a plane x = cste (left) and following a plane y = cste (right)

7. APPENDIX

Here is a variation of classical Gronwall’s lemma for the estimation of the discrepancy between the solutions
of two ODEs associated to different vector fields (see [37] for proof).

Lemma 7.1. Let Vi, V, : R 5 RY two vector fields, Vi, being Lipschitz continuous in the second variable
with constant k, and such that there exists € > 0 with, for all x € RY, ||Vi(z) — Va(2)|| < €. Let x1, 25 :
R, — RY some respective solutions to :

{xi(t) = Vi(t,z1(t)) {x’z(t) = Va(t,z2(t))
.Il(O) = ux ’ :172(0) = U2



FicURE 11. 3d deformation test case : sequence of computed surfaces.

At;s | cost of advection | cost of remeshing | cost of redistancing | cost of metric computations
(s) (%At) (%At) (%At4) (%At;)
Zalesak’s disk (Test 2) 62.1 4.0 90.6 3.1 2.3
2d time-reversed vortex flow | 142.6 5.4 83.0 9.0 2.6
2d deformation flow 253.1 4.7 87.4 7.9 3.0
Zalesak’s sphere 1416 9.8 71.2 4.2 14.8
3d deformation 12417 16.9 51.2 26.1 5.8

TABLE 4. Costs of the steps of the proposed algorithm.

Then the following estimate holds

Ve Ry, [a1(t)  22(t)]] < llur — ualle! + (e —1).
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FIGURE 12. A cut in the most stretched interface, at time t = 1.5 (left) ; a zoom on the cut (right).
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