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[Foreword]

e In this lecture, we focus on parametric optimization, or optimal control:

e The shape is described by a set h of parameters, lying in a fixed vector space.

e The state equations, accounting for the physical behavior of the shape,
depend on h in a “simple” way.

e Many key concepts and methods of the course can be exposed in this framework,
with a minimum amount of technicality.

An elastic plate can be described by its height h: S — R with respect to a fixed cross-section S.
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Part |l

Optimal control and
parametric optimization
problems

@ Parametric optimization problems
@ Presentation of the model problem
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A model problem involving the conductivity equation (1)

\\&i//):(/

e We return to the problem of optimizing the ther-

mal conductivity h: D — R. I'p A;
“r_-
e The temperature uy is the solution in H*(D) to :ﬁ
the “state”, conductivity equation: -
-—
—div(hVu,) = f inD, -—

up = 0 onTp, ~Z

h9un = g onTly, {\

where f € L?(D) and g € L*(Ty). TTN\\

The considered cavity

e The set Unq of design variables is:
Ung = {h € L®(D), a<h(x)<fBae x€ D} c L=(D),

where 0 < a < 3 are fixed bounds.
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We consider a problem of the form:
,min J(h), where J(h) = /Dj(uh) dx,
and j : R — R is a smooth function satisfying growth conditions:

Vs € R, |j(s)|< C(L+[s|*), and j'(s) < C(1+[s]).

Many variants are possible, e.g. featuring constraints on h or up.

In this simple setting,

e The state up is evaluated on the same domain D, regardless of the actual
value of the design variable h € Uaq;

e The design variable h acts as a parameter in the coefficients of the state
equation.

Even in this case, the optimization problem has no (global) solution in general...
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@ Parametric optimization problems

@ Non existence of optimal design

o (=) = E == DA
3



Non existence of optimal design (I)

e This counter-example is discussed in details in §5.2.
o The defining domain is the unit square D = (0,1).

e We consider two physical situations:

—div(hVup1) =0 in D, —div(hVup2) =0 in D,
ha%‘ =e-n inTyg, and hZ42 — g in Ty,1,
h%i — 0 in T2, h%%2 —e.n  in Ty
< Uh,1 l«— Uh,2
< le—
Ina 4_4— 4_4—
- «—
D D 3 Di— D
i

(Left) Boundary conditions, (middle) boundary data for uy, 1; (right) boundary data for uy ».

7/73



The optimization problem of interest in this example is:

2, /)

where the considered objective function is:
n,2

J(h) :/ €1 NUup1 ds — €2 NUp2 dS,
M1

and the set Uaq of admissible designs encompasses a volume constraint:

a<h(x)<ﬂa.e.x€D,}

L{ad:{heL“(D), I hdv— vr
hdx =

In other terms, one aims to

e Minimize the temperature difference between the left and right sides in Case 1.

e Maximize the temperature difference between the top and bottom sides in Case 2.
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The parametric optimization problem hmlin J(h) does not have a global solution. J
€Uaa

Hint of the proof: The proof comprises three stages:

Step 1: One calculates a lower bound m on the values of J(h) for h € Uaa:

Vh € Uaa, J(h) > m.

Step 2: One proves that this lower bound is not attained by an element in Uaq:

Vh € Upa, J(h) > m.

Step 3: One constructs a minimizing sequence of designs h" € Uaq:

n—oo

J(A") —= m.

Hence, m is the infimum of J(h) over Uaq but it is not attained by any h € Uaq.
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The minimizing sequence is constructed as a laminate, i.e. a succession of layers with
maximum and minimum conductivities.

Two elements in a minimizing sequence h" of conductivities.

Homogenization effect: | To get more optimized, designs tend to create very thin

structures, at the microscopic level.
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e In general, shape optimization problems, even under their simplest forms, do not
have global solutions, for deep physical reasons.

e See for many such examples of non existence of optimal design in optimal
control problems.

e To ensure existence of an optimal shape, two techniques are usually employed:

e Relaxation: the set U,q of admissible designs is enlarged so that it contains
“microscopic designs”’. This is the essence of the Homogenization method for
optimal design

e Restriction: the set Ua,q is restricted to, e.g. more regular designs.

e In practice, we shall be interested in the search of local minimizers of such
problems, which are e.g. “close” to an initial design inspired by intuition.
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Optimal control and
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problems

@ Parametric optimization problems

o Calculation of the derivative of the objective function
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Derivative of the objective function (I)

Let us return to our (further simplified) problem:
i h
20, /)
where

J(h) = [ un) a,
D
the set of admissible designs is:
Una = {h €L®(D), a < h(x)<Bae xe D},
and the temperature uy is the solution in Hg (D) to:

—div(hVuy) = f inD,
U = 0 ondD.

Again, for simplicity, we omit constraints on h or us.
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For a fixed design h € Uaa,

e One variational formulation characterizing up is:

Search for up € Hy(D) s.t. Vv € Hg(D), / hVup - Vvdx = / fv dx.
D D

e This problem has a unique solution vy € HZ(D), which satisfies:
lunllz o) < ClIflliz(p),

for some constant C > 0, owing to the Lax-Milgram theorem.
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To solve this program numerically, we intend to apply a gradient-based algorithm:

Initialization: Start from an initial design h°,
For n =0, ... convergence:

Calculate the derivative J'(h") of the mapping h+— J(h) at h = h";

Identify a descent direction h” for J(h) from h", i.e. a direction such
that J'(h")(h) < 0;

Select an appropriate time step 7" > 0;

Update the design as: A"t = h" + 7"A".

e The cornerstone any such method is the calculation of the derivative of J(h).

e This task is uneasy since J(h) depends on h in a complicated way — via the
solution uy to a PDE whose coefficients depend on h.
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Derivative of the objective function (V)

Theorem 2.

The objective function
J(h) = / () dx
D
is Fréchet differentiable at any h € U,q, and its derivative reads

Vh € L>(D), J’(h)(ﬁ):/ (Vun - Vpn)hdx,

where the adjoint state p, € H3(D) is the unique solution to the system:

—div(hVps) = —j'(us) in D,
pn=20 on dD.

=} (=) = E El= DAl
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Proof: The proof is divided into three steps:

Using the implicit function theorem, we prove that the state mapping
Uaa D h—> up € Hy(D)

is Fréchet differentiable, with derivative h u;,(ﬁ)

(Here the fact that all the u, belong to a fixed functional space is handy)
We calculate the derivative of J(h) by using the chain rule.

We give a more convenient structure to this derivative, introducing an adjoint
state pj, to eliminate the occurrence of wj(h).

Step 1: Differentiability of h — up:

For any h € Uaa, up is the unique solution in Hg (D) to the variational problem:

Yv € Hy(D), /thhldex:/ fv dx.
D D
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Let
F : Uaa x Hy(D) = H (D)
be the mapping defined by:

F(h,u):vH/thVvdx—/fvdx.
D D

One verifies that
e F is a mapping of class C!;
e For given h € Uaa, up is the unique solution u to the equation

F(h,u)=0.

e The differential of the partial mapping u — F(h, u) reads:

H5(D) > i+ [v0—> / hVL?Vvdx} € H (D).
D

It is an isomorphism, owing to the Lax-Milgram theorem:

For all g € H™*(D), there exists a unique u € Hg(D) s.t.

Vv € Hy(D), / hVu - Vv dx = (g, V) y-1(p),m3 (0)-
D
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The implicit function theorem guarantees that the mapping h — uj, is of class C*.

To calculate the derivative h u;,(/i;) we return to the variational formulation for us:
Vv € Hy(D), / hVup, - Vv dx :/ fv dx.
D D
Differentiating with respect to h in a direction he L*(D) yields:
/ hVup - Vv dx + / hVup(h) - Vv dx =0,
D D

and so, for all h € L>°(D), uj(h) is the unique solution in H&(D) to:

Vv € H}(D), /th;,(ﬁ)-vV dx = —/ hVup - Vv dx.
D D
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Step 2: Calculation of the derivative of J(h):

Since h +— uy is of class C', the chain rule yields immediately:

Vh e L=(D), J’(h)(F):/D/(uh)u;(ﬂ)dx.

e This expression is awkward: the dependence h s J'(h)(h) is not explicit and it
is difficult to find a descent direction, i.e. a vector h € L>°(D) such that:

J(h)(h) <o0.

e Fortunately, the expression of J'(h) can be simplified thanks to the introduction
of the adjoint state pp.
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Step 3: Reformulation of J'(h) using an adjoint state:
The adjoint state py is the unique solution in H3(D) to the variational problem:

Vv € Hg(D), /thph -Vvdx = —/Dj’(uh)vdx,
to be compared with the variational formulation for uj(h) € HZ(D):
Vv € H(%(D)7 /DhVu;,(/f;) -Vvdx = _/D/HVUh - Vv dx.
Then, we calculate:
S = [ B ax
= —/ hVpp - Vu;,(z) dx,
— /D hVuf,(E) - Vpp dx,

D
= / AV up - Vppy dx.
D

where the last line uses the variational formulation of u,'v(ﬁ) with pj as test function.
(I
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e The adjoint state pj satisfies

—div(hVpr) = —j’(us) in D,
ph=20 on 9D.

It is therefore a "virtual temperature” driven by a source (or sink) equal to the rate
of change of the integrand of J(h) at the state described by up.

e From the last expression, one obviously obtains a descent direction:
h=—Vu,-Vp, = J(h)(h) <0,

which can be interpreted as the power induced by the "virtual temperature” pp.

e We shall see soon a second interpretation of pj as the Lagrange multiplier
associated to the PDE constraint if we formulate our optimization problem as:

. . —div(hVu) =f in D,
iy [ axse { TS 00,

22/73



Part |l

Optimal control and
parametric optimization
problems

@ Parametric optimization problems

@ The formal method of Céa
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The method of Céa is a formal way to calculate the derivative of J(h). It assumes
that the mapping h +— uj, is differentiable.

Let the Lagrangian
L : Uaa x Hy(D) x H3(D) = R

be defined by:

L(h,u,p) = /Dj(u)dx + /DhVu~Vpdxf/Dfpdx

Objective function at stake Enforcement of the PDE constraint —div(hVu)=f
with a Lagrange multiplier p

In particular, for any p € H3(D),

| () =L(hunp) |

For a given h € Uaq, we search for the saddle points (u, p) of L(h,-,-).
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e Imposing the partial derivative of £ with respect to p to vanish amounts to

Vp € Hy(D), /hVu~Vﬁdx—/ fpdx =0;
D D

this is the variational formulation for u = up.

e Imposing the partial derivative of £ with respect to u to vanish amounts to
Vi € Hy(D), /th-Vﬁdx: —/j’(u)ﬁdx;
D D

since u = ujy, we recognize the variational formulation for p = ps.
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Recall that, for arbitrary p € H3(D),
J(h) = L(h, up, p).

Since we have assumed that h — uy is differentiable, the chain rule yields:
/ R aﬁ ~ T 8£ ~.
S (h)(h) = 5 (hy un, B)(h) + 5= (h, un, B)(un(h)).

Now taking p = pp, the last term in the above right-hand side vanishes:

(B = 2 un, ) (B).

The above derivative is the derivative of the mapping h — [, hVu - Vpdx
evaluated at u = up and p = pp:

J(h)(h) = /DFVuh - Vph dx.
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Physical intuition: The function J(h) is “twisted” into the value L(h, uy, py) at the
parametrized saddle point (up, pn), which is easy to differentiate with respect to h.
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© Numerical algorithms
@ A refresher about the finite element method
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e As a model problem, we consider the Laplace equation:

Au=f inD,

) _
Search for u € Hy(D) s.t. { u=0 on D,

where f € L?(D) is a given source.

e The associated variational formulation reads:

‘ Search for u € V sit. Vv eV, a(u,v)=£(v), ‘

where
e The Hilbert space V is the Sobolev space H3(D);

e a(-,-) is the coercive bilinear form on V given by: a(u,v) = / Vu-Vvdx;
D
e /(-) is the linear form on V defined by: ¢(v) = / fv dx.
D

e The above variational problem has a unique solution v € V owing to the
Lax-Milgram theorem.
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e The finite element method consists in searching for an approximation uj, to h
inside a finite-dimensional subspace V,, C V.

e The exact variational problem is replaced by:

Search for u, € V,, s.t. Vv, € \/h7 a(uh, Vh) = K(Vh)7 ‘

which is also well-posed owing to the Lax-Milgram theorem.

e The subscript h refers to the sharpness of the approximation: as h — 0, it is
expected that Vj, = V and up =~ u.
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Meshing the physical domain (I)

In practice, the domain D is discretized by means of a mesh T, i.e. a covering by
simplices (triangles in 2d, tetrahedra in 3d).
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A mesh T is defined by the datum of:
o Aset of vertices {ai},_;

o A set of (open) simplices {Tj},_; ., with vertices in {a;}.

We also require that the mesh 7 be:
e Valid: For all simplices T;, T; with i #£j, ;N T; = 0.

e Conforming: For all simplices T;, T}, the intersection TN f is either a vertex,
or an edge, or a triangle (or a tetrahedron in 3d) of 7.

Valid, conforming mesh Non conforming mesh Invalid mesh
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Meshing the physical domain (I11)

e It is often crucial in applications that 7 have good quality, i.e. that its elements
be close to equilateral.

e The quality of a simplex T, with edges a; can be evaluated e.g. by the function:
Vol(T)

d(d+1)/2 s
> lai?
j=1

where o € R is such that Q(T) =1 if T is equilateral and Q(T) =0 if T is flat.

QIT)=«

)

Bad quality mesh, with nearly flat elements Good quality mesh, with almost regular elements
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e In the finite element context, the mesh 7y, is labelled by the size h of its elements.

e The finite element space V}, and its basis {1, ..., ¢, } are defined according to 7.

Example: the Py Finite element method ‘

o Ny is the number Nt of simplices Tq, ..., Ty, in the mesh;

e Fori=1,..., Ny, ;i is constant on each simplex T € 7, and

pi(x)=1on T; and pi(x) =0 for x & T;.
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Example: the P; Finite element method ‘

o Ny is the number Ny of vertices ay, ..., an, of the mesh;

e Fori=1,..., Ny, ;i is affine in restriction to each triangle T € 7 and

wi(ai) =1 and @i(a;) = 0 for j # i.

‘.1. .
"v \4AVA —
7 ‘444




Introducing the (sought) decomposition of the (sought) function u, on this basis:

Ny
Un = E ujpj,
j=1
the variational problem becomes an Nj, x Nj, linear system:

KU =F,

where

o U= is the vector of unknowns,
up,
e K is the stiffness matrix, defined by its entries:
Ki = a(pj,¢i), ij,=1,..., Ny;
e F is the right-hand side vector: F; = £(y;).
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The finite element method in a nutshell (I1)

Resolution of the Laplace equation with the finite element method on several domains D,
using various meshes T .
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In practice, the discrete finite element system
KU=F

is a large N x Nj linear system, which is sparse.

In realistic examples, its resolution can only be achieved thanks to iterative
methods, such as the Conjugate Gradient algorithm, GMRES, etc.

The numerical efficiency of such methods depends on the condition number of the
matrix K, which is directly related to the quality of the computational mesh.

The resolution of this system can also take advantage of recent Domain
Decomposition methods.

In shape optimization algorithms, such systems have to be solved multiple times:
this is the main source of computational burden.
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Final remarks about the finite element method ]|

e The Finite Element paradigm extends (with some work!) to various frameworks:

e Mixed variational formulations, like in the case of the Stokes equations;
e Eigenvalue problems;

e Non linear PDE, such as the Navier-Stokes equations, or the non linear
elasticity system.

e To go further, see the introductory and reference monographs and
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Definition 1.

Refresher: differential and gradient (1)

F(u+v)=F(u)+ F'(u)(v) +o(]|v|]), where

Let (X, || - ||x) be a Banach space. A real-valued function F : X — R is differentiable
at u € X if there exists a linear, continuous mapping F'(u) : X — R such that:

The linear mapping F'(u) € X* is the differential, or Fréchet derivative of F at u.
Definition 2.

o(llvll) v-o,
VIl

allows to identify the derivative F'(u) with an element VF(u) € H:
VF(u) is called the gradient of F at u.

If in addition X is a Hilbert space (H, (-, )n), the Riesz representation theorem

Yv e H, F'(u)(v) = (VF(u),v)u;




Refresher: differential and gradient (I1)

Physical interpretation: | If F is differentiable at u € H, it holds, for “small” 7 > 0:

VueH, ||ullp <1, F(u+70) F(u)+ 7(VF(u),u)n,

F(u) +7lIVF(u)lln,

where equality holds if and only if T = W (Cauchy-Schwarz inequality).

INQ

= VF(u) (resp. —VF(u)) is the best ascent (resp. descent) direction for F from u.

-4 3036E-02 2.1219E-01

| —— |
-1.7965E-01 8.1577E-02 3.4280E-01

Some isolines of a function F : R*> — R and the gradient VF(u) € R? at some point u € R?.

=} (=) = E == DA
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In a Hilbert space H, we consider the unconstrained minimization problem:

min J(h),

where J(h) is a differentiable function.

Initialization: Start from an initial design h°.
For n =0, ... convergence:

Calculate the derivative J'(h") of J at h" and the gradient VJ(h") € H;
infer a descent direction h" = —VJ(h").

Take a suitably small time step 7" > 0 such that:
J(h" +7"hn) < J(h").

The new iterate is A" = h" + 77 hn.

Return: A".
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The gradient algorithm (I1)

.

VJ(h™)
>\'/ 14 v =
H — »__,__,_.,.-»-’-’:_-:If”/_' v )
=T — "V (")

The gradient algorithm proceeds by successive steps in the negative direction of the gradient of J(h).
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Let us now consider the equality-constrained problem

min J(h) s.t. C(h) =0,

where J: H— R and C : H — R are differentiable.

One possibility is to replace this problem with the unconstrained one:

min J(h) +¢C(h),

where J(h) is penalized by the constraint C(h), using a fixed weight £ > 0.

In practice, the “suitable” value £* for ¢, i.e. that driving the optimization process
to the desired level of constraint C(h) = 0, is estimated after a few trial and errors.

This value £* can be interpreted as the Lagrange multiplier associated to the
constraint C(h) = 0 at the obtained local minimum.
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The augmented Lagrangian algorithm reduces the resolution of a constrained
optimization problem to a series of unconstrained ones, with updated parameters.

Initialization: Start from an initial design h°, initial parameters ¢°, b°.
For n =0, ... convergence:

Solve the unconstrained optimization problem:
. n b" 5
min J(h)+£"C(h) + 7C(h) ,
starting from h" to obtain h™™.

Update the optimization parameters via:

ab” if b < bmax,

n+l __ yn n n 1 —
£ =0"+b"C(h"), and """ = { b"  otherwise.

e (" and b" are updated so that the constraint C(h) = 0 holds at convergence;
e (" converges to the optimal Lagrange multiplier for the constraint C(h) = 0;
e b" is a weight for the quadratic penalization of the constraint function C(h).
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The following "“pragmatic” version involves fewer (costly) evaluations of J(h), C(h),
and the derivatives J'(h), C'(h).

Initialization: Start from an initial design KO, initial parameters °, B°.
For n =0, ... convergence:

Calculate a descent direction A for the functional:

hs L(h,£",b") := J(h) +£"C(h) + %"C(h)z.
Select a suitably small time step so that:
L(h"+7"hn, 0" b") < L(h",€", b").
Update the design via:
At = 0" e,
Update the optimization parameters via:

Oébn |f b < bmaX7
b"  otherwise.

£n+1 — Kn + an(thrl)’ and bn+1 — {
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We solve the optimization problem:

min J(h), where J(h) :/j(uh) dx+ﬁ/ hdx;
D D

hElUpq
in there:
e The set Unq is: Uaa = {h € L°(D), a < h(x) < B a.e. x € D};

e A constraint on the high values of h is added by a fixed penalization.

A basic projected gradient algorithm then reads:

Initialization: Start from an initial design h°,

For n =0, ... convergence:
Calculate the state upn and the adjoint pyn at h = h";
Calculate the descent direction h" = —Vujn - Vpw — L.

Select an appropriate time step 7" > 0;

Update the design as: "' = min(3, max(a, h” + T"/I;”)).
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In practice,

e The domain D is equipped with a fixed mesh 7, composed e.g. of triangles.

e The optimized conductivity h is discretized on this mesh, e.g. as a Py or P,
finite element function.

e For a given value of h, the solutions u, and pp to the state and adjoint
equations are calculated by the finite element method on the mesh 7.
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One first example: the optimal radiator (1)

We consider the problem:

,nin J(h), where J(h) = /

uhdx+Z/ hdx,
D D

the temperature u, € Hy(D) is the solution to:
—div(hVuy) =1 in D,
u, =0 on OD.
In other terms,
e The mean temperature inside D is minimized,;

e A constraint on the high values of the con-
ductivity is added by a fixed penalization of
the objective function.
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One first example: the optimal radiator (II)
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This oscillatory behavior is actually not surprising: the algorithm tries to reproduce
the “homogenized” behavior of solutions.

It is however highly undesirable in practice.

One remedy consists in acting on the selected descent direction, by changing inner
products, a general idea which fulfills many other purposes.

Other solutions are presented later in the course.
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By definition of the Fréchet derivative, the following expansion holds:
J(h+Th) = J(h) +7J'(h)(h) + o(),
and a descent direction for J from h is any h € L°(D) such that J'(h)(h) < 0.
The formula for the derivative
J(h)(h) = / hVup - Vs dx
D
makes it very natural to take as a descent direction the L*(D) gradient of J'(h):

/f; = —Vuh . Vph7
i.e. the gradient associated to the differential J'(h) via the L*(D) dual pairing.

This choice is actually awkward: Vuy, and Vpj, are not very regular, and nor is h.
In the theoretical framework, h does not even belong to L*°(D)!

Other, more adapted choices of a descent direction are possible, as gradients of
J'(h) obtained with other inner products than that of L?(D).
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Let H be a Hilbert space with inner product (-, -)p.

Solve the following identification problem: Search for V € H such that:
Vw e H, (V,w)n = J'(h)(w) = / WV - Vpp dx.
D

Then —V is also a descent direction for J(h), since for 7 > 0 small enough:
J(h—T1V) J(h) — 7S (h)(V) + o(T)

J(h) = TV, V)u + o(T)

J(h).

N

A descent direction which is more regular than that supplied by the
L?(D) inner product is obtained with the choice:
H = HY(D), and (u,v)y = / (@®Vu- Vv + uv)dx,
D
for @ "small" (of the order of the mesh size).
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The

optimal radiator again
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Another example: design of a “heat lens” (1)

As proposed in , the problem

Uh

min J(h) where J(h) = O

dx —i—é/hdx

e The horizontal heat flux through a non optimizable region w is minimized;

is considered:

e A penalization on high values of the conductivity h is added.

—] l out

— Fin D
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Another example: design of a “heat lens” (I1)

2 4999E-01 7 4998E-01

]
3.9321E-08 4.9998E-01 9.9997E-01

N

NS

Optimized heat lens under a penalization of high values of the conductivity.
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[Remarks]

e The above strategy to impose a constraint on the amount of high conductivity
material is very crude. Other constrained optimization algorithms may be used,
such as the Augmented Lagrangian algorithm.

e This parametric optimization framework lends itself to the use of:

e Quasi-Newton methods, such as the Gauss-Newton or the BFGS algorithms;

e “True” second-order algorithms, based on the Hessian of the mapping
hs J(h).

e Density-based methods for topology optimization problems often rely on an
adaptation of this parametric framework.
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Technical appendix
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In a Hilbert space H, let a: H x H — R be a bilinear form and ¢: H — R be a linear

form such that:
e ais continuous, i.e. there exists M > 0 such that:
Yu,v € H, |a(u, v)| < M||ul|u||v]|#H.
e ais coercive, i.e. there exists a > 0 such that:
Vu e H, allullf < a(u, u).

e /is continuous (i.e. £ belongs to the dual space H*):

I()I

[[€]|p= = sup < oo

Under the above hypotheses, the variational problem
Search for u € H s.t. forall v € H, a(u,v)={(v)

has a unique solution u € H, which depends continuously on ¢:

M
ol < —[1€]1n=
«




|

Several notions of derivative are available for a function F : U — V between two
normed vector spaces (U, || - [|u) and (V]| - ||v)-

e A function F : U — V s called Fréchet differentiable at some point x € U if there
exists a linear, continuous mapping Ly : U — V such that:

Fx 4 v) = F(x) + Lo(v) + o||V][u), where ”0('|‘|;'|‘|Z)”V v=0, 0,

e The mapping v — L.(v) is denoted by v — F'(x)(v), or dxF(v) and is called the
differential or the Fréchet derivative of F at x.

e The function F : U — V is called Gateaux differentiable at x € U if for any
direction v € U, the following limit exists:
im F(x 4+ tv) — F(X).

t—0 t
t>0

The notion of Fréchet differentiability is stronger than that of Gateaux
differentiability, which is a generalization of directional differentiability.
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The chain rule is a fundamental result, which supplies the Fréchet derivative of the
composite G o F of two functions

F:U—->Vad G:V > W
between three normed vector spaces (U, || - ||u), (V, ]| - |lv) and (W, ]| - ||w).

Let x € U be a point such that:
e F is Fréchet differentiable at x;
e G is Fréchet differentiable at F(x) € V.

Then, the composite function G o F : U — W is Fréchet differentiable at x, and its
Fréchet derivative v — (G o F)'(x)(v) is the linear mapping defined by:

Vv e U, (Go F)(x)(v) = G (F(x))(F'(x)(v)).
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The implicit function theorem is a key result, ensuring the existence and smoothness
of a solution u = wuy to a parametrized, non linear equation of the form:

F(,u)=0,

where u is the unknown and 6 is a “parameter’; see , Chap. I, Th. 5.9.

Let ©, E, F be Banach spaces, V C ©, U C E be open sets. and F :V x U — F be
a function of class CP for p > 1. Let (6o, u0) € V x U be such that F (6o, uo) =0
and assume that:

The derivative g—f(eo, uo) : E — F is a linear isomorphism.

Then there exist open subsets V' C V of 6 in © and U’ C U of ug in E, and a
mapping g : V' — U’ of class CP satisfying the properties:

g(0o) = wo,

For all § € V', the equation F(0,u) = 0 has a unique solution u € U’, given by
u=g(6).

v
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First-order necessary optimality conditions (I)

Let H be a Hilbert space, and let J: H — R be a differentiable function; we consider
the unconstrained minimization problem:

g\glr_} J(v). (V)

Definition 4.

A point u € H is a local minimizer for (L/C) if there exists an open neighborhood
V C H containing u such that:

Vv eV, J(u) < J(v).

Theorem 6.

Let u be a local minimize for (L/C); then:
VJ(u)=0.




Proof: Let h € H be given; by the definition of u, it holds for t > 0 small enough:

J(u+ th) > J(u), and so M > 0.

Letting t — 0O, the differentiability of J yields:
J'(u)(h) = (VJ(u), h) > 0.
Replacing h by —h in the previous argument yields the converse inequality
(VJ(u), h) <0,

which completes the proof.

Remark | The above proof uses in a cru-

cial way that the point v in (UUC) minimizes
J(v) (locally) in any direction h € H.
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First-order necessary optimality conditions (III)

Let H be a Hilbert space, and let J: H — R and C : H — RP” be differentiable
functions; we consider the equality-constrained minimization problem:

l;,nein J(h) s.t. C(h)=0. (EC)

Definition 5.

A point u € H is a local minimizer for (EC) if there exists an open neighborhood
V' C H containing u such that:

Vv e Vst C(v)=0, J(u) < J(v).

Theorem 7 (First-order necessary optimality conditions).

Let u be a local minimizer for (EC), and assume that the gradients V Cy(u), ...,
V Cy(u) are linearly independent. Then there exist Lagrange multipliers
A1y ..y Ap € R such that:

V./(Ll) + EP:A;VC,-(u) =0.

i=1

=} (=) = E El= DAl
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First-order necessary optimality conditions (V)

Hint of proof:

e The local optimality of u no longer implies that, for arbitrary h € H and t small
enough,
J(u+ th) > J(u).

e Such an inequality can only be written with directions h in the admissible space:

K(u) := {h € H, there exists € > 0 and a curve v : [—¢,e] — H s.t.
7(0) = u, v/(0) = hand C(~(t)) =0 for t > 0}.

VC(u)

e K(u) is a vector space, which 7 | o
rewrites, using the implicit function
theorem:

K(u) = (V)

i=1
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For any h € K(u), introducing a curve «(t) with the above properties:
J(v(t)) > J(u), and so w > 0.

Taking limits, it follows,
(VJ(u), ) > 0.
Since K(u) is a vector space, the same argument applies to —h, and so:

(VJ(u), h) = 0.

Hence, we have proved that
o n
Vh e K(u) (VJ(u),h) =0, that is VJ(u) € (ﬂ {vc,-(u)}L> .

Finally, using the general fact that, for arbitrary subsets As,..., A, C H,

p

(span{A,—, = 17"'7p})l = ﬂAlLa

i=1

the desired result follows.
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Interpretation (when p = 1): The above optimality condition implies that:

Either VJ(u) = 0, which is the necessary first-order optimality condition for u to
be an unconstrained minimizer of J(v).

Or A # 0, and so,
VC(u) = f%VJ(u).

“At first order”, a direction h € H such
that J(u + th) < J(u) for small t > 0,
has a non zero coordinate along VJ(u):

h=aVJ(u)+v, where v L VJ(u),a <0. !

V.J(u)

Alternatively, h rewrites:.

h= BV C(u)+w, where w L VC(u), #0.

Hence, C(u + th) # 0, so that u + th is

not an admissible point in (EC). lllustration when H = B2, p = 1 and J is an affine
function, whose isolines are depicted. At a local
optimum u of (5C), ¥ J(u) and V Cfu) are-aligned.
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