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A model problem in linear elasticity

A structure is represented by a bounded open domain
Ω ⊂ Rd, fixed on a part ΓD ⊂ ∂Ω of its boundary, and
submitted to a load case g (and no body force), to be
applied on ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system :
−div(Ae(uΩ)) = 0 in Ω

uΩ = 0 on ΓD
Ae(uΩ).n = g on ΓN
Ae(uΩ).n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2(t∇u +∇u) is the strain tensor field,

Ae(u) = 2µe(u) + λtr(e(u))I is the stress tensor,
and λ, µ are the Lamé coefficients of the material.

A ‘Cantilever’

The deformed cantilever
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A model problem in linear elasticity

goal : Given an initial structure Ω0, find a new domain Ω that minimizes a certain
functional of the domain J(Ω), under a volume constraint.

Example : The work of the external loads g or compliance c(Ω) of domain Ω :

c(Ω) =
∫

Ω
Ae(uΩ) : e(uΩ)dx =

∫
ΓN

g.uΩ ds

The volume constraint is enforced with a fixed penalty parameter l :

⇒ minimize J(Ω) := c(Ω) + l V ol(Ω).
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Differentiation with respect to the domain : Hadamard’s method

Given a reference (initial), smooth domain Ω0, we
parametrize shapes by variations of the form :

Ω0 → (I + θ)(Ω0), θ ∈W1,∞
(
Rd,Rd

)
.

DEFINITION 1 The shape differential of function Ω 7→
F (Ω) at Ω0 is the Fréchet-differential of F at 0 of

W1,∞
(
Rd,Rd

)
3 θ 7→ F ((I + θ)(Ω0)),

THEOREM 1 Ω being a smooth domain, if g ∈ H2(Rd), the above functional J is shape
differentiable at Ω and its shape gradient reads :

dJ(Ω)(θ) =
∫

Γ
(−Ae(uΩ) : e(uΩ)) θ.n ds
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Differentiation with respect to the domain : Hadamard’s method

• This shape gradient provides plenty many natural descent directions for functional J : for
instance, defining θ as

θ = (Ae(uΩ) : e(uΩ))n

yields, for t > 0 sufficiently small (to be found numerically) :

J((I + tθ)(Ω)) = J(Ω)− t
∫

Γ
(θ.n)2 ds+ o(t) < J(Ω)

• Note that all the shapes obtained during the process are (at least theoretically speaking)
diffeomorphic to the initial one Ω ; hence, no hole can appear, whereas it could be highly
beneficial ; a notion of topological gradient has been devised to study the behaviour of a
shape with respect with the nucleation of a small hole near each of its points.

Advanced COmputational Methods in ENgineering, Liège November 16, 2011 7



The generic numerical algorithm

Gradient algorithm : For n = 0, ... until convergence,
1. Compute the solution uΩn of the above elasticity system of Ωn.
2. Compute the shape gradient dJ(Ωn) thanks to the above formula, and infer a descent

direction θn for the cost functional.
3. Advect the shape Ωn according to this displacement field, so as to get Ωn+1.

Problem : We need to

• efficiently advect the shape Ωn at each step

• be able to perform finite element computations on Ωn at each step, to get uΩn, which at
first glance requires a mesh of this shape.
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The level set method of Allaire-Jouve-Toader

• All the shapes Ωn are embedded in a fixed computational box D which is meshed once
and for all.

• The successive shapes Ωn are accounted for in the level set framework, i.e. by the
knowledge of a function ψn defined on the whole box D which implicitly defines them.

• At each step n, the exact linear elasticity system on Ωn is approximated by the Ersatz
material approach : the void D \Ωn is filled with a very ‘soft’ material, which leads to
an approximate linear elasticity system, defined on D.

• This approach is very versatile and does not require an exact mesh of the shapes at each
iteration.
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The proposed method

We propose a slightly different approach which still benefits from the versatility of level set
methods to account for large deformations of shapes (even topological changes), but enjoys
at each step the knowledge of a mesh of the shape.

• At each step, the shape Ωn is equipped with an unstructured mesh T n when it comes to
finite element computations, and is considered through an associated level set function
φn, defined on a larger unstructured computational mesh when dealing with advection
of the shape

(Ωn, T n)→ (Ωn+1, T n+1) ⇔ φn → φn+1

• The connection between those two ways of describing shapes is made through an un-
structured mesh of the computational box D, which is allowed to evolve so that at each
step n, the shape Ωn is explicitly discretized.

◦ Level set methods are performed on this unstructured mesh to account for the advec-
tion of the shapes φn → φn+1.

◦ Finite element computations are performed on the part on this mesh corresponding
to the shape.
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The proposed method

Figure 1: Shape equipped with a mesh, conformally embedded in a mesh of the computational box.
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A few words about the level set Method

A paradigm : When you want to describe a surface evolution, represent it with an implicit
function.

Given a bounded domain Ω ⊂ Rd, define it with a function φ on the whole Rd such that

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

Figure 2: A bounded domain Ω ⊂ R2 (left), some level sets of an implicit function representing Ω (right).
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Surface evolution equations in the level set framework

Suppose that, for every time t, the domain
Ω(t) ⊂ Rd is represented by an implicit function
φ(t, .) on Rd, and is subject to an evolution defined
by velocity v(t, x) ∈ Rd. Then

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

In many applications, the velocity v(t, x) is
normal to the boundary ∂Ω(t) :

v(t, x) := V (t, x)
∇φ(t, x)

||∇φ(t, x)||
.

Then the evolution equation rewrites as a Hamilton-
Jacobi type equation

∀t, ∀x ∈ Rd,
∂φ

∂t
(t, x) + V (t, x)||∇φ(t, x)|| = 0
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Initializing level-set functions with the signed distance function

DEFINITION 2 Let Ω ⊂ Rd a bounded domain. The signed distance function to Ω is the
function Rd 3 x 7→ uΩ(x) defined by :

uΩ(x) =


−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,where d(·, ∂Ω) is the usual Euclidean distance

• The signed distance function to a domain Ω ⊂ Rd is the ‘canonical’ way to initialize
an associated level set function : it enables good approximations of n(x), κ(x),... and
decreases numerical instabilities related to ‘bad localization’ of the domain, owing to its
property of unitary gradient.

• We present here a PDE-based method, working in any dimension, on any simplicial
mesh for computing the signed distance function to Ω that dates back to [Chopp] (see
also [Sethian] or [Zhao] for different approaches).
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The signed distance function as the steady state of a PDE

Suppose Ω ⊂ Rd is implicitly known as

Ω =
{
x ∈ Rd;u0(x) < 0

}
and ∂Ω =

{
x ∈ Rd;u0(x) = 0

}
,

where u0 is a function we only suppose continuous. Then the function uΩ can be
considered as the steady state of the so-called unsteady Eikonal equation

∂u

∂t
+ sgn(u0)(||∇u|| − 1) = 0 ∀t > 0, x ∈ Rd

u(t = 0, x) = u0(x) ∀x ∈ Rd
(1)
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The proposed algorithm

THEOREM 2 Define function u, ∀x ∈ Rd, ∀t ∈ R+,

u(t, x) =

 sgn(u0(x)) inf
||y||≤t

(sgn(u0(x))u0(x+ y) + t) if t ≤ d(x, ∂Ω)

sgn(u0(x))d(x, ∂Ω) if t > d(x, ∂Ω)
(2)

Let T ∈ R+. Then u is the unique uniformly continuous viscosity solution of (1) such that,
for all 0 ≤ t ≤ T , u(t, x) = 0 on ∂Ω.

Idea : Compute iteratively the solution u(t, x), using the exact formula.

Let dt a small time step, and denote tn = ndt. This formula can be made iterative, denoting
un(x) = u(tn, x), we have, for n = 0, ...

∀x ∈ cΩ, un+1(x) = inf
||y||≤dt

un(x+ y) + dt

∀x ∈ Ω, un+1(x) = sup
||y||≤dt

un(x+ y)− dt
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A geometric intuition of the proposed algorithm

(a) (b)

Figure 3: At a given iteration n, the proposed numerical scheme amounts to ‘regularize’ the value of un at point
x from its value at point y0 such that un(y0) = infy∈B(x,dt) u

n(y) with the property of unitary gradient, (a)
e.g. for a point x at distance dt from ∂Ω, u1(x) = u0(y0) + dt = dt = d(x, ∂Ω). (b) The property of unit
gradient ‘propagates’ from the boundary ∂Ω, near which values of un are ‘regularized’ at an early stage.

Advanced COmputational Methods in ENgineering, Liège November 16, 2011 19



A 2d computational example

Figure 4: Computation of the signed distance function to a discrete contour (left), on a fine background mesh
(≈ 250000 vertices).
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Solving the advection equation with the method of characteristics

We consider the advection equation of a scalar value φ(t, .) over an time period[
tn, tn+1

]
- typically a level set function :
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0 for (t, x) ∈ (tn, tn+1)× Rd

φ(tn, x) = φn(x) if x ∈ Rd
,

where φn is the (known) scalar value at time tn.

We are especially interested in the 0-level set of the advected function φ, and therefore need
to discretize it as a continuous function on the computational domain (⇒ excludes several
finite volume methods, or discontinuous Galerkin methods), e.g. a P1 finite element
function.

‘Classical’ finite element methods are known to behave poorly to solve this equation and
following an original idea of [Pironneau], [Strain], we use the method of characteristics.
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Solving the advection equation with the method of characteristics

The characteristic curve emerging from point x ∈ Rd at time t ∈ (tn, tn+1] is the solution
s 7→ X(s, t, x) to the ODE, for tn < s < t :

dX

dt
(s, t, x) = v(s,X(s, t, x))

X(t, t, x) = x
,

and the solution to the advection equation is provided by the following formula

THEOREM 3 Let v :
[
tn, tn+1

]
×Rd → Rd be of class C1, and assume there exists a constant

κ > 0 such that

∀(t, x) ∈
[
tn, tn+1

]
× Rd, ||v(t, x)|| ≤ κ(1 + ||x||)

Then if the initial state φn is of class C1, the above advection equation admits a unique C1

solution over Rd, which is

∀x ∈ Rd, φ(tn+1, x) = φn(X(tn, tn+1, x))
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Solving the advection equation with the method of characteristics

• Each function φ(tn, .) is approximated by means of a P1-finite element function.

• Given a computed approximation φ̃n of φ(tn, .), one solves, for each node x of the
computational mesh, the ODE for s 7→ X(s, tn+1, x), thanks to a 4th order Runge-
Kutta scheme, and in particular get the foot of the characteristic line X(tn, tn+1, x).

• The required approximation φ̃n+1 for φ(tn+1, .) is then obtained, from the exact for-
mula, as the P1-finite element function such that for each node x of the mesh :

φ̃n+1(x) = φ̃n(X(tn, tn+1, x))

• Convergence results can be quite easily obtained for this numerical scheme. It turns out
to be quite slow, but can be accelerated with higher-order spatial discretization.
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Numerical implementation

• At each iteration, the shape Ωn is endowed with an unstructured mesh T n of a larger,
fixed, bounding box D, in which a mesh of Ωn explicitly appears as a submesh.

⇒ Then, at each iteration, both Ω and cΩ are exactly meshed.

• When dealing with finite element computations on Ωn, the part of T n, exterior to Ωn is
simply ‘forgotten’.

• When dealing with the advection step, a level set function φn is generated on the whole
mesh T n, and the level set advection equation is solved on this mesh, to get φn+1.

• From the knowledge of φn+1, a new unstructured mesh T n+1, in which the new shape
Ωn+1 explicitly appears, is recovered, discretizing the new shape in the previous mesh
T n.
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The algorithm in motion

Start with an initial shape Ω0, and generate its signed distance function over a
computational domain D, equipped with an unstructured mesh.

(a) The initial shape (b) Isolines of its signed distance function
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The algorithm in motion

To compute the velocity field through which the shape is to be evolved, a mesh of the
volume enclosed by the 0 level set of the distance (≈ Ω0) is required ; to this end, this 0

isoline is explicitely discretized in the unstructured mesh of D.

Unfortunately, roughly "breaking" this
line into the mesh generally yields a very
bad-shaped mesh
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The algorithm in motion
A mesh modification step is then performed, thanks to local mesh operators : close points
are collapsed, or added if need be, points are moved to enhance the overall quality of the
mesh according to the geometry of the shape.

(a) Modified mesh of the computational domain (b) Detail on the mesh
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The algorithm in motion
"Forget" the exterior of the shape, and perform the computation of the shape gradient on the
shape.

(a) The ‘interior mesh’ (b) Computation of the gradient
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The algorithm in motion
"Remember" the computational mesh, and advect the shape as the 0 level set of its signed
distance function, computed on the whole computational mesh.

Figure 5: The previous shape, discretized in the mesh (in yellow), and the ‘new’, advected 0-level set (in green).
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The algorithm in motion

Go on as before, until convergence (discretize the 0 level set in the computational mesh,
clean the mesh,...).

(a) The ‘interior mesh’ (b) Computation of the gradient
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Some numerical results
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Some numerical results
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Still a long way to go...

• Application to many other shape optimization problems : different cost functionals
(quadratic difference to a prescribed displacement, Von Mises stress constraints,...), dif-
ferent mechanical models (elastodynamic,...),...

• Extension of the process to 3d : of course, many technical difficulties are expected, but
the whole process has been thought so that such an extension is possible.
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Thank you !

Thank you for your attention !
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