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Shape optimization and industrial applications

In industry, there is a growing need for optimizing
mechanical parts from the early stages of design.

Such problems are difficult, because
• they are highly dependent on the mechanical(s)

problem(s) at stake.
• they require an accurate description of the var-

ious shapes that could be obtained through the
optimization process.

Basically, engineers work by trial and error, and
highly rely on physical intuition, but automatic
techniques that could lead to non-intuitive designs
would prove much more efficient.
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A model problem in linear elasticity

A structure (or shape) is represented by a bounded
open domain Ω ⊂ Rd, fixed on a part ΓD ⊂ ∂Ω of
its boundary, and submitted to traction loads g (for
the sake of simplicity, body forces are omitted), to be
applied on ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:




−div(Ae(uΩ)) = 0 in Ω
uΩ = 0 on ΓD

Ae(uΩ).n = g on ΓN
Ae(uΩ).n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2(t∇u +∇u) is the strain tensor field,

Ae(u) = 2µe(u) + λtr(e(u))I is the stress tensor,
and λ, µ are the Lamé coefficients of the material.

A ‘Cantilever’

The deformed cantilever
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A model problem in linear elasticity

goal : Given an initial structure Ω0, find a new domain Ω that minimizes a certain
functional of the domain J(Ω), under a volume constraint.

Examples :

• The work of the external loads g or compliance C(Ω) of domain Ω :

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ)dx =

∫

ΓN
g.uΩ ds

• A criterion S(Ω) based on the norm of the stress tensor σ(uΩ) of the shape:

S(Ω) =
∫

Ω
k(x)||σ(uΩ)||2dx,

where k(x) is a weight factor.

The volume constraint is enforced with a fixed Lagrange multiplier ` :

⇒ minimize J(Ω) := C(Ω) + ` V ol(Ω), or S(Ω) + ` V ol(Ω).
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Differentiation with respect to the domain : Hadamard’s method

Given a reference (smooth enough) domain
Ω0, we consider variations of Ω0 of the form:

(I + θ)(Ω0), θ ∈W1,∞
(
Rd,Rd

)
.

DEFINITION 1 A functional Ω 7→ J(Ω) ∈ R
is shape differentiable at Ω0 if

W1,∞
(
Rd,Rd

)
3 θ 7→ J((I + θ)(Ω0))

is Fréchet-differentiable at 0, i.e. we have the
following expansion, in the vicinity of 0:

J((I+θ)(Ω0)) = J(Ω0)+J ′(Ω0)(θ)+o(||θ||)
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Differentiation with respect to the domain : Hadamard’s method

• The Structure theorem gives the form of the shape derivative of a rather general class of
functionals J(Ω).

J ′(Ω)(θ) =
∫

Γ
v (θ.n) ds,

where v is a scalar field defined on Γ.

For instance, in the case of the compliance J(Ω) =
∫
ΩAe(uΩ) : e(uΩ) dx,

v = −Ae(uΩ) : e(uΩ).

• This shape gradient provides a natural descent direction θ for functional J . Defining
θ = −vn yields, for t > 0 sufficiently small (to be found numerically):

J((I + tθ)(Ω)) = J(Ω)− t
∫

Γ
v2ds+ o(t) < J(Ω).
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The generic numerical algorithm

Gradient algorithm : For n = 0, ... convergence,
1. Compute the solution uΩn of the above elasticity system of Ωn.
2. Compute the shape derivative J ′(Ωn) thanks to the above formula, and infer a descent

direction θn for the cost functional.
3. Advect the shape Ωn according to this displacement field, so as to get Ωn+1.

Problem : We need to

• efficiently advect the shape Ωn at each step

• get a mesh of each shape Ωn so as to perform the required finite element computations.

Reconciling both constraints is difficult, the bulk of approaches for moving meshes being
heuristic, and at some point limited.
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A few words about the level set Method

A paradigm : When you want to describe a surface evolution, represent it with an implicit
function.

Given a bounded domain Ω ⊂ Rd, define it with a function φ on the whole Rd such that

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

Figure 1: A bounded domain Ω ⊂ R2 (left), some level sets of an implicit function representing Ω (right).
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Surface evolution equations in the level set framework

Suppose that, for every time t, the domain
Ω(t) ⊂ Rd is represented by an implicit function
φ(t, .) on Rd, and is subject to an evolution defined
by velocity v(t, x) ∈ Rd. Then

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

In many applications, the velocity v(t, x) is
normal to the boundary ∂Ω(t) :

v(t, x) := V (t, x)
∇φ(t, x)

|∇φ(t, x)|
.

Then the evolution equation rewrites as a Hamilton-
Jacobi type equation

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + V (t, x)|∇φ(t, x)| = 0
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The level set method of Allaire-Jouve-Toader

• The shapes Ωn are embedded in a computational
box D equipped with a fixed mesh.

• The successive shapes Ωn are accounted for in
the level set framework, i.e. by the knowledge of
a function φn defined on the whole box D which
implicitly defines them.

• At each step n, the exact linear elasticity system
on Ωn is approximated by the Ersatz material
approach : the void D \ Ωn is filled with a very
‘soft’ material, which leads to an approximate
linear elasticity system, defined on D.

• This approach is very versatile and does not require
an exact mesh of the shapes at each iteration.

74 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0, −1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is ! = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-

Shape accounted for with a level set

description
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The proposed method
Elaborating on the Level set method of allaire, Jouve
and Toader, we propose a slightly different approach
which still benefits from the versatility of level set
methods to account for large deformations of shapes
(even topological changes), but enjoys at each step the
knowledge of a mesh of the shape.

The unstructured mesh T n of the computational box D
is allowed to evolve so that at each step n, the shape Ωn

is explicitly discretized.
• Level set methods are performed on this unstruc-

tured mesh to account for the advection of the
shapes φn → φn+1.
• Finite element computations are performed on the

part on this mesh corresponding to the shape.

(Ωn, T n)→ (Ωn+1, T n+1) ⇔ φn → φn+1

Shape equipped with a mesh, conformally

embedded in a mesh of the computational

box.
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Initializing level-set functions with the signed distance function
DEFINITION 2 Let Ω ⊂ Rd a Lispchitz domain. The signed distance function to Ω is:

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,where d(·, ∂Ω) is the usual Euclidean distance

• Several algorithms exist to compute the signed distance function to a given domain on an
unstructured mesh (e.g. extensions to the Fast Marching, and Fast Sweeping methods).

Figure 2: Computation of the signed distance function to a discrete contour (left), on a fine background mesh.
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Meshing the negative subdomain of a level set function
Discretizing explicitely the 0 level set of a scalar function defined at the vertices of a
simplicial mesh T of a computational box D is relatively easy, resorting to patterns.

Figure 3: (left) 0 level set of a scalar function defined over a mesh ; (right) explicit discretization in the mesh.

However, doing so is bound to produce a very low-quality mesh, on which finite element
computations will prove slow, inaccurate, not to say impossible.

Hence the need to improve the quality of the mesh while retaining its geometric features.
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Local remeshing in 3d
• Let T an initial - valid, yet potentially ill-shaped - tetrahedral mesh T . T carries a trian-

gular surface mesh ST , whose elements appear as faces of tetrahedra of T .

• T is intended as an approximation of an ideal domain Ω ⊂ R3, and ST as an approxi-
mation of its boundary ∂Ω.

Figure 4: Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh T̃ , whose
corresponding surface mesh S̃T is a good approximation of ∂Ω.
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Local remeshing in 3d : definition of an ideal domain

• In realistic cases, the ideal underlying domain Ω associated to T is unknown.

• However, from the sole data of T (and ST ), one can reconstruct approximations of geo-
metric features of Ω : sharp angles, normal vectors at regular surface points,...

• These geometric data allow to define rules for the generation of a local parametrization
of ∂Ω, around a considered surface triangle T ∈ ST , for instance as a Bézier surface.

T

a0

a1

a2
n0

n1

n2

•

•
•

•

•
•

•

•

•

•

∂Ω

Figure 5: Generation of a cubic Bézier polynomial parametrization for the piece of ∂Ω associated to triangle T ,
from the approximated geometrical features (normal vectors at nodes).
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Local mesh operators : edge splitting

If an edge pq is too long, insert its midpoint m, then split it into two.

• If pq belongs to a surface triangle T ∈ ST , the midpoint m is inserted as the midpoint
on the local piece of ∂Ω computed from T . Else, it is merely inserted as the midpoint of
p and q.

• An edge may be ‘too long’ because it is too long when compared to the prescribed size,
or because it causes a bad geometric approximation of ∂Ω,...

T

a0

a1

a2

S
•

T

a0

a1

a2

S

•
•

•

Figure 6: Splitting of one (left) or three (right) edges of surface triangle T , positioning the three new points on
the ideal surface S (dotted).
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Local mesh operators : edge collapse

If an edge pq is too short, merge its two endpoints.

• This operation may deteriorate the geometric approximation of ∂Ω, and even invalidate
some tetrahedra: some checks have to be performed to ensure the validity of the resulting
configuration.

• An edge may be ‘too short’ because it is too short when compared to the prescribed size,
or because it proves unnecessary to a nice geometric approximation of ∂Ω,...

•
•
p

q •
q

Figure 7: Collapse of point p over q.
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Local mesh operators : edge swap, node relocation,...

So as to enhance the global quality of the mesh (or the geometric approximation of ∂Ω),
some connectivities can be swapped, and some nodes can be slightly moved.

p

q

a

b

p

q

a

b

⇓ •
∂Ω

•�xx

Figure 8: (left) 2d swap of edge pq, creating edge ab ; (right) relocation of node x to x̃, along the surface.
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Local remeshing in 3d : numerical examples

Figure 9: (left) Ill-shaped discretization of an implicit function in a cube, (middle-right) result after local remeshing.
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Numerical implementation

• At each iteration, the shape Ωn is endowed with an unstructured mesh T n of a larger,
fixed, bounding box D, in which a mesh of Ωn explicitly appears as a submesh.

• When computing the descent direction θn := −J ′(Ωn), finite element computations
are held on the sole Ωn (the part of T n, exterior to Ωn is simply ‘forgotten’)

• When dealing with the advection step Ωn → Ωn+1, the signed distance function dΩn

to Ωn is generated on the whole mesh T n, and accounts for Ωn in the resolution of the
level set advection equation to get φn+1:

{
∂φ
∂t (t, x) + θn(x).∇φ(t, x) = 0 on [0, τn]×D

φ(t = 0, x) = dΩn(x) on D

• From the knowledge of φn+1, a new unstructured mesh T n+1, in which the new shape
Ωn+1 explicitly appears, is recovered, using the previous meshing techniques.

Congrès SMAI 2013 May 29, 2013 26



The algorithm in motion...

Step 1: Start with shape Ωn, and generate its signed distance function dΩn over D,
equipped with an unstructured mesh T n.

(a) The initial shape (b) Isolines of dΩn
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The algorithm in motion...

Step 2: "Forget" the exterior of the shape D \Ωn, and perform the computation of the
shape gradient J ′(Ωn) on the shape.

(a) The "interior mesh" (b) Computation of J ′(Ωn)
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The algorithm in motion...
Step 3: "Remember" the whole computational mesh T n. Extend the velocity field J ′(Ωn)

to the whole mesh, and advect dΩn along J ′(Ωn) for a (small) time step τn. A new level set
function φn+1 is obtained on T n, corresponding to the new shape Ωn+1.

Figure 10: The shape Ωn, discretized in the mesh (in yellow), and the "new", advected 0-level set (in red).
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The algorithm in motion...

Step 4: To close the loop, the 0 level set of φn+1 is explicitly discretized in mesh T n. As
expected, roughly "breaking" this line generally yields a very ill-shaped mesh.

Figure 11: Rough discretization of the 0 level set of φn+1 into T n; the resulting mesh of D is ill-shaped.
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The algorithm in motion...

The mesh modification step is then performed, so as to enhance the overall quality of the
mesh according to the geometry of the shape. T n+1 is eventually obtained.

Figure 12: Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh T n+1 of D
in which Ωn+1 is explicitly discretized.
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The algorithm in motion...
Go on as before, until convergence (discretize the 0-level set in the computational mesh,
clean the mesh,...).
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Some numerical results

The ‘benchmark’ two-dimensional
optimal mast test case.

• Minimization of the compliance

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ) dx.

• A volume constraint is enforced
by means of a fixed Lagrange
multiplier.
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Some numerical results

The ‘benchmark’ three-dimensional
cantilever test case.

• Minimization of the compliance

C(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ) dx.

• A volume constraint is enforced
by means of a fixed Lagrange
multiplier.
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Some numerical results

•

The three-dimensional L-Beam test
case.

• Minimization of a stress-based
criterion

S(Ω) =
∫

Ω
k(x)||σ(uΩ)||2 dx,

where k is a weight factor,
equal to 1 everywhere except
in a neighborhood of the point
where the load is exerted.
• A volume constraint is enforced

by means of a fixed Lagrange
multiplier.
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Thank you !
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