
Shape optimization, level set methods on
unstructured meshes and mesh evolution

Charles Dapogny1,2,

under the direction of Marc Albertelli, Grégoire Allaire and Pascal Frey

1 Laboratoire Jacques-Louis Lions, UPMC, Paris, France
2 Technocentre Renault, Guyancourt

Ph.D. defence Laboratoire Jacques-Louis Lions, 4th December 2013 1



Sketch of the presentation

• Introduction

• A worst-case design approach for shape optimization under uncertainties

◦ The main ideas in an abstract framework

◦ Applications in shape optimization:

− Shape optimization under uncertainties over the body forces

− Shape optimization under uncertainties over the elastic material

− Shape optimization under geometric uncertainties

• Shape optimization by a level set based mesh evolution method

◦ Presentation of the proposed method

◦ From a meshed description to a level set description

◦ A meshing algorithm for implicit domains

◦ The method in action

◦ Numerical results

• Perspectives

Ph.D. defence Laboratoire Jacques-Louis Lions, 4th December 2013 2



Introduction
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Introduction

The steady increase in the cost of raw materials has
made it necessary to optimize mechanical parts from
the early stages of design.

Such problems are difficult, partly because
• formulating shape optimization problems in a way

which is both realistic and tractable is sometimes
difficult.
• they require an accurate description of the various

shapes that could be obtained through the opti-
mization process.

Automatic techniques (implemented in industrial soft-
wares) have started to replace the traditional trial-and-
error methods used by engineers, but still leave room
for many forthcoming developments.
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A model problem in linear elasticity

A shape is a bounded open domain Ω ⊂ Rd, which is
• fixed on a part ΓD ⊂ ∂Ω of its boundary,
• submitted to surface loads g, applied on ΓN ⊂ ∂Ω,

ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:




−div(Ae(u)) = 0 in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2(∇uT +∇u) is the strain tensor field,

and A is the Hooke’s law of the material.

Ω

ΓD

ΓN

A ‘Cantilever’ beam

The deformed cantilever
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A model problem in linear elasticity

Goal: Given an initial structure Ω0, find a new domain Ω that minimizes a functional
J(Ω) of the domain.

Examples:

• The work of the external loads g or compliance C(Ω) of domain Ω:

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ)dx =

∫

ΓN
g.uΩ ds

• A least-square discrepancy between the displacement uΩ and a target displacement
u0 ∈ H1(Ω)d (useful when designing micro-mechanisms):

D(Ω) =
(∫

Ω
k(x)||uΩ − u0||αdx

)1
α
,

where α is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter `:

Minimize J(Ω) := C(Ω) + `Vol(Ω), or D(Ω) + `Vol(Ω).
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Differentiation with respect to the domain: Hadamard’s method

Hadamard’s boundary variation method
describes variations of a reference, Lips-
chitz domain Ω0 of the form:

(I + θ)(Ω0),

for ‘small’ θ ∈W1,∞
(
Rd,Rd

)
.

Ω0

•

•

•x

θ(x)

(I + θ)(Ω0)

DEFINITION 1 Given a smooth domain Ω0, a (scalar) function Ω 7→ J(Ω) is shape differen-
tiable at Ω0 if the function

W1,∞
(
Rd,Rd

)
3 θ 7→ J((I + θ)(Ω0))

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

J((I + θ)(Ω0)) = J(Ω0) + J ′(Ω0)(θ) + o

(
||θ||W1,∞(Rd,Rd)

)
.
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Differentiation with respect to the domain: Hadamard’s method

Techniques from optimal control theory make it possible to compute shape gradients; in the
case of ‘many’ functionals of the domain J(Ω), the shape derivative has the particular
structure:

J ′(Ω)(θ) =
∫

Γ
VΩ θ · n ds,

where VΩ is a scalar field which depends on uΩ, and possibly on an adjoint state pΩ.

This shape gradient provides a natural descent direction for J : for instance, defining θ as

θ = −VΩn

yields, for t > 0 sufficiently small (to be found numerically):

J((I + tθ)(Ω)) = J(Ω)− t
∫

Γ
V 2

Ω ds+ o(t) < J(Ω)
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The generic numerical algorithm

Gradient algorithm: For n = 0, ... convergence,
1. Compute the solution uΩn (and pΩn) of the elasticity system on Ωn.
2. Compute the shape gradient J ′(Ωn) thanks to the previous formula, and infer a descent

direction θn for the cost functional.
3. Advect the shape Ωn according to this displacement field, so as to get Ωn+1.

Problem: We need to

• efficiently advect the shape Ωn at each step

• get a mesh of each shape Ωn so as to perform the required finite element computations.

Figure 1: Pushing nodes according to the velocity field may result in an invalid configuration.
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A short detour by the Level Set Method

A paradigm: [Osher, Sethian] the motion of an evolving domain is best described in an
implicit way.

A bounded domain Ω ⊂ Rd is equivalently defined by a function φ : Rd → R such that:

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

Figure 2: A bounded domain Ω ⊂ R2 (left), some level sets of an associated level set function (right).
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Surface evolution equations in the level set framework

The motion of an evolving domain Ω(t) ⊂ Rd

along a velocity field v(t, x) ∈ Rd is translated in
terms of an associated ‘level set function’ φ(t, .) by
the level set advection equation:

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

In many applications, the velocity v(t, x) is
normal to the boundary ∂Ω(t):

v(t, x) := V (t, x)
∇φ(t, x)

||∇φ(t, x)||
.

Then the evolution equation rewrites as a Hamilton-
Jacobi equation:

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + V (t, x)||∇φ(t, x)|| = 0

Ω(t) = [φ(t, .) < 0]

Ω(t + dt) = [φ(t + dt, .) < 0]

v(t, x)

x
•

•

•
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The level set method for shape optimization of Allaire-Jouve-Toader

• The shapes Ωn are embedded in a computational
box D equipped with a fixed mesh.

• The successive shapes Ωn are accounted for in
the level set framework, i.e. by the knowledge of
a function φn defined on the whole box D which
implicitly defines them.

• At each step n, the exact linear elasticity system
on Ωn is approximated by the Ersatz material
approach: the void D \ Ωn is filled with a very
‘soft’ material, which leads to an approximate
linear elasticity system, defined on D.

• This approach is very versatile and avoids the prob-
lem of mesh deformation between iterations.

74 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0, −1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is ! = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-

Shape accounted for with a level set

description
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Part I.
Worst-case design in structural optimization
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Worst-case design

In realistic models, data may be sullied with unknown perturbations or uncertainties; most
often the optimal design strongly depends on these data, whence the need to incorporate a
notion of robustness to the model.

Example [Cherkaev]:

Ω

g

�

Γ+
N

Γ−
N

ex

ez

A = I void

• A square domain Ω is subject to surface loads

g0 =





−ez on Γ−N
+ez on Γ+

N
0 on ∂Ω \ (Γ+

N ∪ Γ−N)

.

• The optimal microstructure A∗ with volume frac-
tion θ = 1/2, for the compliance, is a rank 1

laminate with vertical lamination direction.
• If Ω is now subject to arbitrary surface loads g, the

compliance of the resulting structure is:

C(A∗) =

{
2 if g = g0
∞ if g = g0 + εex

.
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Worst-case design

When it comes to the optimization of an elastic structure Ω, we may think of:

• Uncertainties over the applied body forces f or surface loads g, due to an inaccurate
anticipation of external stresses.

• Uncertainties over the properties of the constituent material of Ω, which may be altered,
e.g. because of:

◦ variations of conditions in the ambient medium (e.g. temperature, humidity),

◦ defects during the manufacturing process (e.g. small inclusions of parasitic material).

• Uncertainties over the geometry of Ω itself; for instance,

◦ the manufacturing process of Ω only respects its geometry up to some tolerance,

◦ the geometry of Ω may end up perturbed over time, because of wear or erosion.
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The main philosophy in an abstract, simplified framework

• Uad ⊂ H is a set of admissible designs h (thickness of plates, geometry of shapes).

• P is a Banach space of perturbations δ. By convention, δ = 0 stands for the unperturbed
problem, and perturbations are assumed to have small amplitude ||δ||P≤ m.

• The physics of the problem are modeled by a state-constrained system:

A(h)u(h, δ) = b(δ).

u(h) := u(h,0) is the unperturbed state.

• The cost of a design h ∈ Uad, perturbed by δ ∈ P is C(u(h, δ)).

• Minimization of the worst-case objective function when perturbations are applied:

min
h∈Uad

J (h), J (h) = max
||δ||P≤m

C(u(h, δ)).

Ph.D. defence Laboratoire Jacques-Louis Lions, 4th December 2013 16



The main philosophy in an abstract, simplified framework

Idea: Linearize the cost function with respect to the perturbations δ:

C(u(h, δ)) ≈ C(u(h)) + δ
dC
du

(u(h,0)) ·
∂u

∂δ
(h,0),

then consider the approximate worst-case functional:

J̃ (h) = C(u(h)) + max
||δ||P≤m

(
δ dCdu(u(h,0)) · ∂u∂δ(h,0)

)

= C(u(h)) +m
∣∣∣
∣∣∣ dCdu(u(h)) · ∂u∂δ(h,0)

∣∣∣
∣∣∣
Q

,

where Q is either the dual (i.e. Q = P∗) or the pre-dual (i.e. P = Q∗) Banach space of P .
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The main philosophy in an abstract, simplified framework

The (unknown) sensitivity ∂u
∂δ(h,0) can be eliminated using an adjoint state p(h).

Differentiating the state equation A(h)u(h, δ) = b(δ) yields:

A(h)
∂u

∂δ
(h,0) =

db

dδ
(0).

Thus,
dC
du

(u(h)) ·
∂u

∂δ
(h,0) = A(h)Tp(h) ·

∂u

∂δ
(h,0)

=
(
A(h)

∂u

∂δ
(h,0)

)
· p(h)

=
db

dδ
(0) · p(h)

,

where the adjoint state p(h) is defined by: A(h)Tp(h) = dC
du(u(h)).

The approximate worst-case problem reads:

min
h∈Uad

J̃ (h), J̃ (h) = C(u(h))︸ ︷︷ ︸
unperturbed
cost function

+m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
Q︸ ︷︷ ︸

penalization by
a norm of an
adjoint state

.
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The main philosophy in an abstract, simplified framework

J̃ (h) can now be differentiated using ‘standard’ methods from optimal control theory:

�J (h) = C(u(h)) m+

����
����
db

dδ
(0) · p(h)

����
����
Q

�J �(h)(s) F (u(h), p(h))(s) G(u(h), p(h), q(h), z(h))(s)= m+

second adjoint state,
for the derivation of

||.||Q

third adjoint state,
for the dependence of
p(h) on h through u(h)

����
classical differentiation
of C(u(h))

Remark: The above approach is formal; yet, in some particular cases of importance where
J (h) can be computed explicitly, one can prove that:

J ′(h)(s) = J̃ ′(h)(s) +O(m2).
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Shape optimization under uncertainties over the body forces
• Set of admissible shapes: H = Uad =

{
Ω ⊂ Rd open and bounded, ΓD ∪ ΓN ⊂ ∂Ω

}
.

• Variations of admissible shapes: Θad =
{
θ ∈W1,∞(Rd,Rd), θ = 0 on ΓD ∪ ΓN

}
.

• The displacement uΩ,f+ξ of a shape Ω under perturbations ξ ∈ P := L2(Rd)d over
the body forces reads:





−div(Ae(u)) = f+ξ in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

• Optimization of the worst-case compliance:

J (Ω) = sup
ξ∈L2(Rd)d

||ξ||
L2(Rd)d

≤m

C(Ω, f + ξ), C(Ω, f) =
∫

Ω
f · uΩ,f dx+

∫

ΓN
g · uΩ,f ds,

approximated by

J̃ (Ω) = C(Ω, f) + 2m ||uΩ||L2(Ω)d.

• Other approaches exist for this very specific problem [de Gournay, Allaire, Jouve],
[Cherkaev], which are more accurate and not restricted to small perturbations.
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Shape optimization under uncertainties over the body forces

ΓD

f0

Figure 3: (From left to right, top to bottom): optimal shape for the worst-case optimal bridge example, form = 0,
0.2,0.5,1,1.5,2. A volume constraint V = VT = 0.75 is imposed in all six cases.
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Shape optimization under uncertainties over the elastic material

• The displacement uΩ,λ+α,µ+β of Ω under perturbations (α, β) ∈ P := L∞(Rd)2

over the Lamé coefficients of the elastic material is the solution to:




−div(Aλ+α,µ+βe(u)) = f in Ω
u = 0 on ΓD

Aλ+α,µ+βe(u)n = g on ΓN
Aλ+α,µ+βe(u)n = 0 on Γ

, Aλ,µe = 2µe+ λtr(e)I.

• Optimization of the worst-case least-square criterion:

J (Ω) = sup
(α,β)∈L∞(Rd)2

||(α,β)||
L∞(Rd)2≤m

C(Ω, λ+ α, µ+ β), C(Ω, λ, µ) =
∫

Ω
j(uΩ,λ,µ) dx,

approximated by:

J̃ (Ω) = C(Ω, λ, µ) + 2m ||e(uΩ) : e(pΩ)||L1(Ω)+m ||div(uΩ)div(pΩ)||L1(Ω),

where the adjoint state pΩ solves:




−div(Ae(p)) = −j′(uΩ) in Ω
p = 0 on ΓD

Ae(p)n = 0 on Γ ∪ ΓN

.
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Shape optimization under uncertainties over the elastic material

g0

u0ΓN

ΓD

Figure 4: (From left to right, top to bottom): optimal shape for the worst-case force inverter test case
(j(u) = k(x)|u − u0|2), under perturbations over the Lamé coefficients of the material of magnitude
m = 0,0.002,0.003,0.0075,0.02,0.1.
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Shape optimization under geometric uncertainties
Optimization of a worst-case penalization of stress:

J (Ω) = sup
V ∈W1,∞(Rd,Rd)
||V ||

L∞(Rd)d
≤m

C((I + χV )(Ω)), C(Ω) =
∫

Ω
j(σ(uΩ)) dx,

approximated by:

J̃ (Ω) =
∫

Ω
j(σ(uΩ)) ds+m

∫

Γ
χ |j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ| ds,

where pΩ is an adjoint state.

V

(I + χV )(Ω)

ΓN

ΓD

Ω

Figure 5: Perturbation of the free boundary Γ of a shape Ω by a small vector field V .
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Shape optimization under geometric uncertainties

ΓD

ΓN

g

Figure 6: (From left to right): optimal shape for m = 0,0.01,0.02, for the L-Beam example: j(σ) = ||σ||5. A
volume constraint V = VT = 0.8 is imposed in all three cases.
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Part II.
A mesh evolution method for geometric

shape optimization

• Presentation of the proposed method

• From a meshed to a level set description

• A meshing algorithm for implicit domains

• The method in action

• Numerical results
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The proposed method for handling mesh evolution

The mesh T n of the computational box D is unstructured and changes at each iteration n,
so that Ωn is explicitly discretized in T n.

• Finite element analyses are performed on Ωn by
‘forgetting’ the part of T n for the void D \Ωn.
• The advection step Ωn → Ωn+1 is held on the

whole T n, using a level set description φn of Ωn.

(T n,Ωn) (T n+1,Ωn+1)

(T n, φn) (T n, φn+1)

Generation of a
level set function on

an unstructured mesh

Explicit discretization of
an implicit domain in

the ambient mesh

�
∂φ
∂t + θn · ∇φ = 0
φ(t = 0, .) = φn.

Computation of

?
a descent direction θn

Resolution of the advection
equation on (0, τn) × D : Shape equipped with a mesh, conformally

embedded in a mesh of the computational

box.
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Initializing level-set functions with the signed distance function
DEFINITION 2 The signed distance function to a bounded domain Ω ⊂ Rd is the function
Rd 3 x 7→ dΩ(x) defined by:

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,where d(·, ∂Ω) is the usual Euclidean distance

• The signed distance function to a domain Ω ⊂ Rd is the ’canonical’ way to initialize an
associated level set function, mainly owing to its unit gradient property:

||∇dΩ(x)|| = 1, p.p x ∈ Rd.

• •
Ω

φ0

• •
Ω

dΩ

Figure 7: (left) Any level set function for Ω = (0,1) ⊂ R ; (right) signed distance function to Ω.
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The signed distance function as the steady state of a PDE

• Many existing approaches: Fast Marching Method [Sethian], Fast Sweeping method [Zhao],
mostly on Cartesian grids, or particular unstructured meshes.

• Another point of view [Chopp]: suppose Ω ⊂ Rd is implicitly known as

Ω =
{
x ∈ Rd;φ0(x) < 0

}
and ∂Ω =

{
x ∈ Rd;φ0(x) = 0

}
,

where φ0 is a function we only suppose continuous. Then the function dΩ can be
considered as the steady state of the so-called unsteady Eikonal equation





∂φ

∂t
+ sgn(φ0)(||∇φ|| − 1) = 0 ∀t > 0, x ∈ Rd

φ(t = 0, x) = φ0(x) ∀x ∈ Rd
. (1)

THEOREM 1 [Aubert, Aujol] Define function φ, ∀x ∈ Rd, ∀t ∈ R+,

φ(t, x) =





sgn(φ0(x)) inf
||y||≤t

(sgn(φ0(x))φ0(x+ y) + t) if t ≤ d(x, ∂Ω)

sgn(φ0(x))d(x, ∂Ω) if t > d(x, ∂Ω)
(2)

Let T ∈ R+. Then φ is the unique uniformly continuous viscosity solution of (1) such
that, for all 0 ≤ t ≤ T , φ(t, x) = 0 on ∂Ω.
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The signed distance function as the steady state of a PDE

∂Ω

• x
t

•
y

∂Ω

• x

t

•
y

Figure 8: Some level sets of function φ0; (left): computation of φ(t, x) = φ0(y) + t for small t; (right):
computation of φ(t, x) = φ0(y) + t = d(x, ∂Ω) at t = d(x, ∂Ω).
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The proposed algorithm

Basic idea: Compute iteratively the solution φ(t, x), using the exact formula.

Let dt be a time step, and tn = ndt.

The continuous formula for φ can be made iterative: denoting φn(x) = φ(tn, x), we have,
for n = 0, ...

∀x ∈ cΩ, φn+1(x) = inf
||y||≤dt

φn(x+ y) + dt

∀x ∈ Ω, φn+1(x) = sup
||y||≤dt

φn(x+ y)− dt

and, dt being small enough, the above infimum and supremum are evaluated by taking y in
the gradient direction; at a vertex x of the computational mesh T :

∀x ∈ cΩ, φn+1(x) ≈ inf
T∈Ball(x)

φn
(
x− dt

∇φn|T
||∇φn|T ||

)
+ dt

∀x ∈ Ω, φn+1(x) ≈ sup
T∈Ball(x)

φn
(
x+ dt

∇φn|T
||∇φn|T ||

)
− dt.
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A 2d computational example

Figure 9: Computation of the signed distance function to a discrete contour (left), on a fine background mesh
(≈ 250000 vertices).
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A 3d example... the ‘Aphrodite’.

(a) (b) (c) (d) (e)

Figure 10: Isosurfaces of the signed distance function to the ’Aphrodite’ (a): (b): isosurface −0.01, (c):
isosurface 0, (d): isosurface 0.02, (e): isosurface 0.05.
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• Numerical results
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Meshing the negative subdomain of a level set function
Discretizing explicitely the 0 level set of a scalar function φ defined at the vertices of a
simplicial mesh T of a computational box D is relatively easy, resorting to patterns.

Figure 11: (left) 0 level set of a scalar function defined over a mesh ; (right) explicit discretization in the mesh.

However, doing so is bound to produce a very low-quality mesh, on which finite element
computations will prove slow, inaccurate, not to say impossible.

Hence the need to improve the quality of the mesh while retaining its geometric features.
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Local remeshing in 3d
• Let T be an initial - valid, yet potentially ill-shaped - tetrahedral mesh T . T carries a

triangular surface mesh ST , whose elements appear as faces of tetrahedra of T .

• T is intended as an approximation of an ideal domain Ω ⊂ R3, and ST as an approxi-
mation of its boundary ∂Ω.

Figure 12: Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh T̃ , whose
corresponding surface mesh ST̃ is a good approximation of ∂Ω.
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Local remeshing in 3d: definition of an ideal domain

• In realistic cases, the ideal underlying domain Ω associated to T is unknown.

• However, from the sole data of T (and ST ), one can reconstruct approximations of geo-
metric features of Ω: sharp angles, normal vectors at regular surface points,...

• These geometric data allow to define rules for the generation of a local parametrization
of ∂Ω, around a considered surface triangle T ∈ ST , for instance as a Bézier surface.

T

a0

a1

a2
n0

n1

n2

•

•
•

•

•
•

•

•

•

•

∂Ω

Figure 13: Generation of a cubic Bézier polynomial parametrization for the piece of ∂Ω associated to triangle
T , from the approximated geometrical features (normal vectors at nodes).
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Local mesh operators: edge splitting

If an edge pq is too long, insert its midpoint m, then split it into two.

• If pq belongs to a surface triangle T ∈ ST , the midpoint m is inserted as the midpoint
on the local piece of ∂Ω computed from T . Else, it is merely inserted as the midpoint of
p and q.

• An edge may be ‘too long’ because it is too long when compared to the prescribed size,
or because it causes a bad geometric approximation of ∂Ω,...

T

a0

a1

a2

S
•

T

a0

a1

a2

S

•
•

•

Figure 14: Splitting of one (left) or three (right) edges of triangle T , positioning the three new points on the ideal
surface S (dotted).

Ph.D. defence Laboratoire Jacques-Louis Lions, 4th December 2013 40



Local mesh operators: edge collapse

If an edge pq is too short, merge its two endpoints.

• This operation may deteriorate the geometric approximation of ∂Ω, and even invalidate
some tetrahedra: some checks have to be performed to ensure the validity of the resulting
configuration.

• An edge may be ‘too short’ because it is too long when compared to the prescribed size,
or because it proves unnecessary to a nice geometric approximation of ∂Ω,...

•
•
p

q •
q

Figure 15: Collapse of point p over q.
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Local mesh operators: edge swap

Some connectivities can be swapped in the mesh, for quality enhancement purposes.

p

q

a

b

p

q

a

b

•

•

p

q

•
• • •

• • • •

a1
an a2

p

q

•
• • •
• • •

a1
an a2

•

•

Figure 16: (left) 2d (or surface) swap of an edge pq; (right) 3d swap of an edge pq.
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Local mesh operators: node relocation

Vertices can be relocated, in a one-by-one fashion, to increase the overall quality of the
mesh.

•
∂Ω

•p
�p

p••�p

Figure 17: (left) Relocation of a surface vertex p; (right) relocation of an internal vertex p.
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Local remeshing in 3d: numerical examples

Figure 18: Mechanical part before (left) and after (right) remeshing.
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Local remeshing in 3d: numerical examples

Figure 19: (left) Some isosurfaces of an implicit function defined in a cube, (centre) result after rough discretization in the ambient
mesh, (right) result after local remeshing.
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Part II.
A mesh evolution method for geometric

shape optimization

• Presentation of the proposed method

• From a meshed to a level set description

• A meshing algorithm for implicit domains

• The method in action

• Numerical results
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The algorithm in action...

Step 1: Start with the actual shape Ωn, and generate its signed distance function dΩn over
D, equipped with the mesh T n.

(a) The initial shape (b) Graph of dΩn
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The algorithm in action...

Step 2: "Forget" the exterior of the shape D \Ωn, and perform the computation of the
shape gradient J ′(Ωn) on (the mesh of) Ωn.

(a) The "interior mesh" (b) Computation of J ′(Ωn)
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The algorithm in action...

Step 3: "Remember" the whole mesh T n of D. Extend the velocity field J ′(Ωn) to the
whole mesh, and advect dΩn along J ′(Ωn) for a (small) time step τn. A new level set
function φn+1 is obtained on T n, corresponding to the new shape Ωn+1.

Figure 20: The shape Ωn, discretized in the mesh (in yellow), and the "new", advected 0-level set (in red).
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The algorithm in action...

Step 4: To close the loop, the 0 level set of φn+1 is explicitly discretized in mesh T n. As
expected, roughly "breaking" this line generally yields a very ill-shaped mesh.

Figure 21: Rough discretization of the 0 level set of φn+1 into T n; the resulting mesh of D is ill-shaped.
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The algorithm in action...
The mesh modification step is then performed, so as to enhance the overall quality of the
mesh according to the geometry of the shape. T n+1 is eventually obtained.

Figure 22: Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh T n+1 of D
in which Ωn+1 is explicitly discretized.
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The algorithm in action...
Go on as before, until convergence (discretize the 0-level set in the computational mesh,
clean the mesh,...).
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Part II.
A mesh evolution method for geometric

shape optimization

• Presentation of the proposed method

• From a meshed to a level set description

• A meshing algorithm for implicit domains

• The method in action

• Numerical results
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Numerical results: 2d optimal mast

The ‘benchmark’ two-dimensional
optimal mast test case.

• Minimization of the compliance

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ) dx.

• A volume constraint is enforced
by means of a fixed Lagrange
multiplier.
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Chaining fixed mesh and mesh evolution methods for shape optimization

• Starting from an initial shape Ω0, the level set method for shape optimization is applied
on a fixed mesh of D; a first ‘optimal shape’ Ω̃ is obtained.

• Ω̃ is explicitly discretized in the computational mesh, and serves as an initial shape
for the mesh evolution method for shape optimization; a final ‘optimal shape’ Ω∗ is
obtained.
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Numerical results: from one cantilever to another

Figure 23: (Top) Initial and final iterations Ω0 and Ω̃ of the 2d Cantilever test case, using the fixed mesh level
set method. C(Ω̃) + `Vol(Ω̃) = 1.41. (Bottom-left) Explicit discretization of Ω̃ into the computational mesh:
C(Ω̃) + `Vol(Ω̃) = 1.63; (Bottom-right) final shape Ω∗. C(Ω∗) + `Vol(Ω∗) = 1.09.

Ph.D. defence Laboratoire Jacques-Louis Lions, 4th December 2013 56



Numerical results: 3d cantilever
The ‘benchmark’ three-dimensional cantilever test case.

• Minimization of the compliance

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ) dx.

• A volume constraint is enforced by
means of a fixed Lagrange multiplier.
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Numerical results: 3d L-Beam

Optimal design of a L-shaped beam.

• Minimization of a stress-based
criterion

S(Ω) =
∫

Ω
k(x)||σ(uΩ)||2 dx,

where k is a weight factor, and
σ(u) = Ae(u) is the stress tensor.

• A volume constraint is enforced by
means of a fixed Lagrange multiplier.
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Another example in multi-phase optimization

Optimal repartition of two materials A0, A1

occupying subdomains Ω0 and Ω1 := D \
Ω0 of a fixed working domain D, with to-
tal (discontinuous) Hooke’s law AΩ0 :=

A0χΩ0 +A1χΩ1.

D

Ω0

Ω1

Γ

• Minimization of the total compliance of D: C(Ω0) =
∫

D
AΩ0e(uΩ0) : e(uΩ0) dx.

• Shape derivative (see [Allaire, Jouve, Van Goethem]):

C′(Ω0)(θ) =
∫

Γ
D(u, u) θ · n ds

• Evaluating D(u, u) is a bit awkward in a fixed mesh context, for it involves jumps of the
(discontinuous) strain and stress tensors e(u) and σ(u) at the interface Γ.

In this setting, one has to resort to approximations of the problem (e.g. by differentiating
the discrete finite element problem, or by using a smoothed-interface approximation).
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Numerical results: a multi-phase beam
Minimization of the compliance of a beam D, consisting of a mixture of a material A0 with
another one A1, with Young’s modulus E1 = E0/3.

A constraint on the volume of the stronger material is enforced by means of a fixed Lagrange
multiplier.
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Perspectives
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Perspectives
Part I.

• The method presented in Part I. is a general method for approximating a supremal func-
tional. It could also be used to deal with fiability constraints, i.e. constraints of the
form:

max
δ∈P

c(u(h, δ)) ≤ c.

Part II.

• Robustification of the proposed numerical method for tackling the issue of mesh defor-
mation in the shape optimization context, which is in the course of being integrated in
an industrial environment (RODIN project).

• Some new ingredients could be added to the general strategy, e.g. a way of denoising
the successive shapes Ωn.

• In the final steps of the process, when only very ‘small’ changes are expected from one
iteration to the next, it could be interesting to switch to a moving node strategy. On the
theoretical side, is there a way to cook the velocity field θn so that moving the mesh of
Ωn is always valid ?

• Application of the numerical method for mesh evolution to other surface evolution prob-
lems (e.g. in fluid dynamics, fluid-structure interactions, solidification problems, etc...).
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Thank you !
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