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Shape optimization and industrial applications

In industry, there is a growing need for optimizing
mechanical parts from the early stages of design.

Such problems are difficult, partly because
e they feature a very high computational cost,
mainly due to repeated mechanical analyses.
e they require an accurate description of the var-
ious shapes that could be obtained through the
optimization process.

Automatic techniques (implemented in industrial
softwares) have started to replace the traditional trial-
and-error methods used by engineers, but still leave
room for many forthcoming developments.
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A shape is a bounded open domain 2 C R?, which is ‘
e fixed on a part ' p C 9S2 of its boundary,
e submitted to surface loads g, applied on I" 5y C 022,

FpNy=~0.
| Q

The displacement vector field v : 2 — R% is gov-

erned by the linear elasticity system: A ‘Cantilever’
( —div(Ae(uq)) = O in 2

< uQ = 0 on I_D

Ae(ug)n = g on [y ’
L Ae(ug)n = 0 onl =00\ (TpuUTly)

where e(u) = %(VuT + Vu) is the strain tensor field,
and A is the Hooke’s law of the material.

The deformed cantilever



Goal: | Given an initial structure 2, find a new domain €2 that minimizes a certain

functional of the domain J(£2), under a volume constraint.

Examples:

e The work of the external loads g or compliance C'(£2) of domain €2:
C(2) = / Ae(ug) : e(ug)dr = g.uq ds
Q Y
e A least-square discrepancy between the displacement u and a target displacement
uo € HY(2)? (useful when designing micro-mechanisms):

QI

D(2) = ( | k@)l lug — uol|*dz )"

where « is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter #:
Minimize J(2) := C(2) + £ Vol(£2), or D(2) + ¢ Vol(2).
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Differentiation with respect to the domain: Hadamard’s method

(L +6)(£20)

Hadamard’s boundary variation method T

describes variations of a reference, Lips-
chitz domain 2¢ of the form: )

Qo — (I +0)(20),
for ‘small’ 8 € W1, (Rd,Rd>.

LEMMA 1 Forall® € W1 (Rd,Rd) with norm ||9||W1,00(]R{d Rd) < 1, (I40) is a Lipschitz

diffeomorphism of R®, with Lipschitz inverse.



DEFINITION 1 Given a smooth domain g, a (scalar) function 2 — F'(S2) is shape differ-
entiable at 2¢ if the function

whee (R4 RY) 3 60— F((I +6)(0))

is Fréchet-differentiable at O, i.e. the following expansion holds in the vicinity of O:

F( +6)(20)) = F(R0) + F'(2)©) + 0 (116l .00y ) -

Techniques close to optimal control theory make it possible to compute shape gradients; in
the case of ‘many’ functionals of the domain J(£€2), the shape derivative has the particular

structure:

J7(Q)(6) = /I_ve - n ds,

where v is a scalar field which depends on ugo, and possibly on an adjoint state po.

Example:

If J(Q2) =C(2) = Jry 9 - ug ds is the compliance, v = —Ae(uq) :e(ug).




e This shape gradient provides a natural descent direction for functional J: for instance,
defining 6 as

0 = —un

yields, for ¢ > O sufficiently small (to be found numerically):

J((I 4+ t0)(Q)) = J(Q) — ¢ /r v2ds 4 o(t) < J(Q)

e Hadamard’s method suffers several drawbacks (dependence on the initialization, non ex-
istence of global minimizer, etc...) which can be alleviated by using concurrent methods:

1.

Topological gradient algorithms assess the sensitivity of shapes with respect to the
nucleation of small holes.

. The homogenization method is a relaxation of the minimization problem that pro-

vides a method for finding the global minimum of the relaxed problem.




Gradient algorithm: For n = 0O, ... convergence,
1. Compute the solution uqn of the above elasticity system of 2.
2. Compute the shape gradient J'(2™) thanks to the previous formula, and infer a descent
direction 6™ for the cost functional.
3. Advect the shape 2" according to this displacement field, so as to get Q™11

Problem: We need to

e efficiently advect the shape Q2™ at each step

e get a mesh of each shape Q™ so as to perform the required finite element computations.



The generic numerical algorithm

Reconciling both constraints is difficult, the bulk of approaches for moving meshes being
heuristic, and at some point limited.

I\_sharediac\DREAM\caldarp_optim_gmploptistMARC\AUtof ormationhcantilevericonsole.fem

Result . Ih_sharediach\DREAM\caldarp_optim_gmptoptis\MARCYVAutoformationtcantilevericonsole_des h3d
Design : lteration O

Frame 1




The shapes 2™ are embedded in a computational
box D equipped with a fixed mesh.

The successive shapes 2™ are accounted for in
the level set framework, i.e. by the knowledge of
a function ¢™ defined on the whole box D which
implicitly defines them.

At each step n, the exact linear elasticity system
on Q™ is approximated by the Ersatz material
approach: the void D \ Q" is filled with a very
‘soft’ material, which leads to an approximate
linear elasticity system, defined on D.

This approach is very versatile and does not require
an exact mesh of the shapes at each iteration.

Shape accounted for with a level set

description



The proposed method

e still benefits from the versatility of level set methods
to account for large deformations of shapes (even
topological changes)

e yet, it enjoys at each step the knowledge of a mesh
of the shape.

The computational box D is equipped with an unstruc-
tured mesh 7", which changes at each step n, so that
the shape 2" is explicitly discretized in it.

e Level set methods are performed on this unstruc-
tured mesh to account for the advection of the
shapes ¢ — ¢ 11,

e Finite element computations are performed on the
part on this mesh corresponding to the shape.
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Shape equipped with a mesh, conformally
embedded in a mesh of the computational

box.
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Figure 1



The motion of an evolving domain (¢t) ¢ R¢
along a velocity field v(t,z) € R? is translated in
terms of an associated ‘level set function” ¢(¢,.) by
the level set advection equation:

Vt, Vz € R%, 2—(5@, z) +v(t,z).Vo(t,z) =0

In many applications, the velocity v(t,x) is
normal to the boundary 92(¢):

Vo(t, z)

IVe(t, z)I|

Then the evolution equation rewrites as a Hamilton-

v(t,z) ;= V(t,x)

Jacobi equation:

vt, Vo € RY, Z—f(t, 2) + V(t,2)||Ve(t,2)|| = O

Q(t + dt) = [(t + dt,.) < 0]
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DEFINITION 2 Let Q C R% a bounded domain. The signed distance function to 2 is the
function R% 5 x — do(z) defined by:

—d(x,02) ifx € Q
do(x) =41 0 ifx € 02 ,where d(-,0%2) is the usual Euclidean distance
d(z,0) ifx e

e The signed distance function to a domain 2 C R% is the ‘canonical’ way to initialize an
associated level set function, mainly owing to its unit gradient property:

|Vdo(2)|| =1, ppzeR™

b0

Figure 2: (left) Any level set function for €2 = (0,1) C R ; (right) signed distance function to 2.



Suppose 2 C R% is implicitly known as

Q= {zeR% ¢o(x) <0} and 9Q = {z € RY ¢g(z) = 0},

where ¢ is a function we only suppose continuous. Then the function uo can be
considered as the steady state of the so-called unsteady Eikonal equation

20 +59n(p0) IVl ~ 1) =0 Vi >0,z € B o
$(t = 0,z) = ¢o(z) vz € RY

More accurately,
THEOREM 1 [Aubert & Aujol, 2002] Define function ¢, Yz € R%, Vt € Ry,

{ sgn(¢o(x)) inf (sgn(go(x))po(xz +y) +1t) ift < d(x,052)
o(t,x) = lyl|<t
sgn(¢g(x))d(z, 0) ift > d(x,00)

LetT € R4. Then ¢ is the unique uniformly continuous viscosity solution of (1) such that,
forall0 <t <T, ¢(t,x) = 0 on OL2.



The signed distance function as the steady state of a PDE

Figure 3: Some level sets of function ¢q; (left): computation of ¢(t,z) = ¢o(y) + ¢t for small t; (right):
computation of ¢(t,2) = ¢o(y) +t = d(x,0) att = d(x, 052).



Basic idea: Compute iteratively the solution ¢(t, x), using the exact formula.

Let dt be a time step, and t" = ndt.

The continuous formula for ¢ can be made iterative: denoting ¢ (x) = (", x), we have,

forn =0, ...

Ve € °Q, ¢"TH(x) = inf ¢"(x+y) +dt
yl|<dt

vz € Q, ¢"TH(z) = sup ¢"(z+y) — dt
|y||<dt

and, dt being small enough, the above infimum and supremum are evaluated by taking y in
the gradient direction; at a vertex x of the computational mesh 7

Vo"|r
|V én|T|

Ve € °Q, ¢" Tz~ inf " (:B — dt

dt
TeBall(x) > +

n
Ve e Q, ¢"T(z)~ sup " (az + dt VeTlr > — dt.
TeBall(x) [V on|T||
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Figure 4: Computation of the signed distance function to a discrete contour (left), on a fine background mesh

(= 250000 vertices).
New trends in shape optimization,



A 3d example... the ‘Aphrodite’.

Figure 5: Isosurfaces of the signed distance function to the ‘Aphrodite’ (a): (b): isosurface —0.01, (c):
isosurface O, (d): isosurface 0.02, (e): isosurface 0.05.
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Discretizing explicitely the O level set of a scalar function defined at the vertices of a
simplicial mesh 7 of a computational box D is relatively easy, resorting to patterns.

/ /

Figure 6: (left) O level set of a scalar function defined over a mesh ; (right) explicit discretization in the mesh.

However, doing so is bound to produce a very low-quality mesh, on which finite element
computations will prove slow, inaccurate, not to say impossible.

Hence the need to improve the quality of the mesh while retaining its geometric features.




Local remeshing in 3d

e Let 7 be an initial - valid, yet potentially ill-shaped - tetrahedral mesh 7. T carries a
triangular surface mesh &7, whose elements appear as faces of tetrahedra of 7.

e T is intended as an approximation of an ideal domain 2 C R3, and S+ as an approxi-
mation of its boundary 0%2.

Figure 7: Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh 7, whose
corresponding surface mesh 87. is a good approximation of 952.



e In realistic cases, the ideal underlying domain €2 associated to 7 is unknown.

e However, from the sole data of 7 (and S7), one can reconstruct approximations of geo-
metric features of €2: sharp angles, normal vectors at regular surface points,...

e These geometric data allow to define rules for the generation of a local parametrization
of 02, around a considered surface triangle 7' € S, for instance as a Bézier surface.

Figure 8: Generation of a cubic Bézier polynomial parametrization for the piece of 9<2 associated to triangle T,
from the approximated geometrical features (normal vectors at nodes).



e Four local remeshing operators are intertwined, to iteratively increase the quality of the
mesh 7T : edge split, edge collapse, edge swap, and vertex relocation.

e Each one of them exists under two different forms, depending on whether it is applied to
a surface configuration, or an internal one.

e A size map h is defined, to reach a good mesh sampling. It generally depends on the
principal curvatures k1, ko of 0€2, but may also be user-defined (e.g. in a context of
mesh adaptation).



If an edge pq is too long, insert its midpoint m, then split it into two.

e If pq belongs to a surface triangle T' € S7, the midpoint m is inserted as the midpoint
on the local piece of 92 computed from T'. Else, it is merely inserted as the midpoint of

p and gq.

e An edge may be ‘too long’ because it is too long when compared to the prescribed size,
or because it causes a bad geometric approximation of 9<2,...

Figure 9: Splitting of one (left) or three (right) edges of triangle T, positioning the three new points on the ideal
surface S (dotted).



If an edge pq is too short, merge its two endpoints. I

e This operation may deteriorate the geometric approximation of 9€2, and even invalidate
some tetrahedra: some checks have to be performed to ensure the validity of the resulting
configuration.

e An edge may be ‘too short’ because it is too long when compared to the prescribed size,
or because it proves unnecessary to a nice geometric approximation of 9<2,...

Figure 10: Collapse of point p over gq.



S

Figure 11: In two dimensions, collapsing p over ¢ (left) invalidates the resulting mesh (right): both greyed
triangles end up inverted.



For the sake of enhancement of the global quality of the mesh (or the geometrical
approximation of 9€2), some connectivities can be swapped, and some nodes can be slightly
moved.

p

Figure 12: (left) 2d swap of edge pq, creating edge ab ; (right) relocation of node x to x, along the surface.



Local remeshing in 3d: numerical examples

_at

A
;
,,,,ﬁ%ﬁsﬁ
)’A

|
I
/
|
|
|

Figure 13: Mechanical part before (left) and after (right) remeshing.



Local remeshing in 3d: numerical examples

Figure 14: (left) lll-shaped discretization of an implicit function in a cube, (centre-right) result after local remeshing.
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At each iteration, the shape 2" is endowed with an unstructured mesh 7" of a larger,
fixed, bounding box D, in which a mesh of 2™ explicitly appears as a submesh.

When dealing with finite element computations on 2, the part of 7", exterior to 2" is
simply ‘forgotten’.

When dealing with the advection step, a level set function ¢™ is generated on the whole
mesh 7™, and the level set advection equation is solved on this mesh, to get "1 1.

From the knowledge of " 11, a new unstructured mesh 77t1 in which the new shape
Qnt+1 explicitly appears, is recovered.



The algorithm in motion...

Step 1:|Start with the actual shape 2", and generate its signed distance function don over

D, equipped with the mesh 7.

(@) The initial shape (b) Graph of don

New trends in shape optimization,

Erlangen, September 24, 2013
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Step 2:

The algorithm in motion...

"Forget" the exterior of the shape D \ 2", and perform the computation of the

shape gradient J'(£2™) on (the mesh of) Q™.

5.5797E+00 1.6739E+01

[ |
0.0000E+00 1.1159E+01 2.2319E+01

(@) The "interior mesh" (b) Computation of J'(Q")

New trends in shape optimization, Erlangen, September 24, 2013
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Step 3: | "Remember" the whole mesh 7™ of D. Extend the velocity field J'(2™) to the
whole mesh, and advect dor along J'(2™) for a (small) time step 7. A new level set
function ¢" 11 is obtained on 7™, corresponding to the new shape 2711,

(//‘
N
N
s O L
< b b S i /) -
//\\ // (\ \ ; &/ \\_//)
e ¢

Figure 15: The shape 2", discretized in the mesh (in yellow), and the "new", advected O-level set (in red).



The algorithm in motion...

Step 4: | To close the loop, the O level set of ™1 is explicitly discretized in mesh 7. As

expected, roughly "breaking" this line generally yields a very ill-shaped mesh.

Figure 16: Rough discretization of the O level set of "1 into T™; the resulting mesh of D is ill-shaped.

New trends in shape optimization, Erlangen, September 24, 2013



The mesh modification step is then performed, so as to enhance the overall quality of the
mesh according to the geometry of the shape. 7711 is eventually obtained.

Figure 17: Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh 7"+ of D
in which Q2"+ s explicitly discretized.



The algorithm in motion...

Go on as before, until convergence (discretize the O-level set in the computational mesh,
clean the mesh,...).
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Numerical results: 2d optimal mast

The ‘benchmark’ two-dimensional

M optimal mast test case.

e Minimization of the compliance

C(Q2) = /Q Ae(ug) : e(uq) dz.

e A volume constraint is enforced
by means of a fixed Lagrange
multiplier.




Numerical results: 2d gripping mechanism

i‘i«ﬁ Device of a gripping mechanism.
The least-square criterion is min-
0.4 ¢ i::::m Ug 4 imized:
r, D(2) = [ k(@)l[ug = uo| | da,
%:\; where k is a the characteristic func-
* tion of a region near the jaws, and ug
is cooked so that the jaws close.
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Numerical results: 3d cantilever

The ‘benchmark’ three-dimensional cantilever test case.

e Minimization of the compliance o
e A volume constraint is enforced by

C(Q) = /Q Ae(uo) : e(un) dx. means of a fixed Lagrange multiplier.

-,-=- y -,lw____




Numerical results: 3d L-Beam

Optimal design of a 3d |-shaped
beam.

e Minimization of a stress-based
criterion

S(Q) = /Qk<x>||a<ug>||2 dz,

where k is a weight factor, and

o(u) = Ae(u) is the stress tensor.

e A volume constraint is enforced by
means of a fixed Lagrange multiplier.




Numerical results: a multi-phase beam

Optimal repartition of two materials Ag, A1 occupying subdomains Q0 and Q1 := D\ QO
of a fixed beam D, with total (discontinuous) Hooke’s law Ao := Agxno + A1Xo1-

e Minimization of the total compliance of D: e A constraint on the volume of the

0 stronger material is enforced by means of
C(2Y) = /D Aqoe(uqo) : e(uqo) dx.

a fixed Lagrange multiplier.
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