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[Foreword]

Shape optimization is about the minimization of an objective function J(2),
depending on a shape Q of R? or R3, under certain constraints.

Such problems have come up early in the history of sciences, and they are
ubiquitous in nature.

Nowadays, they arouse a tremendous enthusiasm in engineering.

They are at the interface between mathematics, physics, mechanical engineering
and computer science.

Shape optimization is a burning field of research!
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[ Contents]

e The present course is composed of

e 12 lectures, covering the main theoretical aspects;

e A set of appendices, at the end of the slides, where basic notions are
recalled, and topics related to those of the course are broached.

e A set of codes, dedicated to the numerical implementation of basic shape
and topology optimization algorithms, written in FreeFem++.

e All the material for the course (slides of the lectures and commented,
demonstration programs) is available on the webpage of the course:

https://1jk.imag.fr/membres/Charles.Dapogny/coursoptim.html

e For any comment, suggestion or question, do not hesitate to contact either of the
instructors:

eric.bonnetier [AT]Juniv-grenoble-alpes.fr
charles.dapogny [AT]univ-grenoble-alpes.fr

3/64



Part |

Introduction, history and
generalities about shape
optimization

© Some selected milestones in shape optimization
@ Dido’s problem and the isoperimetric inequality

== DA
4



Dido's problem is reported in the myth of the foundation of Carthage by
Pheenician princess Dido, in 814 B.C. (cf. Virgil's Aeneid, ~ 100 B.C.).

Dido fled from Tyr (actual Lebanon) after her husband got murdered by her
brother Pygmalion.

Accompanied by her fellows, she reached the Tunisian shore, where she required a
land from local king Jarbas...

... They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage,

And purchased a site, which was named 'Bull’s Hide' after the bargain

By which they should get as much land as they could enclose with a bull’s hide...

[Virgil, Aeneid]
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W. Turner: “Dido Building Carthage” or “The Rise of the Carthaginian Empire” (1815).
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Using modern terminology:

How to surround the largest possible area A with a given contour length £7

(Left) The solution to Dido's problem in the case where the surrounded domain is limited by
the sea; (right) an “unconstrained” version of Dido’s problem.
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e Without knowing it, Queen Dido had just discovered the isoperimetric inequality:

Let Q C R? be a domain with “smooth enough” boundary 9Q. Let A be the area
covered by Q, and ¢ be the length of 9. Then,

4rA < PP,

where equality holds if and only if Q is a disk.

e Equivalently,

e Among all domains Q C R? with prescribed perimeter, that with maximum
area is the disk.

e Among all domains Q C R? with prescribed area, that with minimum
perimeter is the disk.

e Multiple variants of this problem exist.

Example: One may impose that the boundary of Q should contain a non opti-
mizable region (a segment).
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However intuitive, the first proof of this fact was obtained in 1838 by J. Steiner, ...
but the proof was false! Actually, J. Steiner proved that, assuming that an optimal
shape exist... it should then be a disk.

However, many shape optimization problems do not have a solution, for deep
mathematical and physical reasons.

Only in 1860 did K. Weierstrass complete the proof of the isoperimetric inequality
in two dimensions.

The isoperimetric inequality holds in more general contexts, for instance in three
space dimensions (H. Schwarz, 1884):

Among all domains Q C R*® with prescribed volume, that with minimum
surface is the ball.

9/64



Another occurrence of the isoperimetric inequality

Medieval cities often have a circular shape so as to minimize the perimeter of the
necessary fortifications around a given population (i.e. their area).

Jerusalem & The Jewish National &

Map of Paris during the Dark Ages.
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The quest of architects for optimal design (1)

Structural optimization has long been a central
concern in architectural design.

One crucial step towards modern design: the
Hooke's theorem (1675)

“As hangs the flexible chain, so but inverted will
stand the rigid arch.”

(Left) A chain hanging in equilibrium under the action of gravity and tension forces; (right)
an arch standing in equilibrium under gravity and compression forces.
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e A. Gaudi sketched the plans of the church of the Colonia Giiell (1889-1914) by
relying on a funicular model so as to determine a stable assembly of columns and
vaults.

(Left) Gaudi’s experimental device, (right) model of the Coldnia Giiell (photo credits:

http://www.gaudidesigner.com).
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The quest of architects for optimal design (III)

Since then, optimal design concepts have attracted the attention of world-renowned
architects: Heinz Isler, Gustave Eiffel, Frei Otto, etc.

e They allow to model complex geometric criteria, related to the astethics, the
constructibility, and the mechanical performance of structures.

e Optimized shapes with respect to mechanical considerations have often
“elegant” outlines: their organic nature is very appreciated by architects.

(Left) A soap-film structure, coined by Frei Otto, (right) interior view of the Manheim
Garden festival.
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The quest of architects for optimal design (V)

e Nowadays, modern structural optimization techniques are currently employed for
the design of large-scale buildings.

(Left) Entrance of the Qatar National Convention Center, in Doha [Sasaki et al]. (Right)
Sketch of a 288m high skyscraper in Australia by Skidmore, Owings & Merrill.
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Towards “modern” shape and topology optimization (I)\

e More advanced shape optimization methods
have emerged since the 1960’s, mainly due to

e The development of efficient numeri-
cal tools for simulating complex physi-
cal phenomena (notably the finite element
method);

e The increase in computational power.

o One of the first fields involved is aeronautics,
where engineers were motivated to optimize
airfoils so as to

e Minimize the drag of aircrafts;

o Increase their lift.

An airfoil subjected to the reaction of air
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Towards “modern” shape and topology optimization (II)‘

Concurrently, such computer-aided methods have aroused a great enthusiasm in civil
and mechanical engineering.

Optimization of a torque arm (from

)

Optimization of an arch bridge (fom )
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e Since then, much headway has been made in the mathematical and algorithmic
practice of shape and topology optimization.

e Nowadays, shape and topology optimization techniques are consistently used in
industry in a wide variety of situations.

e Several industrial softwares are available: OptiStruct, Ansys, Tosca, etc.

Optimization of a hip prosthesis (photo credits: [41))

Optimization of an automotive chassis

(from )
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Disclaimer

e This course is very introductory, and by no means exhaustive, as well for
theoretical as for numerical purposes.

e See the (non exhaustive) References section to go further.
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e A typical shape optimization problem arises under the form:

Qrgzlzd J(Q), sit. C(Q) <0,

where

e Q is the shape, or the design variable;
e J(R) is an objective function to be minimized;
e ((R) is a constraint function;

e Us,q is a set of admissible shapes;

e In this course, the considered problems are motivated by mechanical or physical
applications; J(2) and C(2) often depend on  via a state ug, solution to a PDE
posed on Q (e.g. the linear elasticity system, or the Stokes equations).
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e A shape optimization process is the combination of:
e A physical model, often based on PDE (e.g. the linear elasticity equations,
the Stokes system, etc...) describing the mechanical behavior of shapes,

e A mathematical representation of shapes and their variations (e.g. as sets of
parameters, density functions, etc...),

e A numerical description of shapes (e.g. by a mesh, a spline model, etc...)

e These choices are strongly inter-dependent and they are often guided by the
particular application.

e Roughly speaking, shape and topology optimization problems fall intro three main
categories: parametric, geometric and topology optimization.

e This classification is quite arbitrary; it mainly reflects a point of view about what is
important in the problem. The associated mathematical and numerical methods
share a lot of common features.
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‘ |. Parametric optimization

The considered shapes are described by means of a set of physical parameters
{pi}i—1 . n» typically thicknesses, curvature radii, etc...

.
N/
AN

Description of a wing by NURBS; the parame- A plate with fixed cross-section S is
ters of the representation are the control points parametrized by its thickness function h :
S =R

Pi-
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e The parameters describing shapes are the only optimization variables, and the
shape optimization problem rewrites:

min  J(p1, ..., ,
T (P1, - PN)

where P.q is a set of admissible parameters.

e Parametric shape optimization is eased by the fact that it is straightforward to
account for variations of a shape {p;},_;

{Pi}i:1,A.A,N = {pi+ 5pi}i:1,m,N'

e However, the variety of possible designs is severely restricted, and the use of such
methods relies on an a priori knowledge about the sought optimal design.
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Il. Geometric shape optimization ‘

e The topology of shapes (i.e. their number of
holes in 2d) is fixed.

e The whole boundary 99 of shapes Q is the
optimization variable.

o Geometric optimization allows for more free-

dom than parametric optimization, since no

a priori knowledge of the relevant regions of

shapes to act on is required. Optimization of Q via “free” pertur-
bations of the boundary 9%Q.
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I1l. Topology optimization

e In many applications, the suitable topology of Q Q

shapes is unknown, and it should also be subject

to optimization. Q Q

e In this context, it is often preferred not to represent %
the boundaries of shapes, but to employ different
descriptions which allow for a more natural account Q Q
of topological changes. Q Q
Describing shapes Q as density func- Q Q

tions h: D — [0, 1].
Optimizing a shape by acting on
its topology.
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A simplified, academic example (1)

A cavity D C R? is filled with a material with ther-
mal conductivity h: D — R.

e A region 'p C OD is kept at temperature 0.
e A heat flux g is applied on 'y := 8D \ Tp.

e A heat source or sink f : D — R is acting
inside D.

The temperature up : D — R within the cavity is
the solution to the conductivity equation:

—div(hVu,) = f in D,
up = 0 on FD,
h% = g only.

Parametric optimization problem: the design vari-
able is the conductivity distribution h € U,q, where

Usa = {h € L®(D), a < h(x) < B, x € D}.

\\W/}//

PN

f

TN

The considered cavity
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Examples of objective functions: ‘

e The compliance C(h) of the cavity D:

C(h):/h|Vuh\2dx:/fuhdx+/ gun ds,
D Q Iy

measuring the heat power inside D, or the work of the heat sources on D.

e A least-square error between u, and a target temperature uo:
1

D(h) = </D k()| un — to |“dx> -

where « is a fixed parameter, and k(x) is a weight factor.

e The opposite of the first eigenvalue of the cavity:
h|Vul? dx
—A1(h), where \i(h) = min 22—
ueH(D) 2
u=0onTlp u dX
Q
which characterizes the decay rate of the heat inside D in the transient version of
the conductivity equation.
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This problem has a geometric optimization variant,
where the conductivity inside D takes

e A high value § inside a region Q C D;
o A low value « inside D\ Q;

that is:
hQ - OC+XQ(B —Oé),

where xq is the characteristic function of Q.

The temperature ug : D — R is the solution to the
conductivity equation: /
—div(hqVug) = f inD,
uo = 0 on rD,

hQ% = on FN.
on & The two-phase conductivity

Geometric optimization problem: the design vari- setting
able is the geometry Q of the good conducting
phase.
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We consider a structure Q C RY, that is, a bounded

domain which is

e Fixed on a part ['p C 90 of its boundary,

e Submitted to surface loads g, applied on 'y C 99,

roNly =0.

The displacement vector field uq : Q — RY is governed
by the linear elasticity system:

—div(Ae(uq)) =
Ae(UQ)n =

Ae(uq)n =

0
0

g
0

in Q,

on FD,

on r/\/,

on:=0Q\ (TpUTly),

where e(u) = 1(Vu" + Vu) is the strain tensor field,
and A is the Hooke's law of the material.

A “Cantilever” beam

The deformed cantilever
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Examples of objective functions: ‘

e The work of the external loads g or compliance C(§2) of domain :
Q) = / Ae(ug) : e(ug) dx = / g.uq ds
Q Ty

e A least-square discrepancy between the displacement ug and a target displacement
uo (useful when designing micro-mechanisms):

1

D) = ( [ K)lun o °ax) "

where « is a fixed parameter, and k(x) is a weight factor.
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Shape optimization in structure mechanics (I11)

Examples of constraints: ‘

e A constraint on the volume Vol(f2), or the perimeter Per(§2) of shapes.

Vol(Q):/dx, Per(Q2) = ds.
Q 20

e A constraint on the total stress developped in shapes:
S@ = [ flo(ua) " ax,
where o(u) = Ae(u) is the stress tensor.

e Geometric constraints, e.g.

e Constraints on the minimal and maximum thickness of shapes;

e Constraints on their curvature radii;

such constraints are often imposed by the manufacturing process.
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An incompressible fluid with kinematic viscosity  occupies a domain Q C R9.
e The flow v, through the input boundary I, is known.
e A pressure profile pout is imposed on the exit boundary [out.

e No slip boundary conditions are considered on the free boundary
89 \ (rin U rout)-

The velocity ug : © — RY and pressure pq : Q — R of the fluid satisfy the Stokes

equations:
—2vdiv(D(u))+Vp=1f inQ

div(u) =0 in Q

U = Uin onlin
u=20 onl
o(u)n = —pout on MNout

where D(u) = 2(Vu" + Vu) is the rate of strain tensor.
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Model problem I: | Optimization of the shape of a pipe.

e The shape Q is a pipe, connecting the (fixed)
input area N, and output area Nout. in

%l“%
~

e One is interested in minimizing the total work r
of the viscous forces inside Q:

J(Q) = 21//Q D(uq) : D(uq) dx.

e A constraint on the volume Vol(2) of the pipe
is enforced.
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Model problem Il: | Reconstruction of the shape of an obstacle.

e An obstacle of unknown shape w is immersed in a fixed domain D filled by the
considered fluid.

e Given a mesure Umeas Of the velocity ug of the fluid inside a small observation area
O, one aims at reconstructing the shape of w.

e The optimized domain is Q := D \ @, and only the part dw of 9Q is optimized.
One then minimizes the least-square criterion:

J(Q) = / |uq — Umeas|® dx.
o

el Q
—>

>
r n > w @
>
>
>
>
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Optimization of the shape of an airfoil: reducing the drag acting on airplanes
(even by a few percents) has been a tremendous challenge in the aerodynamic
industry for decades.

Optimization of the microstructure of composite materials: in linear elasticity, one
is interested in the design of negative Poisson ratio materials, etc...

Optimization of the shape of wave guides (e.g. optical fibers), in order to minimize
the power loss of conducted electromagnetic waves.

etc...
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From the modeling viewpoint: difficulty to describe the physical problem at stake
by a model which is relevant (thus complicated enough), yet tractable (i.e. simple
enough).

From the theoretical viewpoint: often, optimal shapes do not exist, and shape
optimization problems enjoy at best local optima.

From both theoretical and numerical viewpoints: the optimization variable is the
domain! Hence the need for of a means to differentiate functions depending on the
domain, and before that, to parametrize shapes and their variations.

On the numerical side: difficulty to represent shapes and their evolutions.

On the numerical side: shape optimization problems may be very sensitive and can
be completely dominated by discretization errors.
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Appendix: physical models

» El= 9ad®
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Elasticity is the ability of a structure €2 to resist an input stress, and to return exactly
to its original state when the stress is relieved (# plasticity or fracture).

The motion of an elastic shape Q is de-
scribed by:

e The deformation ¢ : Q — ¢(Q);

e The displacement u(x) = ¢(x) — x.

Lagrangian point of view: the considered quantity is the motion u(x) of the
constituent particles x of the structure at rest Q, which serves as reference.
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The Cauchy-Green strain tensor C(x) measures how ¢ distorts lengths.

A curve (0,1) 3 t — ~(t) € Q with length

o) = / I (8)ldt;

is transformed into t — ¢(y(t)), with length:

() = / VCEOW (@) (@) dt, ¢
where
Cx) = (Vo) (Vo))

(I+ Vu(x)) (I + Vu(x)).
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Geometric linearity ‘ Assuming that the displacement u is “small”, one approximates:

C(x) = T+ Vu(x) + Vu' (x).

e The linearized strain tensor

e()(x) = 5(Vu(x) + Vo' (x))

then satisfies:

o) =)+ [ (@& 2o ae

e In the usual Cartesian coordinates, e(u) is defined by:

_ 1 (9y du; ..
e(u)iajfz(ale.%_axl. ’ 171*17"'70"
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The stress tensor

e The stress tensor o encodes the internal efforts
within the body.

e For x € Q, n € R? with |n| = 1, o(x)n € R? is
the force applied by the surrounding medium on
the face oriented by n of a small cube around x.

e Cauchy’s theorem: as a consequence of balance of
momentum, o(x) is a d X d symmetric matrix.

03,3

€2 /
€1 & ol

ST

The diagonal entries of o account for traction and

. The off-diagonal entries of o account for shear effects.
compression forces.
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The equilibrium equations relate internal efforts with external stresses.

If body forces f : @ — RY (e.g. gravity) occur, it holds, for any subset V C Q,

/ o-nds + /fdx =0,
av v
—_——— ——

Efforts applied on 8V  Body efforts within V

and so, using Green's formula:

/ (div(e) + f)dx = 0.
v

Since the latter relation holds for any subset V C €, it follows:

‘ —div(c) =f in Q. ‘

Likewise, if external forces (e.g. traction loads) g : 9Q — R are applied, it holds:

‘ on= g on 0. ‘
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e The system of equations is completed with a constitutive relation between the
stress tensor o and the strain tensor e(u), which describes, equivalently,

e The deformation of a piece of material caused by a given stress;
e The internal stress induced by an imposed deformation.
e Material linearity: o depends linearly on e(u), via the Hooke's law:

o = Ae(u).

A
g ultimate stress
yield stress
fracture
Lingar Strain Necking
elagticity hardening
&
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The constitutive relation (I1)

The Hooke's law A of an isotropic material reads:
Ve € S4(R), Ae =2ue+ Atr(e)l.

where the Lamé parameters A, u are related to the more physical quantities E and v:

-_E and \ = Ev
F=2a+wy T A+ —d)
e The Young's modulus
E=0c/L g L

measures the resistance to defor-
mation under traction; |:||>

e The Poisson's ratio AN

v=—l/L

accounts for the relative transverse
displacement for a given longitudi-
nal deformation.
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In most concrete situations,

e The elastic shape Q is attached on a Tp
region I'p of its boundary;

e Body forces f : Q — R? are at play;

e Surface loads g : Ty — R? are applied
on a region 'y C 09,

e The remaining region ' := 9Q \ (Tp U
I'n) of OQ is traction-free.

The displacement u : Q — RY of the shape in this context is the unique solution (in
H(2)?) to:
—div(Ae(u)) =f in Q,
u=20 on [p,
Ae(u)n=g on Iy,
Ae(u)n =0 on TI.
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e A fluid medium is characterized by its inability to resist a permanent shear stress.

e Eulerian description: one looks at the properties inside the fluid domain Q at all
positions x, independently of the attached particle (the latter may change).

e We focus on the steady-state Stokes equations; see for more advanced
models: time-dependent, Navier-Stokes equations, turbulence phenomena, etc.

The state of the fluid is described in terms of

u(z)
e The velocity u: Q — R, /
e The pressure p: Q — R inside the fluid. ;:7\'{5—
)
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Two important quantities related to the velocity of the fluid are:
e The rate of strain tensor:
1
D(u) = E(Vu +vu').

e The vorticity w is a scalar field if d = 2, and a vector field if d = 3:

_6U2 8U1. .
(IJ—TXl ailefd—2,

w:wu:(%_% %_%,%_%) i d— 3.

Physical interpretation: ‘ A Taylor expansion around x € Q yields (for d = 3):

1
u(x + h) = u(x) + D(u)(x)h + Ew(x) x h+ (’)(\h|2);
e The transformation h +— D(u)(x)h induces a stretching of lengths encoded by
the eigenvalues of the symmetric matrix D(u);

e The mapping h — w(x) x h is a rotation with axis ‘58‘ and velocity |w(x)].
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e As in the case of elasticity, the balance of momentum at equilibrium implies that:

‘ —div(o) = f in Q, ‘

where:

o o: 0 — R¥ s the stress tensor;

o f:Q — R? represents volumic forces (e.g. gravity).

e The fluid is assumed to be incompressible: at equilibrium, the mass contained
inside each subset V C Q is conserved:

/u~nds:0,
%

and so, by virtue of Green's formula:

\ div(y) =0 in Q.
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The stress tensor o is related to the characteristics u, p of the fluid via Newton's law:

‘ o =2vD(u) — pl. ‘

Here,

e The viscous forces 2vD(u) are frictional, slowering effects, proportional to the
variations of the velocity within the fluid, via the viscosity coefficient v.

e The pressure p induces a normal stress on every region of Q.

u(r + €e3)
T +ce3 §
——. —p(w)es
a es <
u(x)
€2
el |2
—p(z)er
The difference between the velocity at x and x + ce3
causes a friction force at x, proportional to the viscosity Pressure forces act in a normal fashion.

of the fluid.
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In most practical situations,
e The fluid is subjected to internal forces f : Q — R

e The fluid enters the domain Q via the region I';, C 99, with a known velocity
profile uin : Fin — RY:

e The fluid leaves Q through the region oyt C 9, with no applied stress;

e The fluid satisfies no slip boundary conditions on the remaining region
IM:=0Q\ (Tin UTlout), i.e. the fluid “sticks” to the wall.

The Stokes equations read in this context:

—2vdiv(D(u))+Vp=1f inQ,

div(u) =0 in Q,
O'(U)n =0 on rt:;uty
u = Uin on rin7

u=20 on I.
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Appendix: technical facts

» El= 9ad®
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Let Q be an open subset of RY;

e The gradient of a (differentiable) real-valued function u : Q — R is the vector field:
Fa(x)
Vx € Q, Vu(x) = :

B (%)

e The derivative of a vector-valued function v : Q — R at x € Q is the matrix
(tensor) field:

g—g(x) g—;;(x)

Vx €Q, Vv(x) =

9 . . 9
Qax) ... agg(x)
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e The divergence of a vector field v : Q@ — R is the function:
Vx € Q, div(v)(x) tr(Vv(x))
Vd

8V1 3

e The divergence of a tensor field o : Q — R¥*?

is the vector field whose entries are
the divergences of the rows of o:

doi11

9,
oL+

91d
Oxy4

Vx € Q, div(o)(x) =

dog1 9o g4y
Ox1 +ot Oxy
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| The Green's formula|

The Green's formula is a generalization of integration by parts to the case of multiple
space dimensions.

Theorem 1 (Green'’s formula).

Let Q C R? be a bounded, Lipschitz domain. Then, for any function u € Wh(Q),

/@dx:/ unids, i=1,....d,
o Oxi a9

where n = (n1,...,nq) is the unit normal vector to 92, pointing outward Q.

The Green's formula has a number of useful avatars, such as:

Let Q C R? be a bounded, Lipschitz domain. Then, for any u € H*(Q), v € H*(Q):

/Auvdxz/ @vds—/Vu-Vvdx.
Q an On Q
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