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1. Abstract
We discuss an approach for structural optimization which features an exact description of the shapes -
i.e. by means of a computational mesh - at each stage of the iterative process, while allowing for large
deformations (including topological changes) when it comes to describing surface evolution, by taking
advantage of the level set method. The cornerstone of the proposed method is a set of algorithms for
switching from one of these descriptions to the other. This notably brings into play a method for gener-
ating the signed distance function to a discrete contour on an unstructured computational mesh, and a
robust algorithm for meshing the negative subdomain of a scalar ‘level set’ function, supplied in a discrete
fashion.

2. Keywords: Geometry and topology optimization · Level set method · Local mesh modifications.

3. Introduction
Since the seminal works [5] [18], the level set method has proved a very valuable tool in the field of
structural optimization. The main idea of the method is to represent the admissible shapes Ω - which
are embedded in a fixed ‘large’ computational domain D - by means of an associated level set function
φ : D → R, such that: 




φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ D \ Ω.

(1)

The evolution of the shape Ω through the optimization process is then deduced from the solution of a
Hamilton-Jacobi equation for φ [13]. In [5], as well as in almost all other works on the level set method
in the context of structural optimization, a fixed mesh of D is used and the exact mechanical analysis,
which allows to assess the performance of Ω, is approximated by an analysis held on the whole domain D
instead of the sole Ω, using the so-called Ersatz material approach. In this context, an explicit meshing
of the shape is avoided.

As announced in the previous works [3] [2], we propose to add an extra ingredient to this process, asking
that, at each iteration, the shape is exactly meshed, which enables precise mechanical computations.
Doing so requires that the mesh of D be unstructured and change from one iteration to the next since
the shape is explicitly discretized as part of the mesh of D. Nevertheless, we still retain the versatility of
the level set method when it comes to topological changes.

Such a change in perspectives raises several difficulties: let alone the fact that we can no longer rely
on finite difference schemes for, among other things, solving Hamilton-Jacobi equations on D (because
the mesh of D is no longer Cartesian and we don’t want to use two different meshes, thus relying on
projections from one to the other), we need efficient tools to switch from the level set representation of
shapes to a meshed representation, and conversely.

The hereafter described method differs from previous works on shape optimization using exact meshes
of the shapes, which were - at least to our knowledge - always carried out in two space dimensions. Among
other things, in [20], the authors applied a level set method on a fixed background mesh, then moved
points of this mesh onto the 0 isoline of the level set function so to obtain a mesh of the associated shape.
In [19] and [12], the authors inferred from the knowledge of a level set function a sample set of points
associated to the shape, then resorted to the Delaunay algorithm to construct a computational mesh of
it. Unfortunately, such methods are difficult to extend to three space dimensions. On the contrary, as
we shall see below, our method extends to this context without additional theoretical difficulties (even
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though it is considerably more tedious to carry out, especially as regards the part related to local remesh-
ing). Moreover, the use of unstructured meshes enables the use of mesh adaptation techniques [10].

4. Setting of the problem

We consider shapes, that is, (smooth enough) bounded domains Ω ⊂ Rd (d = 2, 3), filled with a
linear elastic isotropic material with Hooke’s law A. Each shape Ω is clamped on a given part ΓD ⊂ ∂Ω,
submitted to external loads g on another part ΓN ⊂ ∂Ω, with ΓD∩ΓN = ∅ (without loss of generality, we
omit body forces); the complementary part Γ := ∂Ω\ (ΓD ∪ΓN ) is free. In this context, the displacement
field u of the structure is the unique solution to the system the linear elasticity system:





−div (Ae(u)) = 0 in Ω,
u = 0 on ΓD,

Ae(u).n = g on ΓN ,
Ae(u).n = 0 on Γ,

(2)

where e(u) = (∇u+∇uT )/2 is the linearized strain tensor, and n is the outer unit normal to ∂Ω.

We aim at minimizing a functional J(Ω) of the domain, among a set Uad of admissible shapes Ω, such
that, among other things (ΓD ∪ ΓN ) ⊂ ∂Ω, which leaves only Γ subject to optimization. For the sake of
simplicity, we limit ourselves to considering the compliance as an objective function. So that the problem
is not trivial, a volume constraint is incorporated in the form of a fixed penalization and the considered
functional arises as:

J(Ω) =

∫

ΓN

g.u ds+ `

∫

Ω

dx, (3)

where ` is a (positive) Lagrange multiplier associated to the volume constraint.

When it comes to defining a notion of shape derivative for such a functional of the domain J(Ω), we
rely on Hadamard’s boundary variation method (see [1][16]). In a nutschell, only variations of a given
shape Ω of the form (I + θ)(Ω) are considered, where θ ∈ W 1,∞(Rd,Rd) is a small displacement field.
The shape derivative of J at Ω is then defined as the Fréchet differential at 0 of the underlying mapping
θ 7→ J((I+ θ)(Ω)). The structure theorem [9] states that, for a wide class of functionals J , this derivative
is of the form:

∀θ ∈W 1,∞(Rd,Rd), J ′(Ω)(θ) =

∫

Γ

v θ.n ds, (4)

for a certain scalar function v on Γ. A descent direction for J is then revealed as −v n. For instance, the
shape derivative of (3) is (see [5]):

J ′(Ω)(θ) =

∫

Γ

(`−Ae(u) : e(u)) θ.n ds. (5)

5. A brief description of the proposed method
Let D ⊂ Rd be a fixed computational domain which encloses all admissible shapes: as described in [3],
we rely on two alternative descriptions of shapes Ω ⊂ D:

• The level-set description: Ω is known as the negative subdomain of a scalar function φ in the sense
that (1) holds. In the numerical context, φ is discretized at the vertices of a simplicial mesh of D.

• The meshed description: the whole domain D is equipped with a (conformal) simplicial mesh TΩ, a
part of which is a mesh of Ω, i.e. the entities (edges, faces, etc...) of a mesh of Ω also belong to TΩ.

We first describe how to pass from a meshed domain to a level set representation of a domain.

Let TΩ be a simplicial mesh of D, in which Ω ⊂ D is explicitly discretized. In order to generate a
level set function φ associated to Ω on TΩ, we compute an approximation of the signed distance function
dΩ to Ω on the unstructured mesh TΩ, which enjoys crucial properties as regards numerical stability [6],
that are in close connection with the unit gradient property of dΩ:

|∇dΩ|= 1, a.e. in Rd. (6)

2



•
•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

−→

K

Figure 1: One of the possible configurations when splitting a simplex K along the 0 level set of a function
φ, which is positive at the red node, negative at the blue ones.

To achieve this, we follow our previous work [8]: starting from any level set function φ0 : D → R
associated to Ω (which is easily obtained numerically), equation (6) is turned into the so-called time-
dependent Eikonal equation:

Find d(t, x) s.t.

{
∂d

∂t
+ sgn(d0)(||∇d|| − 1) = 0 ∀t > 0, x ∈ D

d(t = 0, x) = φ0(x) ∀x ∈ D
(7)

which is known to enjoy a unique solution in some sense, whose steady state is precisely dΩ. An iterative
numerical scheme for computing d - thus dΩ - is then derived from the continuous formula for d(t, x) [6].

We now turn to the description of the meshing process of the negative subdomain of a given level set
function.

Let T be a simplicial mesh of D and φ a (piecewise linear) level set function on D, defined at the
vertices of T , which accounts for a (polyhedral) domain Ω := {x ∈ D | φ(x) < 0}. Note that Ω is not

explicitly discretized in T . The proposed method for modifying T into a new mesh T̃ of D, in which Ω
is explicitly discretized, involves two steps (see [14] for another interesting approach).

Step 1: Rough discretization of Ω into T . Each simplex K ∈ T which is crossed by the 0 level set
∂Ω = {x ∈ D | φ(x) = 0} of φ is split into several simplices, in such a way that K ∩ ∂Ω explicitly appears
in the resulting mesh. This is a rather easy, purely logical step, which relies on patterns, depending
on the relative signs and values of φ at the vertices of each such simplex [10] (see figure 1). This step
produces an intermediate mesh Ttemp of D in which Ω appears as a submesh. Unfortunately, Ttemp is
bound to be severely ill-shaped - i.e. to contain very thin, or flat elements. This is a real problem, since
it is well-known that the performances (in terms of accuracy, convergence rate, etc.) of finite element
methods when held on a particular mesh strongly depend on its quality, that is, grossly speaking, on how
close its elements are from the equilateral simplex (triangle in 2d, tetrahedron in 3d).

This leaves us with the need for a dramatic improvement in the quality of mesh Ttemp.

Step 2: Quality-oriented local mesh modifications. This step is the most tedious of the whole process, and
is the only one that is fundamentally different from its two-dimensional equivalent. We simply sketch
the salient features, referring to [7] for details. From the ill-shaped mesh Ttemp, a well-shaped mesh T̃ is
obtained by repeatedly applying four local operations. Each one of them exists under two rather different
forms, depending on whether it is applied to a completely internal configuration, or to a situation which
lies on the boundary ∂Ω (resp. ∂D) of the considered implicit domain (resp. computational box).

Here is a short description of these four local remeshing operations [10] (see figure 3 for illustrations
in surface configurations).

• Edge split: split an edge pq of Ttemp which is ‘too long’, introducing a new vertex m. An edge is
said ‘too long’ when its length is larger than a prescribed size taking into account a user-specified
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Figure 2: Top-left: Isovalues of a level set function φ defined over the whole box D; top-right: resulting
ill-shaped mesh Ttemp after the rough discretization of the 0 level set of φ; bottom: final, well-shaped

mesh T̃ , enclosing a mesh of Ω as a submesh (only ∂Ω is represented in the last two cases).

size feature and the local curvature of Ω. When pq is an internal edge, m is simply inserted as
the midpoint of pq, whereas it should lie on ∂Ω when pq is a boundary edge. In both cases the
connectivities of the mesh are updated accordingly.

• Edge collapse: merge the two endpoints of an edge of Ttemp whenever it is ‘too short’. This operator
should be controlled very strictly when applied to an edge pq ∈ ∂Ω, since it is likely to degrade the
geometric approximation of Ω accounted for by Ttemp, or even to violate the topology of ∂Ω.

• Edge swap: change the connectivities of Ttemp, keeping its vertices’ positions unchanged, whenever
it helps improving the overall quality of the mesh and does not jeopardize the accuracy of the
description of Ω.

• Vertex relocation: move a vertex p ∈ Ttemp to a new position p̃, without altering the connectivities of
the mesh, provided it helps improving the overall mesh quality and does not degrade the geometric
approximation of Ω.

These operators serve different purposes: whereas the first two are mostly sampling operators, insofar as
they are meant to enrich or decimate the mesh so that it ends with a correct density of vertices, the last
two are driven so that the quality of the mesh is enhanced. This second step ends with a mesh T̃ of D
which is amenable for computations (see figure 2 for an example).

Remark 1. It is worth noticing that such a local remeshing algorithm could be used as a post-treatment
for topology optimization, when an exact mesh of the optimal shape is sought from the datum of the
associated level set function, or even for the hereafter described geometric optimization algorithm, in
order to obtain a finer, curvature-dependent mesh of the final shape.
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Figure 3: (a): Split of two boundary edges; the new points are inserted on ∂Ω. (b): Collapse of a
boundary edge. (c): Swap of a boundary edge. The normal vectors at the four vertices involved are
displayed. (d): Relocation of a boundary vertex p, to an ‘improving position’ p̃. In all four pictures, the
updated boundary triangles during the process are displayed in red transparency.

6. Schematic description of the derived algorithm
Let Ω0 be an initial shape. Combining the previous tools results in the following algorithm for structural
optimization, whose main steps are illustrated on figure 4.

For n = 0, ... till convergence, start with a shape Ωn, given by the data of a mesh TΩn of D, in
which Ωn is explicitly discretized.

1. Retain only the part of TΩn corresponding to Ωn, and compute the solution of (2) in Ωn by a
standard finite element method.

2. On the whole unstructured mesh TΩn of D, generate the signed distance function dΩn to Ωn.

3. Infer from the theoretical formula (5) a descent direction θn for (3). This descent direction, which
is a priori defined only on the boundary ∂Ωn of the current shape is then extended to the whole
computational mesh TΩn owing to a velocity extension procedure such as the one described in [11].

4. Chose a descent step τn > 0 and, on mesh TΩn , solve the level set advection equation,

{
∂φ
∂t + θn(x).∇φ = 0 for x ∈ D, t ∈ (0, τn),
φ(0, x) = dΩn(x) for x ∈ D, (8)

as a linear, implicit-in-time approximation of the true nonlinear Hamilton-Jacobi equation for level
set evolution, using, for instance, a method of characteristics [17][15]. Remark that, because (8)
is solved on the same mesh TΩn as the one used for the finite element analysis, no projection of
the velocity field whatsoever is involved. This yields a level set function φn+1 := φ(τn, .) on TΩn

associated to the new shape Ωn+1.
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5. Discretize the 0 level set of φn+1 in the mesh TΩn along the lines of section 5 to obtain a new mesh
TΩn+1 of D, in which Ωn+1 is explicitly discretized.

(a) (b)

(c) (d)

Figure 4: Two-dimensional illustration of the proposed algorithm; (a): at the beginning of the nth

iteration, the shape Ωn is explicitly discretized in the mesh TΩn of D, and the signed distance function
dΩn is computed. (b): in red, 0 level set of φn+1 on mesh TΩn ; in yellow, edges of the shape Ωn. (c):
An intermediate, ill-shaped mesh T ntemp is obtained, in which Ωn+1 is explicitly discretized. (d): T ntemp is
modified into a well-shaped mesh TΩn+1 in which Ωn+1 is explicitly discretized.

7. Numerical examples
The proposed method is applied to three benchmark test cases in structural optimization. Our first
example is the two-dimensional Optimal Mast test case, reported on figure 5: a structure, embedded
in a T-shaped box of dimensions 80 × 120 and made of an isotropic elastic material of Young modulus
E = 1 and Poisson ratio ν = 0.3, is clamped at the two bottom corners of the box, and submitted to
two vertical loads g = −ez, applied on the left and right arms of the box. We aim at minimizing the
objective function (3) with a fixed Lagrange multiplier ` = 1 as for the volume constraint. We run 100
iterations of the algorithm detailed in section 6; each mesh TΩn has about 8000 vertices (that is, about
16000 triangles), and the entire computation takes less than 5 minutes on a laptop computer

Our second example is the famous three-dimensional Cantilever problem, depicted in figure 6: a
structure, embedded in a box of dimensions 2.4× 5× 3, , is clamped on the right side, and submitted to
a unit vertical load g = −ez on a small area located at the middle of its left side. The initial shape is
the full box, perforated by several holes, and the Lagrange multiplier for the volume constraint is set to
` = 0.05. We run 80 iterations of the above algorithm; each mesh TΩn enjoys about 16, 000 vertices (say
90000 tetrahedra), and the entire computation takes about an hour on a laptop computer. Note that our
algorithm has been able to change dramatically the topology and yet shapes are exactly meshed at each
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Figure 5: (From left to right) Initial (together with boundary conditions), 30th and final iterations of
the Optimal Mast test case. The part of each mesh TΩn corresponding to Ω (resp. D \Ω) is displayed in
yellow (resp. green).

iteration.
We then turn to our last example, namely that of the three-dimensional Optimal Bridge problem (see

figure 7): an elastic structure, embedded in a box of dimensions 40× 200× 50, is clamped on two areas
in its inferior part, and submitted to vertical loads g = −ez, applied on the whole superior part. The
objective functional to be minimized is still (3), where ` is set to 100. 70 iterations of the optimization
procedure described in section 6 are performed. Each mesh TΩn enjoys about 9000 vertices, and the whole
computation takes roughly 45 min. Once again, the topology of the evolving shape changes altogether in
the course of the process. As an illustration to remark 1, the final shape is then post-treated into a fine,
curvature-dependent mesh (≈ 70000 vertices), as a first step towards reverse engineering (see figure 8).
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