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Foreword: uncertainties in structural optimization

• Mechanical systems rely on data, e.g. the
loads, the properties of a constituent
material, or the geometry of the system itself.

• In concrete situations, such data are plagued
with uncertainties because:

• they may be available only through
(error-prone) measurements,

• they may be altered with time (wear) and
conditions of the ambient medium.

• The performances of structures are very
sensitive to small perturbations of data.

⇒ Need to somehow anticipate uncertainties when
designing and optimizing shapes.

A disk brake system

A worn out brake pad
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The main ideas in an abstract framework (I)

• Uad ⊂ H is a set of admissible designs h (e.g. the thickness of a plate,
the geometry of a shape).

• (P, || · ||) is a Banach space of data f (forces, parameters of a material).

• The performances of a design h are evaluated in terms of a cost
C ≡ C(f , uh,f ), which involves a state uh,f , solution to a physical system:

A(h)uh,f = b(f ),

where f acts on the right-hand side for simplicity.

• The data are uncertain, and read:

f = f0 + f̂ (ω),

where f0 is a mean value, and ω is an event, in an abstract probability
space (O,F ,P).
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The main ideas in an abstract framework (II)

There are two different settings to deal with uncertainties:

• Worst-case approach: When only a maximum bound ||f̂ ||P≤ m is
available on perturbations, one considers the worst-case functional:

Jwc(h) = sup
||f̂ ||P≤m

C(f0 + f̂ , uh,f0+f̂ ).

Main drawback: Pessimistic approach, which may yield designs with
unnecessarily bad nominal performances.

• Probabilistic approach: When information is available on the moments of
the uncertainties, one may try to minimize the mean value:

M(h) =

∫

O
C(f0 + f̂ (ω), uh,f0+f̂ (ω)) P(dω),

or a failure probability:

P(h) = P
({
ω ∈ O, C

(
f0 + f̂ (ω), uh,f0+f̂ (ω)

)
> α

})
.
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The main ideas in an abstract framework (III)

Working hypotheses:

• Perturbations are small: depending on the context, this may mean:

• f̂ ∈ L∞(O,P): all the realizations f̂ (ω) ∈ P are small.

• f̂ ∈ Lp(O,P), for p <∞: f̂ may have unprobably large realizations.

• Perturbations are finite-dimensional:

f̂ (ω) =
N∑

i=1

fiξi (ω),

where fi ∈ P, and the ξi are normalized, uncorrelated random variables:
∫

O
ξi (ω)P(dω) = 0,

∫

O
ξi (ω)ξj(ω) P(dω) = δi,j .

Example: f̂ is obtained as a truncated Karhunen-Loève expansion.
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The main ideas in an abstract framework (IV)

Strategy:

• Calculate approximate functionals M̃(h) and P̃(h), which are

• deterministic: no random variable or probabilistic integral is involved.

• consistent with their exact counterparts, i.e. the differences
|M(h)− M̃(h)| and |P(h)− P̃(h)| are ‘small’.

• Calculate their derivatives M̃′(h)(ĥ) and P̃ ′(h)(ĥ),

• Minimize the approximate functionals M̃(h) and P̃(h) (under
constraints), by using the expressions of their derivatives.
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The main ideas in an abstract framework (V)
Use the smallness of perturbations to perform a first- or second-order Taylor
expansion of the mappings f 7→ uh,f and f 7→ C(f , uh,f ) around f0:

uh,f0+f̂ ≈ uh + u1
h(f̂ ) + 1

2u
2
h(f̂ , f̂ ),

where A(h)u1
h(f̂ ) =

∂b

∂f
(f0)(f̂ ), and A(h)u2

h(f̂ , f̂ ) =
∂2b

∂f 2 (f0)(f̂ , f̂ ).

C(f0 + f̂ , uh,f0+f̂ ) ≈ C(f0, uh) + Lh(f̂ ) + 1
2Bh(f̂ , f̂ ),

where the linear and bilinear forms Lh and Bh read:

Lh(f̂ ) =
∂C
∂f

(f0, uh)(f̂ ) +
∂C
∂u

(f0, uh)(u1
h(f̂ )),

Bh(f̂ , f̂ ) =
∂2C
∂f 2 (f0, uh)(f̂ , f̂ ) + 2

∂2C
∂f ∂u

(f0, uh)(f̂ , u1
h(f̂ ))

+
∂2C
∂u2 (f0, uh)(u1

h(f̂ ), u1
h(f̂ )) +

∂C
∂u

(f0, uh)(u2
h(f̂ , f̂ )).

9 / 44



Approximation of moment functionals

• Replacing the cost with its second-order expansion gives rise to the
approximate mean-value functional:

M̃(h) = C(f0, uh) +

∫

O
Lh(f̂ (ω)) P(dω) +

1
2

∫

O
Bh(f̂ (ω), f̂ (ω)) P(dω).

• Using the structure of perturbations f̂ (ω) =
∑N

i=1 fiξi (ω), it comes:

M̃(h) = C(f0, uh) + 1
2
∑N

i=1 Bh(fi , fi ),

a formula which involves the calculation of the N + 2 ‘reduced states’:

uh, uh,i := u1
h(fi ), (i = 1, ...,N), and u2

h :=
N∑

i=1

u2
h(fi , fi ).

• This approach can be applied to other moments of C, e.g. its variance:

V(h) =

∫

O

(
C(f0 + f̂ (ω), uh,f0+f̂ (ω))−M(h)

)2
P(dω).
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Approximation of failure probabilities (I)

Additional hypotheses: The random variables ξi are:

• independent,

• Gaussian, i.e. their cumulative distribution function is:

P ({ω ∈ O, ξi (ω) < α}) = Φ(α) :=
1√
2π

∫ α

−∞
e
−ξ2

2 dξ.

The (exact) failure probability reads:

P(h) =
1

(2π)N/2

∫

D(h)

e−
|ξ|2
2 dξ,

where the failure region D(h) is:

D(h) =

{
ξ ∈ RN , C

(
f0 +

N∑

i=1

fiξi , uh,f0+
∑N

i=1 fiξi

)
> α

}
.
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Approximation of failure probabilities (II)

Idea: Approximate the failure region with:

D̃(h) =

{
ξ ∈ RN , C(f0, uh) +

N∑

i=1

Lh(fi )ξi > α

}
.

The approximate failure probability

P̃(h) =
1

(2π)N/2

∫

D̃(h)

e−
|ξ|2
2 dξ

can be calculated in closed form as:

P̃(h) = Φ


− α− C(f0, uh)√∑N

i=1 Lh(fi )2


.

•0

D(h)

eD(h)
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The parametric optimization setting (I)

• The thickness of a plate with (smooth) cross-section Ω ⊂ Rd is optimized.

• Uad ⊂ L∞(Ω) is a set of admissible thickness functions:

Uad = {h ∈ L∞(Ω), hmin ≤ h(x) ≤ hmax , a.e. in Ω} .

⌦

• x

h(x)

�N

g

�D

Setting of the parametric optimization problem.
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The parametric optimization setting (II)

• The plate is clamped on a part of its boundary ΓD ⊂ ∂Ω.

• Surface loads g ∈ L2(ΓN)d are applied on the complementary part
ΓN := Ω \ ΓD , as well as body forces f ∈ L2(Ω)d .

• The elastic displacement of the plate is the unique solution

uh ∈ H1
ΓD

(Ω)d :=
{
u ∈ H1(Ω)d , u = 0 on ΓD

}
.

to the linear elasticity system:



−div(hAe(u)) = f in Ω

u = 0 on ΓD

hAe(u)n = g on ΓN

.

Here e(u) = 1
2 (∇uT +∇u) is the strain tensor, and A is the Hooke’s law:

∀e ∈ S(Rd), Ae = 2µe + λtr(e)I ,

where λ, µ are the Lamé coefficients of the material.
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Parametric optimization under random loads

• We consider perturbations on the body forces; P = L2(Ω)d , and:

f (x) = f0(x) + f̂ (x , ω), where f̂ (x , ω) =
N∑

i=1

fi (x) ξi (ω) ∈ L2(O, L2(Ω)d).

• The cost function is of the form:

C(f , h) =

∫

Ω

j(uh,f ) dx ,

where j : Rd → R is smooth, satisfies growth conditions and:



−div(hAe(uh,f )) = f in Ω

uh,f = 0 on ΓD

hAe(uh,f )n = g on ΓN

.

• The objective function to approximate is the failure probability:

P(h) = P
({
ω ∈ O, C(h, f0 + f̂ (ω)) > α

})
,

where α is a given safety threshold.
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Probability failure under random loads (I)

Assumption: The random variables ξi are independent and Gaussian.

The approximate failure probability P̃(h) reads:

P̃(h) = Φ

(
−α− bh
|ah|

)
,

where bh and the entries of ah := (ah,1, ..., ah,N) are:

bh =

∫

Ω

j(f0, uh) dx , ah,i =

∫

Ω

(
∇f j(f0, uh) · fi +∇uj(f0, uh) · u1

h,i

)
dx ,

the u1
h,i being the solutions of:




−div(hAe(u)) = fi in Ω

u = 0 on ΓD

hAe(u)n = 0 on ΓN

.

Proposition 1.

There exists a constant C (uniform with respect to h ∈ Uad) such that:

||f̂ ||L2(O,L2(Ω)d )≤ ε⇒ |P̃(h)− P(h)|≤ Cε2| log ε| N+1
2 .
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Probability failure under random loads (II)

Theorem 2.

The function P̃(h) is Fréchet-differentiable at any h ∈ Uad , and its derivative is:

∀ĥ ∈ L∞(Ω), P̃ ′(h)(ĥ) =
1√
2π

e
− 1

2

(
α−bh
|ah|

)2 ∫

Ω

ĥ Dh dx ,

where the integrand Dh reads:

Dh =
1
|ah|

Ae(uh) : e(p0
h)+

α− bh
|ah|3

(
Ae(uh) : e(p1

h) +
N∑

i=1

ah,iAe(u1
h,i ) : e(p0

h)

)
,

and the adjoint states p0
h , p

1
h ∈ H1

ΓD
(Ω)d are defined by: ∀v ∈ H1

ΓD
(Ω)d ,

∫

Ω

hAe(p0
h) : e(v) dx = −

∫

Ω

∇uj(f0, uh) · v dx ,

∫

Ω

hAe(p1
h) : e(v) dx =−

N∑

i=1

ah,i

∫

Ω

(
∇2

f ,uj(f0, uh)(fi , v)+∇2
uj(f0, uh)(u1

h,i , v)
)
dx .
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Probability failure under random loads: numerical example (I)

• The unperturbed forces f0 = (0,−10) apply on the red spot, and the two
perturbation scenarii f1, f2 = (0,−10) are supported on the blue spots.

• The cost function is the compliance of the plate:

C(h, f ) =

∫

Ω

hAe(uh,f ) : e(uh,f ) dx =

∫

Ω

f · uh,f dx .

• A volume constraint Vol(h) =
∫

Ω h = VT is imposed owing to an
augmented Lagrangian algorithm.

�D f

1

2

(Left) Description of the test-case, (right) optimal shape without uncertainties. The
value of the compliance is 0.001729.
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Probability failure under random loads: numerical example (II)

Minimization of the failure probability: optimal thickness distributions for the values
α = 0.0017, 0.0018, 0.0019, 0.002, 0.0025, 0.003.
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Probability failure under random loads: numerical example (III)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200

alpha = 0.0017
alpha = 0.0018
alpha = 0.0019

alpha = 0.002
alpha = 0.0025

alpha = 0.003

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  50  100  150  200

alpha = 0.0017
alpha = 0.0018
alpha = 0.0019
alpha = 0.002

alpha = 0.0025
alpha = 0.003

Evolutions of the approximate failure probability (left), and of the volume (right).

21 / 44



1 Introduction and definitions
Foreword
The main ideas in an abstract framework

2 Applications in parametric optimization
The parametric optimization setting
Probability failure under random loads

3 Applications in shape optimization
Shape optimization of elastic structures
Shape optimization under random loads
Shape optimization under uncertainties on the elastic material
Shape optimization under geometric uncertainties

22 / 44



Preliminaries: the usual linear elasticity setting (I)

A shape is a bounded domain Ω ⊂ Rd , which is

• fixed on a part ΓD of its boundary,

• submitted to surface loads g , applied on
ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ ∈ H1
ΓD

(Ω)d is gov-
erned by the linear elasticity system:




−div(Ae(uΩ)) = f in Ω
uΩ = 0 on ΓD

Ae(uΩ)n = g on ΓN

Ae(uΩ)n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2 (∇uT + ∇u) is the strain tensor,

and A is the Hooke’s law of the material.

Ω

ΓD

ΓN

A ‘Cantilever’

The deformed cantilever
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Differentiation with respect to the domain: Hadamard’s method (I)

Hadamard’s boundary variation method
describes variations of a reference, Lip-
schitz domain Ω of the form:

Ω→ Ωθ := (I + θ)(Ω),

for ‘small’ θ ∈W 1,∞ (Rd ,Rd
)
.

In practice:

• We restrict to a set of admissible shapes:

Uad :=
{

Ω ⊂ Rd is open, bounded and Lipschitz, ΓD ∪ ΓN ⊂ ∂Ω
}
.

• Deformations θ are assumed within the admissible set:

Θad :=
{
θ ∈W 1,∞(Rd ,Rd), such that θ = 0 on ΓD ∪ ΓN

}
.
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Differentiation with respect to the domain: Hadamard’s method (II)

Definition 1.
Given a smooth domain Ω, a functional J(Ω) of the domain is shape
differentiable at Ω if the function

W 1,∞ (Rd ,Rd
)
3 θ 7→ J(Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds around 0:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd )

)
.

Shape derivatives can be computed using techniques from optimal control; in
the case of ‘many’ functions of the domain J(Ω), they enjoy the structure:

J ′(Ω)(θ) =

∫

Γ

vΩ θ · n ds,

where vΩ is a scalar field depending on uΩ, and possibly on an adjoint state pΩ.

25 / 44



1 Introduction and definitions
Foreword
The main ideas in an abstract framework

2 Applications in parametric optimization
The parametric optimization setting
Probability failure under random loads

3 Applications in shape optimization
Shape optimization of elastic structures
Shape optimization under random loads
Shape optimization under uncertainties on the elastic material
Shape optimization under geometric uncertainties

26 / 44



Shape optimization under random loads (I)

• We consider uncertainties on the body forces f (P = L2(Rd)d):

f (x) = f0(x)+ f̂ (x , ω), where f̂ (x , ω) =
N∑

i=1

fi (x) ξi (ω) ∈ L2(O, L2(Rd)d).

• The cost function is of the form:

C(f ,Ω) =

∫

Ω

j(f , uΩ,f ) dx ,

where j : Rd × Rd → Rd is smooth, satisfies growth conditions, and
uΩ,f ∈ H1

ΓD
(Ω)d solves:





−div(Ae(uΩ)) = f in Ω
uΩ = 0 on ΓD

Ae(uΩ)n = 0 on ΓN

Ae(uΩ)n = 0 on Γ

.
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Shape optimization under random loads (II)

The approximate mean value functional reads:

M̃(Ω) =

∫

Ω

j(f0, uΩ) dx +
1
2

N∑

i=1

∫

Ω

∇2
f j(f0, uΩ)(fi , fi ) dx

+
N∑

i=1

∫

Ω

∇f∇uj(f0, uΩ)(fi , u
1
Ω,i ) dx +

1
2

N∑

i=1

∫

Ω

∇2
uj(f0, uΩ)(u1

Ω,i , u
1
Ω,i ) dx ,

the u1
Ω,i being the solutions of:





−div(Ae(u)) = fi in Ω
u = 0 on ΓD

Ae(u)n = 0 on ΓN

Ae(u)n = 0 on Γ

.

Proposition 3.

Under the additional assumption that f̂ ∈ L3(O, L3(Rd)d), there exists a
constant C > 0 (depending on Ω) such that:

|M̃(Ω)−M(Ω)|≤ C ||f̂ ||3L3(O,L3(Rd )d ).
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Optimization of a bridge under random loads (I)

• Two load scenarii f1, f2 = (0,−m) are supported in the blue spots.

• The considered objective function is: L(Ω) = M̃(Ω) + δ
√
Ṽ(Ω).

• A volume constraint Vol(Ω) = VT is imposed owing to an augmented
Lagrangian algorithm.

2

1

f

�D

(Left) The bridge test case, (right) optimal shape in the unperturbed situation.
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Optimization of a bridge under random loads (II)

Optimal shapes for δ = 0 and m = 1, 2, 5, 10.
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Optimization of a bridge under random loads (III)

Optimal shapes for δ = 3 and m = 1, 2, 5, 10.
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Comparison with the worst-case approach

Optimal shapes for the linearized worst-case design approach with m = 1, 2, 5, 10.

Observation: The optimal shapes for the probabilistic functionals show
systematically better nominal performances than their worst-case counterparts.
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Optimization under material uncertainties

• Perturbations over the Young’s modulus E of the material are considered:

E = E0 + Ê (x , ω), where Ê (x , ω) =
N∑

i=1

Ei (x)ξi (ω) ∈ L∞(O, L∞(Rd)).

• The cost function is of the form C(Ω,E ) =
∫

Ω j(uΩ,E ) dx , where:




−div(A(E )e(uΩ)) = 0 in Ω
uΩ = 0 on ΓD

A(E )e(uΩ)n = g on ΓN

A(E )e(uΩ)n = 0 on Γ

.

• Minimization of the approximate mean value of C:

M̃(Ω) =

∫

Ω

j(uΩ) dx+
1
2

N∑

i=1

∫

Ω

∇2j(uΩ)(u1
Ω,i , u

1
Ω,i ) dx+

1
2

∫

Ω

∇j(uΩ) · u2
Ω dx ,

where the uh,i , i = 1, ...,N, and u2
h are the reduced states.
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Optimization of a grip under material uncertainties (I)

• The cost function is C(Ω,E ) =
∫

Ω k(x)|uΩ,E − u0|2 dx , where k is a
localization factor, and u0 is a target displacement.

• The two-point correlation of Ê (x , ω) is known:

Cor(Ê )(x , y) :=

∫

O
Ê (x , ω)Ê (y , ω) P(dω) = β2e−

|x−y|
l .

• A Karhunen-Loève expansion of Ê is performed and truncated after the
N = 5th term.

g

u01

1

0.1�N

�D

0.1

0.1

0.2

Setting of the gripping mechanism example.
35 / 44



Optimization of a grip under material uncertainties (II)

Optimal shapes associated to values of β = 0, 0.5, 1, 1.5, 2, 2.5.

36 / 44



1 Introduction and definitions
Foreword
The main ideas in an abstract framework

2 Applications in parametric optimization
The parametric optimization setting
Probability failure under random loads

3 Applications in shape optimization
Shape optimization of elastic structures
Shape optimization under random loads
Shape optimization under uncertainties on the elastic material
Shape optimization under geometric uncertainties

37 / 44



Modelling geometric uncertainties

Perturbations of a shape Ω ∈ Uad are considered with the structure:

Ω 7−→ (I + χ(x)v̂(x , ω)nΩ(x))(Ω),

where:

• χ is a cutoff function, vanishing
on ΓD ∪ ΓN ,

• nΩ is (an extension of) the normal
vector to ∂Ω,

• The scalar field
v̂ ∈ L∞(O, C2,∞(Rd)) arises as
v̂(x , ω) =

∑N
i=1 vi (x)ξi (ω).

bV

(I + �bV )(⌦)

�N

�D

⌦

Perturbation of Γ by a vector field V̂ .
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Optimization of a L-beam under geometric uncertainties

• The cost function is of the form:

C(Ω) =

∫

Ω

j(σ(uΩ)) dx ,

where σ(u) = Ae(u) is the stress tensor.

• The approximate variance functional reads:

Ṽ(Ω) =
N∑

i=1

a2
Ω,i with aΩ,i =

∫

Γ

(j(σ(uΩ)) + Ae(uΩ) : e(pΩ)− f · pΩ) vi ds,

(1)
and the adjoint state pΩ ∈ H1

ΓD
(Ω)d is the solution of:




−div(Ae(p)) = div(A ∂j

∂σ (σ(uΩ))) in Ω,
p = 0 on ΓD ,

Ae(p)n = −A ∂j
∂σ (σ(uΩ))n on Γ ∪ ΓN .
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Optimization of a L-beam under geometric uncertainties

• Perturbations occur on a subregion Dp ⊂ D; their correlation function is:

Cor(v̂)(x , ω) = β2e−
|x−y|

l .

• The cost function is C(Ω) =
∫

Ω ||σ(uΩ)||5 dx , and the objective

C(Ω) + δ
√
Ṽ(Ω) is minimized under a volume constraint.

�D

�N

g

2

1

0.1

Dp

D

Details of the L-shaped beam test-case.
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Optimization of a L-beam under geometric uncertainties

Optimal shapes in the minimization of the stress-based criterion, where the
parameter δ equals (from the left to the right) 0, 0.5, 2.
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Thank you !

Thank you for your attention!
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