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Foreword: geometric shape optimization

We have seen how to optimize shapes when they are parametrized:
mhin J(h) s.t. C(h) <0,
where the design variable h may be:
e A set of parameters in a finite-dimensional space (thickness, etc.);

e A function h in a suitable, infinite dimensional vector (Banach) space.

O
> O | )

Description of a mechanical part via the control Parametrization of a plate with cross-section S via
points of a CAD model. the thickness function h: S — R.
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e In the considered examples, the state uy lives in a fixed computational domain,
which greatly simplifies the calculation of derivatives with respect to the design.

e Efficient methods from mathematical programming (optimization routines, etc.)
are readily available in this context.

e This induces a strong bias in the sought shapes.
e It may be very difficult, and in practice cumbersome, to find which are the

relevant parameters h of shapes.

= It is often desirable to formulate shape optimization problems in terms of the
geometry of shapes Q:
mrin J(Q) st. C(Q) <0.
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Part |ll

Geometric optimization
problems

@ The method of Hadamard and shape derivatives

== DAl
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Let Q be a bounded domain in RY:

e 0Q is the boundary of Q;

e n: 90 — RY denotes the unit normal
vector to 0N, pointing outward ;

e The domain Q is called Lipschitz (resp. of
class C*) if

“ . n
Near every point x € 02, Q resembles (y>
the lower part of the graph of a LipSChitZ In a neighborhood U of each point x € 99Q, Q “looks
. k : ” like" the lower part of the graph of some (Lipschitz or
function (resp. of a C* function). C¥) function X + f(X) defined for suitable (d — 1)-

dimensional coordinates.
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Differentiation with respect to the domain: Hadamard's method (1)

Qg

Hadamard's boundary variation method
describes variations of a reference,

bounded Lipschitz domain Q of the form: \
Q— Q= (Id + 6)(Q),

for “small’ vector fields @ @
9 c leoo(Rd,Rd).

>

For € W*>°(R?,R9) with norm [10]lw1.00 (rd ray< 1, the mapping (Id + 0) is a
Lipschitz diffeomorphism.




Given a bounded Lipschitz domain 2, a function Q — J(Q2) € R is shape
differentiable at Q if the mapping

W (R R) 3 0 — J(Q)

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

J(Q0) = J(2) + J’(Q)(@) +0(0), where o(6) 6—0

HGHW].,OO(Rd,Rd)

0..

The linear mapping 0 — J'(Q)(0) is the shape derivative of J at .

Other spaces are often used in place of W (R, R?), made of more

regular deformation fields 6, e.g.:

C°(RY,R?) := {0 : R? = R? of class C*, sup sup |8*0(x)| < oo p.
la| <k xeRd
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First examples of shape derivatives (1)

Let Q C R? be a bounded Lipschitz domain, and let f € W*(R?) be a fixed
function. Consider the functional:

5@) = [ () ax

then J(Q) is shape differentiable at Q and its shape derivative is:

6 € WH(RY,R), J(Q)(0) = /{m f(x) (6(x) - n(x)) ds(x).

=} (=) = E El= DAl
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Intuition: f takes negative (resp. positive) values on the blue (resp. red) part of the
boundary 9. The value J(Sy) is decreased from J(2) by adding the blue area, (i.e.
0-n >0 where f < 0), and by removing the red area (- n < 0 where f > 0), weighted by f.
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e This result is a particular case of the Transport (or Reynolds) theorem, used to
derive the equations of motion from conservation principles in fluid mechanics
(see the Appendix in ).

e It allows to calculate the shape derivative of the volume functional

Vol(Q) = /Q 1dx.

Indeed, one has:
Vo € Wh(R?,R?), Vol (Q)(0) = 0~nds:/div0 dx.
o Q

In particular, if div@ = 0, the volume is unchanged (at first order) when Q is
perturbed by 6.
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Proof: The formula proceeds from a change of variables in volume integrals:

J(Q0) = / f(x)dx = / |det(I+ V0)| f o (Id + 6) dx.
(1d+6)(Q) Q

e The mapping 6 — det(I+ V) is Fréchet differentiable, and:
o(6) 0—0
1011 wa.o0 (e ey
o If f € WHHRY), 8 — f o (Id + ) is also Fréchet differentiable and:
fo(Id+6)=f+VFf-0+o(8).

e Combining those three identites and Green's formula leads to the result.

This idea of

Using the change of variables Q — (Id + 6)(R2) to transport all integrals on the
reference domain €,

det(I+ V0) =1+ divf + o(0), where 0.

Differentiating with respect to the deformation 6,

is the “standard” way to calculate shape derivatives.
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Let Q C R? be a bounded domain of class C?, and let g € W**(RY) be a fixed
function. Consider the functional:

(@)= [ et ds
aa
then J(Q) is shape differentiable at Q when deformations 6 are chosen in
Cl,OO(]Rd7 Rd) = Cl(]Rd7 Rd) N WI’OO(Rd, Rd),
and the shape derivative is:

J(Q)(0) = /m (% + ng) (0 - n)ds,

where k is the mean curvature of OSQ.

The shape derivative of the perimeter Per(Q2) = [,, 1 ds is:

Per’(Q)(0) = / k(0 - n)ds.

o0
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’ First examples of shape derivatives (VI)‘

Intuition: @ = —kn is a descent direction for Per(Q): it is reduced by smearing the bumps of
O (i.e. - n <0 when k > 0), and sealing its holes (i.e. - n >0 when k < 0).
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The shape derivative J'(Q)(0) of a “regular’ functional Q — J(Q) only

depends on the normal component 6 - n of the vector field 6.

At first order, a tangential vector field 0, (i.e. 6 - n=0) only results in a convection of the
shape Q, and it is expected that J'(Q)(0) = 0.
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Structure of shape derivatives (Il)

Let Q be a domain of class C*. Assume that the mapping
CP (R RY) 360 — J(Q) €R

is of class C*. Then, for any vector field 6 € C**°(R?,RY) such that 6 - n = 0 on 9,
one has: J'(Q)(0) = 0.

Under the same hypotheses, if 61,0, € C*°(RY, R?) have the same normal
component, i.e. 01 -n = 6> -n on IS, then:

JI(Q)(91) = J’(Q)(Qz).

=} (=) = E El= DAl
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e Actually, the shape derivatives of “many” integral objective functionals J(€2) can
be put under the surface form:

J(Q)(0) = /{—)Q va (0 - n)ds,

where the scalar field vq : 9Q2 — R depends on J and on the current shape Q.

e This structure lends itself to the calculation of a descent direction: letting
0 = —tvgn, for a small enough descent step t > 0 in the definition of shape
derivatives yields:

J(Q0) = J(Q) — t/arz v3 ds +o(t) < J(Q).

e We shall return to this issue during our study of numerical algorithms.
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Part |ll

Geometric optimization
problems

© Shape derivatives of PDE-constrained functionals: the rigorous
way, using Eulerian and material derivatives

DAy
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e Hitherto, we have studied the shape derivatives of functionals of the form

F1(Q):/Qf(x) dx, and Fz(Q):/ g(x) ds,

on

where f, g : R — R are given, smooth enough functions.

e We now intend to consider functions of the form
5(Q) = /j(ug(x)) dx, or Jx(Q) = / K(ua(x)) ds,
Q a9

where j, k : R — R are given, smooth enough functions, and ug : Q — R is the
solution to a PDE posed on .

e Doing so elaborates on the techniques from optimal control theory that we have
seen in the parametric optimization context.
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e For simplicity, we rely on the simplified model of the Laplace equation with
Dirichlet boundary conditions: the state uq is solution to

—AUQ =f in Q
ug =0 on 09,

for a smooth enough source f : RY — R.

e The associated variational formulation reads:

Vv € Ho(Q), /VUQ-VvdX:/fvdX.
Q Q

e In this setting:

We calculate the “derivative” of the state Q — uq in a sense to be defined.

We infer the shape derivative of a shape functional of the form:
5@) = [ stun) dx.
Q
where j : R — R is a “smooth enough” function.
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e The rigorous way to address this problem requires a notion of differentiation of
functions Q + uq, which to a domain € associates a function defined on Q.

e One could think of two ways of doing so:

The Eulerian point of view: ‘ ’ The Lagrangian point of view: ‘

For a fixed x € Q, ugp(f)(x) is the For a fixed x € Q, to(f)(x) is the
derivative of the mapping derivative of the mapping

0 = uq,y(x). 0 — uq, ((Id + 0)(x)).

Qyp

0(x)
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e The Eulerian notion of shape derivative, however more intuitive, is more difficult to
define rigorously. In particular, differentiating the boundary conditions satisfied by
uq is awkward:

Even for “small” 0, uq,(x) may not make any sense if x € Q!

e The Lagrangian derivative o () can be rigorously defined, and lends itself to
easier mathematical analysis.

e The rigorous mathematical trail consists in:

Defining properly the Lagrangian derivative dq(6);
Defining the Eulerian derivative ug(60) from dq(6), via the formula:
ug(8) = a(8) — Vug(x) - 6,
so that the expected chain rule holds for the expression u(at9)q) © (Id + 6):

Vx € Q, ua(8)(x) = ua(8)(x) + Vua(x) - 0(x).
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Eulerian and Lagrangian derivatives (lII)

Let Q + ug € H'(Q) be a function which to a domain Q, associates a function uq
defined on Q.

Definition 2.

The mapping u : Q — ug admits a material, or Lagrangian derivative fio(0) € H*(Q)
at a particular domain Q provided the transported function

Wh>(RY,RY) 3 0 — T(0) := uq, o (Id + 0) € H*(Q),
defined in the neighborhood of 0 € W*>°(R,R?), is differentiable at 6 = 0.

=} (=) = = == DA
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Eulerian and Lagrangian derivatives (V)

This allows to define the notion of Eulerian derivative.

The mapping u : Q — uq has a Eulerian derivative ug(6) at a given domain € in the
direction € Wh>° (R, RY) if:
@ It admits a material derivative iiq(0) at Q;
@ the quantity Vuq - 0 belongs to H* ().
One defines then:

uh(0) = o (0) — Vug -0 € H(Q)

DA

23/105



Once Lagrangian and Eulerian derivatives are known, the shape derivative of a
quantity of interest involving ugq is readily obtained.

Let Q C RY be a smooth bounded domain, and suppose that Q — ug has a
Lagrangian derivative iq at Q. If j : R — R is regular enough, the function

5(Q) = /Q i(ug) dx
is then shape differentiable at 2, and:
Vo € Wh(RY,RY), J(Q)(9) :/Q(j'(UQ)L?Q(G)—i—(div@)j(un)) dx.
If, in addition, Q — uq has a Eulerian derivative ug, at S, the “chain rule” holds:

J@© = [ jwo-nds [ j(n)un(o)dx

Derivative of the partial mapping Derivative of the partial mapping
Q= [ j(ug) Q= [q i(ug)
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Idea of the proof: As usual, a change of variables yields:

1) = / J(ugy) dx = / |det(1 + VO)j(a(9)) dx.
(1d+6)(Q) Q
e The mapping 6 — |det(I + V)| is Fréchet differentiable at § = 0 and
|det(I+ VO)|= 1+ divl + o(6);

e The mapping 6 — T(0) is Fréchet differentiable at § = 0 and
1(0) = uq + da(0) + o(0);
Then, using the chain rule,  — J(Qp) is Fréchet differentiable at # = 0, and:
J(Q)(0) = / ((dive)j(ua) +J'(ua)ua(9)) dx.
Q

Now, if Q +— uq as a Eulerian derivative, the definition ug(0) = va(8) — Vug - 0
combined with the Green's formula yields:

J(Q)(0) = /89j(UQ) 0-nds+ /Qj’(m)u&(@) dx.

O
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The calculation of the shape derivative J'(Q)(6) thus rests on those of the
Lagrangian and Eulerian derivatives of Q +— uq, where
—AUQ =f in Q,
ug =0 on 0Q.

The following result characterizes the Lagrangian derivative of Q — ug.

The mapping Q — uq € H3(Q) has a Lagrangian derivative tiq(6), and for any
6 € WH2(R? RY), ta(0) € H3(Q) is the unique solution to the variational problem:

Vv € H3(Q), /V(u"g(@))-Vvdx:/div(f@)vdx

- / (div(0)I — VO — VO )Vug - Vv dx,
Q

or, under classical form:

{ —A(ta(8)) = div(f8) + div((div(8)I — VO — VO )Vug) in Q,
ug(0) =10 on 09.
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Idea of the proof:

e The variational problem satisfied by uq, is:

Vv € Hy (), Vug, - Vvdx = / fv dx.
Qg Qg

e By a change of variables, the transported function T(6) = ug, o (Id + ) satisfies:

Vv € Hy(Q), /

A(Q)VH(9)~Vvdx:/|det(I+V0)|(fo(Id+0))vdx,

where
A(9) := |det(1+ VO)|(I+VO) (14 V6) .

e This variational problem features a fixed domain and a fixed function space
H3 (), and only the coefficients of the formulation depend on 6.

= This structure lends itself to the use of the strategy based on the Implicit
Function theorem to calculate the derivative of 6 — @(6) .
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e The problem can now be written as an equation for T(0):
F(0,u(0)) = G(0),
for appropriate definitions of the operators:
o F:Wh(RY,RY) x H3 (Q) - H (),
o G: WhH(RYRY) = HH(Q).

e The implicit function theorem shows that § — @(6) is differentiable at § = 0.

e The Lagrangian derivative uq(6) of the transported mapping w(6) can now be
computed by taking derivatives inside the variational formula:

Vv € Hy(Q), /VJQ(G)‘Vvdx:/div(fﬁ)vdx
Q Q
- / (div(0)I — VO — VO )Vuq - Vv dx.
Q
O
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e The Eulerian derivative of ug can now be computed from its Lagrangian
derivative. It satisfies (after elementary, but tedious calculations):

{ CAWL0) =0  inQ,

up(0) = —(6-n)%2  on 9Q.

e At this point, we have thus calculated the shape derivative of J(Q2) as:

J(@)(0) = / (7 (1) 0 (0) + (div)j(un)) dx,

or, involving the Eulerian derivative of Q — ug,

J(Q)(0) = /an(UQ) 0-nds+ /{;_['/(UQ)U;)(Q) dx.

e The identification of a descent direction 6 for J() (i.e. such that J'(Q)(0) < 0) is
awkward, since o (0) and ug(6) depend implicitly on  (via a PDE).
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Idea: “Lift" the term of J'(2)(#) which features the Lagrangian (or the Eule-
rian) derivative of uq by introducing an adequate adjoint problem.

The shape derivative J'(Q)(0) rewrites (volume form):
J(Q)(0) = / (divl)j(ua) dx + / (div(6)I — VO — VO )Vuq - Vpg dx
Q Q
- / div(£0)pg dx,
Q

where the adjoint state pa € Hg(Q) is the solution to the equation:

—Apq = —j'(uq) inQ,
pa =0 on 09.

If ug and pq are more regular (uq, pa € H*(Q)), this rewrites under the equivalent
surface form:

. Ouq Opa /
J(Q)(0 :/ 0-nds— ——f-nds — fpaf - nds.
@© = [ () [ Gace [ o

vV
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Proof of the volume form.

e The shape derivative J'(2)(0) reads:

J(Q)(60) = / (7 () 8(0) + (div0) (1)) dlx.

o Here, the Lagrangian derivative tp(f) € Ha(R) solves:
Vv € Hy(Q), /Vub(@) -Vvdx = / div(f8)v dx
Q Q

- / (div(0)I — VO — VO )Vug - Vv dx.
Q

e This is to be compared with the variational formulation for pq:

Vv € Hy(Q), / Vpo-Vvdx = — /j'(un)v dx.
Q Q
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e Thus,
J'(Q)(9)

| (@ive)itun) dx+ [ (un)in(0) ax,

/Q(divé)j(uQ)dx—/QVpQ-VL‘}Q(G) dx,

where we have used the variational formulation for po with (g (0) as test function.

e Now taking pq as test function in the variational formulation for iq(0) yields the
desired result:

J(Q)(0) = /Q(dive)j(uQ) dx + /Q (div(0)I — VO — V0T )Vuq - Vpg dx

—/div(f@)pg dx.
Q
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Eulerian and Lagrangian derivatives (XIV): the adjoint method

Proof of the surface form. The main idea reads as follows:

e Since ug and po € H?(Q), we perform integration by parts in the volume form to
end up with an expression of the form:

I - [

v;ﬁ-nds-&—/ tQ-GanS-I—/SQ-odX,
o oN Q

where:

o vq: 00 — R is a scalar field;
e tg: 90 — RY is a vector field, acting on the tangential component of 6:

Ooq := 60— (6 - n)n;
e Sq:Q — RYis a vector field,
whose expressions are explicit in terms of uq and pq.
o If we believe the Structure theorem, tq and Sq must equal 0, ... which we verify.

e A tedious calculation eventually yields the result:

ug Opa
a0 On On

J'(Q)(0) :/ J(uq)f - nds — 0-nds— / fpa 6 - nds.
o9 Joa
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The volume form is easier to derive, and demands minimal regularity from wuq, pa.

For this reason, it is often more convenient for studying mathematical properties of
shape derivatives (e.g. their finite element approximation).

The volume form is explicit in terms of 0... but it does not allow for a
straightforward identification of a descent direction.

= Need to rely on the “Hilbertian trick” to achieve this.

The surface form requires higher regularity from uq, pa, which is often guaranteed
by elliptic regularity, provided Q and f are “smooth enough”.

The surface form has a more compact expression, which explicitly fulfills the
Structure theorem.

= A descent direction 6 for J(Q2) is immediately revealed.
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Mathematically speaking, the above trail is the rigorous way to assess the
differentiability of shape functionals.

As we have seen, the techniques presented above (in particular the adjoint
technique) exist in much more general frameworks than shape optimization, and
pertain to the framework of optimal control theory.

Calculating shape derivatives by these means requires tedious calculations.
In practice, a version of Céa’s method allows for a formal, simpler way to calculate

shape derivatives.
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Part |ll

Geometric optimization
problems

© Céa's method for calculating shape derivatives




As we have seen, the philosophy of Céa’s method comes from optimization theory:

o We express J(2) as the value of an Q-dependent Lagrangian functional:
L@up) = [iwax o+ [(Au-ppde
Q Q

Objective function at stake u=ug is enforced as a constraint
by penalization with the Lagrange multiplier p

at a saddle point (u, p) = (uq, pa).
e The “"parameter” Q, and the variables (u, p) must be independent.

e The nice features of the derivative of a saddle point value with respect to a
parameter allow for significant simplifications in the calculation.

This method is formal: in particular, it assumes that we already know that Q +— ugq is
differentiable.
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e The objective function J(Q) is expressed as the value
J(Q) = E(Q7 uq, pQ)7
of a suitably defined Lagrangian £(, u, p) at a saddle point (uq, pa).

J(u)

e The shape derivative J'(Q2)(0) reads, formally:

@O = 5500, p0)(0) + (@, 0, po) () + T (@, i, o) (4.

Shape derivative of Q— £(Q,u,p) =0 -0
taken at (u,p)=(uq,pq)
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We first consider the case of Neumann boundary conditions:

—Au+u=fFf inQQ,
v =0 on 99,

where the +u term is added for commodity, so that the system is well-posed in
H*(Q) without any further assumption on f.

Consider the following Lagrangian functional:

L(Q,u,p)= /Qj(u)dx +/QVU-Vpdx+/Qupdx—/prdx,

Objective function Penalization of the * int” u=uq:
where uq is replaced by u Jq (—Aut+u—f)p dx=0

which is defined for any shape Q € U,q, and for any u, p € H*(R?), so that the
variables Q, v and p are independent.
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By construction, evaluating £(Q, u, p) with u = ugq yields:

vp € H'(RY), L(Q, g, p) = / J(ua) dx = J(9).

For a fixed shape Q, we search for the saddle points (u, p) € R? x RY of £(,,").

The first-order necessary conditions read:

. oL N
i Vp € Hl(Rd)7 FP(Q’ u,p)(p) =

/Vu~V5dx+/ude—/fﬁdx:0.
Q Q Q

e Vi € H'(RY), g—f(ﬂ, u, p)(0) =

/j'(u)ﬁdx—l—/Vﬁ-Vpdx—i—/ﬁpdx:O.
Q Q Q
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Step 1: Identification of u:

Vg € HY{(RY), /Vu-qux—i—/uqu—/fqu:O.
Q Q Q

e Taking g as any C* function v with compact support in Q yields:

/Vu-dex—i-/uwdx—/fwdx:O: —Au+u=1finQ|
Q Q Q

e Now taking g as any C* function v and using Green's formula:

du

Pds=0= a—ZzOonaS'Z.
a0 On o

‘ Conclusion: u = uq. ‘
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Step 2: Identification of p:

Vv € HY(RY), /j'(u)v+/Vv«Vpder/vpdx:O.
0 Q Q

e Taking v as any C* function v with compact support in Q yields:

/Vp~V1[)dx+/vpdx+/j’(u)wd><=0:>’prer:fj’(uQ) in Q.
Q Q Q

e Now taking v as any C* function 1 and using Green's formula:

/ 9P yds=0= % =0 o0n 09.
aﬂan

S . —ADp+p=—j(u) inQ,
Conclusion: p = pgq, solution to { op _ on 99.

dn
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Step 3: Calculation of the shape derivative J'(Q)(6):

e We go back to the fact that:
Va € H(E), L un,q) = [ jlun) dx = (D).
Q

e Differentiating with respect to € yields, thanks to the chain rule:
o oL oL
0 € WHE(RERY), S (Q)(0) = 55 (2 ua, a)(0) + (R, ua, )(ua(0)),

where u(0) is the Eulerian derivative of Q — ug (assumed to exist).

e Now, choosing g = pq produces, since %(Q, ug, pa) = 0:

J(2)(0) = 36(Q, ua, pa)(0).
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Céa’s method: the Neumann case (VI)‘

The last (partial) derivative boils down to that of a functional of the form:

Q»—)/Qf(x)dx,

where f is a fixed function.

Using Theorem 2, we end up with:

Vo € W2 (R, RY),

7(Q)(0) = / (i(ua) + Vua - Vs + uaps — foa) 0 nds.
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We now consider the problem of calculating the derivative of:

. —Au=1f inQ,
J(Q) = /Q_](UQ) dx, where { b—0 on Q.

Warning: When the state ug satisfies essential boundary conditions, i.e. boundary
conditions that are tied to the definition space of functions (here, H&(Q)), an
additional difficulty generally arises.

It is no longer possible to rely on the Lagrangian
L(Qu,p)= /j(u) dx—l—/Vu-Vpdx—/ fp dx,
Q Q Q

since it would have to be defined for u, p € H(Q).

In this case, the arguments Q, u, p would not be independent.
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Add an extra variable € H*(R?) to the Lagrangian to penalize the

boundary condition: for all u, p, A € H*(RY);

L(Qu,p, )= /j(u)dx +/(7Auff)pdx+ / Auds
Q Q a0

Objective fi i penalization of the penalization of the
where ug is replaced by u “constraint” — Au=f “constraint” u=0 on OQ

By Green's formula, £(2, u, p, \) rewrites:

[,(Q7u,p,)\):/j(u)dx+/Vu-Vpdx—/fpdx—i—/ ()\u—@p> ds.
Q Q Q o0 On

Of course, evaluating £(, u, p, \) with u = ug, it comes:

Yp. A€ HRY), L8 un.p. ) = [ (un)dx.
Q
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For a fixed shape Q, we look for the saddle points (u, p, \) € (H*(RY))? of the

functional £(,-,,-). The first-order necessary conditions are:
e Vp e H(RY), %(Q, u,p,/\)(ﬁ):/VMVﬁdxf/fﬁdx+ @ms:o.
ap Q Q a0 On
. VieH(®), 9E(@,0,p0)(5) =
/j’(u)ﬁder/VEVpder/ ()\g, @p) ds = 0.
Q Q oQ On
S ipdy 9L N N
e VA e H (RY), a(Q, u,p, \)(A) = Auds =0.
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Step 1: Identification of u:

Vg € H'(RY), /VU-quXf/fqu+/ @qu:o.
Q Q an On

e Taking g as any C* function 1 with compact support in Q, we obtain:

voecx(@, [Vu-vidx= [ fodx=[Au=ring]
Q Q

e Using %(Q, u, p,A) () = 0 for any =1 € CZ(RY), it holds:

Y ECERT), | duds=0=
o

‘ Conclusion: u = uq. ‘

48 /105



Step 2: Identification of p:

Vv € HY(RY), /j'(u)vdx+/Vv-Vpdx+/ ()\v—@p) ds =0.
Q Q oQ on

e Taking v as any C*™ function 1) with compact support in Q, we see that:

Vah € C2(Q), /QVp-dex-i-/Qj'(u)d)dx:O

= ‘ —Ap = —j'(ug) in Q. ‘

e Now taking v as a C* function v and using Green's formula, we obtain:

oo op o
Vip € C°(RY), i ds+/ <A ——)ds:o.
() (R?) mﬁnw - b= 5P
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Céa’s method: the Dirichlet case (VI)‘

Step 2 (continued):

e Varying the normal trace 2% while imposing ¢ = 0 on 9%, one gets:

on

—Ap = —j'(uq) inQ,
p=20 on 0Q.

Conclusion: p = pq, solution to {

e In addition, varying the trace of ¢ on 9Q while imposing %—f =0:

_ __9pq
Ao = 5. on 09.
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Step 3: Calculation of the shape derivative J'(Q)(6):

e We return to the fact that:

Va.n € HRY), L un,q.n) = [ J(um) dx.
Q

o Differentiating with respect to Q yields, for all § € W1 >°(R?, R9):

J(@)0) = 95 (@, 0, 4,1)(0) + T (9, ua, 4, 1) (6 (6)),

where u(0) is the Eulerian derivative of Q — uq.

e Taking g = pa, 1 = Mg produces, since %(Q, uq, pa, Ag) = 0:

J(@)0) = 9 (Q e, po Aa)(6).
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Céa’s method: the Dirichlet case (VIII)‘

Again, this (partial) shape derivative combines derivatives of functions of the form:

Q»—)/f(x)dx, orQ»—)/ g(x) ds,
Q a0

where f and g are fixed functions.

Using Theorems 2 and 3 (and after some calculation), we end up with:

1,00 (md Td / o . 7%8& .
Vo € WH (R, RY), J(Q)(0) = /@Q (_](UQ) 3n on 0-nds.
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Part |ll

Geometric optimization
problems

© Numerical aspects of geometric methods
@ A basic shape gradient algorithm




Initialization: Start from an initial shape Q°.
For n =0, ... convergence,
Calculate the state ugn (and the adjoint pon if need be) on Q".

Compute the shape derivative J'(Q") by evaluating the mathematical
formula, and infer a descent direction 8" for J(£2).

Advect the shape Q" along the displacement field 0", for a small pseudo-
time step 7", so as to obtain

Q" = (Id+ 7"0")(Q").
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Each shape Q" is represented by a simplicial mesh 7" (i.e. composed of triangles
in 2d and of tetrahedra in 3d).

The Finite Element method is used on 7" for computing uq» (and pan).

The descent direction 6" is obtained from the surface form of the shape derivative:

J(Q)(0) = / vof-nds = 60" = —vgon on 9.
o9

The shape advection step Q" (Id»+—T>9 ) Q"1 is performed by pushing the nodes of
T" along 76", to obtain the new mesh 7"1:

Vvertex x € T", x — x + 7"0"(x).

=>

Deformation of a mesh by relocating its nodes to a prescribed final-position.
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’ Numerical examples (I) ‘

e In the context of linear elasticity, one aims at minimizing the compliance C(Q2) of
a cantilever beam:

cQ) = /QAG(UQ) s e(ug) dx.

e An equality constraint on the volume Vol(2) of shapes is imposed by means of a
fixed penalization procedure.

\

O O
OOOOO lg

rp /
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’ Numerical examples (II) ‘

e In the context of fluid mechanics (Stokes equations), one aims at minimizing the
viscous dissipation D(2) in a pipe:

D(Q) = 21//Q D(uq) : D(uq) dx.

e A volume constraint is imposed by a fixed penalization of the function D(Q).

Fin Q
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Numerical examples (I11) ‘

e Still in fluid mechanics, the viscous dissipation D(2) of a double pipe system is
minimized.

e A volume constraint is imposed.
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Numerical issues and difficulties (I)\

| - Existence of many local minimizers:

e In “most” shape optimization problems, no “true” global minimizer exists: the
latter would have to be searched as a homogenized design;

e However, there exist many local minimizers;

e In practice, shape optimization algorithms are very sensitive to the initial
design, to the size of the computational mesh, etc.

Several optimized cantilever beams associated to different initial designs.
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Il - The difficulty of mesh deformation: ‘

e The update of the shape at each step Q" — (Id + 6")(Q") = Q™ is realized
by relocating each node x € 7" to x + 7"0"(x) € T"**.

e This may prove difficult, partly because it may cause inversion of elements,
resulting in an invalid mesh.

—>

Pushing nodes according to 0" may result in an invalid configuration.

e For this reason, mesh deformation methods are generally preferred for
accounting for “small displacements”.
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/1l - Velocity extension: ‘

e A descent direction § = —vqn from a shape € is inferred from the formula:
J(Q)(0) = / V(0 - n) ds.
a0

e The new shape (Id + 6)(€2) only depends on these values of 6 on 99.

e For many reasons, in numerical practice, it is crucial to extend 6 to Q (or even
RY) in a “clever’ way.

(for instance, deforming a mesh of Q using a “nice” vector field 6 defined on the whole Q may

considerably ease the process)

e The “natural” extension of the formula 8 = —vqn, which is only legitimate on
02 may not be a “good"” choice.
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|

IV - Velocity regularization: ‘

e The descent direction = —vqn on 9 may be very irregular, because of

e numerical artifacts arising during the finite element analyses.
e an inherent lack of regularity of J'(Q) for the problem at stake.

e In numerical practice, it is often necessary to smooth this descent direction so
that the considered shapes stay regular.

"SHAPE_INITIAL' —
*SHAPE_UNSMOOTHED' ===
2\ _'SHAPE_SMOOTHED' -

sk

Irregularity of the shape derivative in the very sensitive problem of drag minimization of an airfoil (Taken from
). In one iteration, using the unsmoothed shape derivative of J(Q) produces large undesirable artifacts.
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Part |ll

Geometric optimization
problems

© Numerical aspects of geometric methods

o The Hilbertian method in shape optimization




Like in the parametric optimization context, the Hilbertian method allows to
extend AND regularize the velocity field at the same time.

Suppose we aim at extending the scalar field vq : 9Q — R into V : Q — R.

Idea: (~ Laplacian smoothing) Trade the “natural” inner product over L?>(92) for
a more regular inner product over functions on .

Example: Search for the extended / regularized scalar field V as:

Find V € H(Q) st. Yw € H'(Q), a(V.w) = J(Q)(wn), |

where a(V,w) := a” / VV.Vw dx+/ Vw dx, and J'(Q)(wn) :/ vow ds.
Q Q o9

The vector field — Vn is still a descent direction for J(2), since
For “small’ 7 >0, J((Id — 7Vn)(Q)) = J(Q) — 7 J (Q)(Vn).
——
=a(V,V)>0

The regularizing parameter « controls the balance between the fidelity of V to vq
and the intensity of smoothing.
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The resulting scalar field V is inherently defined on Q and more regular than vq.

Multiple other regularizing problems are possible, associated to different inner
products or different function spaces.

A similar process also allows to:

e extend vq to a large computational box D (an inner product over functions
defined on D is used),

e extend the vector velocity § = —vgn to € or D (an inner product over vector
functions is used, e.g. that of linear elasticity).

In particular, such a procedure allows to obtain a descent direction from the
volume form of the shape derivative:

J(@)(0) = / (ra- 0+ Sa: V6)dx,

where the fields rqo : Q@ — R?, Sq : Q — R7*? are known.
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Part |11

Geometric optimization
problems

© The level set method for shape optimization
o Generalities about the level set method




The level set method!

way.

A paradigm: the motion of an evolving domain is conveniently described in an implicit

A domain Q C RY is equivalently defined by a function ¢ : R? — R such that:

d(x)<0 ifxeQ ; d(x)=0 ifxedQ ; ¢(x)>0 fxeQ

A domain Q C R? (left), some level sets of an associated level set function (right).

67 /105




If ¢ : R — R is a level set function of class C? for , such that Vé(x) # 0 on a
neighborhood of 09,

e The normal vector n to 9 pointing outward Q reads:

Vx €09, n(x) = éjg;‘.

Normal vector to a domain Q; some isolines of the function ¢ are dotted.
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Level set functions and geometry (I1)

o The second fundamental form II of

0Q is:

Vx €09, TI(x) = V (ézgw .

o The mean curvature x of 99 is:

I N BQ/
Vx € 09, K(x) = div ( Vo(x) ) . ' AW,

IVo(x)|
I (v, v) is the curvature of a curve
drawn on 02 with tangent vector v at x.

69 /105



’Evolution of domains with the level set method‘

Let Q(t) C RY be a domain moving along a veloc-
ity field v(t,x) € RY.

Let ¢(t, x) be a level set function for Q(t).

The motion of Q(t) translates in terms of ¢ as th
level set advection equation:

%(t, x) + v(t,x).Vo(t,x) =0

If v(t,x) is normal to the boundary 99Q(t), i.e.:

Vé(t, x)
v(t,x) = V(t, x )
(820 VI Woe )
this rewrites as a Hamilton-Jacobi equation: Q(t +dt) = [p(t + dt,.) < 0]

05 _
20 (t,x) + V(£ )| Vo(t,x)] = 0
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Part |11

Geometric optimization
problems

© The level set method for shape optimization

@ The level set method for shape optimization
=] (=)




e A fixed computational domain D is meshed once and
for all (e.g. with triangular or quadrilateral elements).

e Each shape Q" is represented by a level set function
¢", defined at the nodes of the mesh.

e As soon as a descent direction 6" from Q" is available,
the advection step

Q" Q" = (Id+ 7"0")(Q")
is achieved by solving the advection-like equation

{ 949" Vp=0 te(0,7"),x€D
¢(07 ) =9
orif 0" = v"nis normal, the Hamilton-Jacobi equation: Shape accounted for by a
level ipti fi
{ % +V'Vel=0 te(0,77), xe D evel set description (from

$(0,) = ¢" )
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At each iteration n, no mesh of Q" is available to solve the finite element

problems needed in the calculation of the shape gradient.

The state and adjoint PDE problems posed on Q" are approximated by a

problem posed on the whole box D

= Use of a Fictitious domain method.
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e In the linear elasticity context, the optimized part of the boundary I (i.e. that
represented with the level set method) is often traction-free.

o The ersatz material method approximates the elastic displacement ug : Q — R? by
that ug. : D — RY of the total domain D when the void D \ Q is filled with a very

‘soft’ material:

—div(Ae(ua)) =0 in Q, —div(Ace(ua,)) =0 in D,
ugp =0 onlp, uge =0 on Ip,
Ae(ug)n=g on Iy, ~ Ace(ug)n=g on Iy,
Ae(ug)n =0 on T. Ae(ug:)n=0 on 9D\ (F'p UTly),

(Problem posed on ) (Problem posed on D)

where the approximate Hooke's tensor A reads:

A = xoA+ (1 — xn)eA, e K 1.
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The ersatz material approximation in linearized elasticity (II)‘

Physical situation of a bridge Deformed configuration of the bridge

~27811E-01 78344E-01

| o mmm— —— |
-8.1369E-01 25767E-01 132926400

Implicit definition of the bridge on a mesh of D Deformed configuration of the domain D
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Example: optimization of a 2d bridge using the level set method

e In the context of linear elasticity, the compliance of a bridge is minimized
Q) = / Ae(ug) - e(uq) dx.
Q

e A constraint on the volume Vol(2) of shapes is imposed.

VL
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Geometric optimization
problems

© The level set method for shape optimization

o Further numerical examples o <@




An example in electromagnetism (1)

Light waves are usually conveyed through wave guides.
The attached electric and magnetic fields are governed by Maxwell's equations.

Demultiplexers are nanophotonic devices in charge of directing the incoming wave
to different output wave guides, depending on its wave length.

We aim to optimize the shape Q of air inclusions in the Si core with the aim to
realize this behavior.
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Optimization of the shape of a demultiplexer.
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A thermal chamber D is divided into

e A phase Q with high conductivity vq

e A phase D\ Q with low conductivity
Yo.

A temperature To = 0 is imposed on I'p
and the remaining boundary 9D \ T'p is in-
sulated from the outside.

A heat source is acting inside D.

The temperature ug inside D is solution to
the two-phase Laplace equation.

The average temperature inside D,

1
J(Q):ﬁ/DUQ dX

is minimized under a volume constraint.
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Optimization of the shape of a heat diffuser (II)

Optimization of the shape of a heat diffuser.

[m]

=

=, E= 9ac
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Optimization of the shape of a heat exchanger (1)

A thermal chamber D is divided into

e A phase Q¢ hot conveying a hot fluid;
o A phase Q¢ cold conveying a cold fluid;
e A solid phase €.

The Navier-Stokes equations are satisfied in
Qf,hotv Qf',r:old-

The stationary heat equation accounts for
the temperature diffusion within D.

The heat transferred from Qf hot to Qf cold
is maximized.

A constraint is imposed on the minimal dis-
tance between Q¢ ot and Qf cold:

d(Qf,hot, Qf,cold) 2 dmin~

Volume and pressure drop constraints are
added on Qf,hot, Qf7co|d.
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Optimization of the shape of a heat exchanger (II)

Optimization of the shape of a heat exchanger.

DAy
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Technical appendix
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The Sobolev space W1>(R? RY)

The space WV (RY,R?) is equivalently defined as:

e The space of bounded and Lipschitz vector fields 0 : R — R?, i.e. there exists
C > 0 such that:

Vx € RY, |0(x)| < C, and ¥x,y € R, |0(x) — 6(y)| < Clx — y|.

e The Sobolev space of uniformly bounded functions, with uniformly bounded
derivatives:

00;

0x;

{0 e L=(R%)?, e L®(RY), i,j = 1,...,d}.

The space WH>°(R?,R9) is equipped with the norm:
0(x) — 9(y)l>
Ix =yl
X7y
110]] oo reya + sup [[VO(x)]].
x€ER

[ —— (|e(x)|+

x,y€Rd
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The next theorem is an extension of the usual change of variables formula (involving
a C* diffeomorphism) to the case of a Lipschitz diffeomorphism; see , Chap. 3.

Let Q C RY be a Lipschitz bounded domain, and ¢ : Q — RY be a Lipschitz
diffeomorphism of R?. Then, for any function f € L*(¢(Q)), f o o is in L*(Q) and:

/ fdx = / |det(V)|f o p dx.
() Q

The Jacobian determinant |det(V )| exists a.e. in £, as a consequence of

the Rademacher theorem:

A Lipschitz function f : R? — R is almost everywhere differentiable.
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The following theorem is a version of the change of variables formula adapted to
surface integrals; see , Prop. 5.4.3.

Let Q C RY be a bounded domain of class C* with boundary T and unit normal
vector n pointing outward Q. Let ¢ : Q — R? be a C* diffeomorphism of R?. Then,
for any function g € L*(p(T)), g o ¢ belongs to L*(T) and:

/ gds:/\Com(th)n\goqyds7
#(M) r

where Com(M) is the cofactor matrix of a d X d matrix.

The integrand

|Com(Vep)n|= |det(V)| [V~ |

is sometimes called the tangential Jacobian of the diffeomorphism ¢.
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Surfaces and curvature (1)

At first order, in the neighborhood of a point p € I, a surface I' behaves like a plane,
the tangent plane,

e With normal vector n(p),

e Which contains the tangential directions to I'.
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e At second order in the neighborhood of p € T, the surface I' has one curvature in
each tangential direction.

e The principal directions at p are those tangential directions vi(p) et v»(p)
associated to the lower and larger curvatures x1(p) et x2(p).

e The mean curvature k(p) is the sum k(p) = k1(p) + K2(p).

p
V2
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Let us recall the implicit function theorem; see , Chap. I, Th. 5.9.

Let ©, E, F be Banach spaces, V C ©, U C E be open sets. and F :V x U — F be
a function of class CP for p > 1. Let (6o, uo) € V x U be such that F (6o, up) =0
and assume that:

The differential d,F (0o, uo) : E — F is a linear isomorphism.
Then there exist open neighborhoods V' C V of 6y in © and U’ C U of up in E, and
a mapping g : V' — U’ of class CP satisfying the properties:
g(bo) = uo,

For all € V', the equation F(0,u) = 0 has a unique solution u € U’, given by
u=g(0).
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Existence and uniqueness of the solution u to an elliptic equation (e.g. the
conductivity equation, the linear elasticity system) is often guaranteed by the
Lax-Milgram theory.

In general, this theory only supplies “weak” solutions, in a Sobolev space with
“low" regularity (typically H*(Q)).

It turns out that this solution is in general “as regular as permitted by the data".

Elliptic regularity is a general phenomenon, which roughly states:

The solution u to a second-order elliptic equation posed in a smooth domain
Q, with smooth coefficients, is twice more regular than the data f:

f e H(Q) = u e H*(Q), and ||ul| g2y < ClIfllir(q)-
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Let Q C RY be a bounded domain of class C**2, and let f € H*(Q). Then, the
unique solution u € H3(Q) to the equation

—Au=f inQ,
u=20 on 09,

belongs to H**2(Q), and the following estimate holds:

[|ull 2@y < ClEF [ axays

for a constant C > 0 which only depends on k and Q.

e This is an avatar of a very general phenomenon; similar statements hold for

e Other types of boundary conditions (Neumann, Robin, ...),

e Other equations: the linearized elasticity system, the Stokes equations, etc.

e We only provide a short sketch of proof; see , 89.6 for a comprehensive
treatment.
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Hint of proof: We proceed in three steps:

(i) Interior regularity: We prove that for every cut-off function x € CZ°(9),

xu € H*(Q), and lIxulliz@) < ClIfll2@)s
for a constant C > 0 depending only on x and Q.

(i1) Regularity near the boundary: We prove that for any point xo € 9%, there
exists a bounded open set O containing xo such that for any cutoff function
X € C(RY) with compact support inside O,

xu € H*(Q), and lIxullmz@) < ClIfllz@)-

(i) Global regularity: Using a partition of unity argument, we “glue” the local
results from Steps (i) and (ii).

93 /105



Proof of Step (i): Interior regularity

e By a simple calculation, the function xu satisfies the equation:

—A(xu) =g, where g:=—(Ax)u—2Vy-Vu— xf e L*(RY). (5F)
Under variational form, yu is the unique solution in H3(2) to the problem:
Vv € H}(Q), /V(Xu)~VvdX:/gvdx. (VF)
Q Q

e Intuitively, because g € L?(Q) and supp(g) is a compact of Q, for i =1,...,d,
% € H7'(Q). By the standard Lax-Milgram theory, the variational problem

VveH&(Q), /VW,-~Vvdx:<ag,v> ,
o 0%/ y-1(),13()

obtained by formally taking derivatives in (SF) or (\/F), has a unique solution
w; € Hg(Q), which it is tempting to identify with %(Xu).

e Making this argument rigorous relies on the method of translations of L. Nirenberg.
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For a function u: Q — R, a point x € Q, and a direction h € RY such that
|h| < d(x,09), we define the difference quotient:

u(x+ h) — U(X).

Dru(x) = Th]

The following statements are equivalent:
u € HY(Q);
There exists C > 0 such that:

Vi:l,...,d, VQOECCOO(Q), ‘/ u%dx S CH@HLZ(Q)
Q OXi

There exists C > 0 such that for any open subset w € Q, and any vector
h € RY with |h| < dist(w, 9Q),

|1Dhull 2wy < C.

In addition, one may take C = ||Vul|;2(q)2 in the last two statements.

————————=— ==

4
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Taking v = D_uDs(xu) as test function in the variational formulation for xu is
possible because supp(xu) is a compact of Q; this yields:

/ V(xt) - V(D—pDa(xu)) dx = / gD_»Dy(xu) dx.
Q Q
Performing a discrete integration by parts (i.e. a change of variables), we get:

[ 9Oix)) - V(Ouxw) dx = [ gD-4D(xw) dx.

Q Q

The Cauchy-Schwarz inequality and the translation theorem ((i) = (iii)) lead to:
IV (Ds(x))[E20p2 < llgllz@|IV(Da(xu))ll 2@y,

and so:
[1Do(V(xt)lz@p < llgllz@)-

Eventually, the translation theorem ((iii) = (i)) implies from this inequality that
V(xu) € H*(Q)? with the desired estimate.
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Proof of Step (ii):

e Let xo € 0€2. Because 0N is “smooth”, we may take O so small that 9Q is “nearly
flat” around xo (say, Q2 coincide with the lower half-space near xo).

e The same argument as before (with “horizontal” translations h), shows that:

vie1,...d—1, 259 ¢ prq) and H%(XU) < Cllf .

0x; @)

e It remains to prove that aa—:z(xu) € L3(Q): we re-use the original equation:
d
82 d—1 82
Txg(XU) =&~ Z afxr_g(XU)

i=1
97 /105



Proof of Step (iii).

e By compactness of Q, there exist open subsets
O € Q, and Oq,...,0n C RY as in the state-
ment of Step (ii) such that:

N
ﬁ C UO,
i=0

o Let {0;},_, , be a partition of unity associated
to the covering {Oi},_, . i

N
Vi, 0; € CZ(0i), 0; >0, and Y 6 =1on Q.
i=0
e Then:
N
u= Oou + Z Oiu
~—~ =y ~—~
€H2(Q), by Step (i) and = €H2(Q), by Step (ii) and
0oull g2 () <ClIfll 2(q) NOiull y2(q) <ClIfll 2(q)

O
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The Sobolev imbedding theorem states conditions for Sobolev class functions to be
regular in the “classical” sense, i.e. for their belonging to a Holder space C*7(Q):

- 0%u(x) — 0%u(y
weC(Q) & |lullgnr = llulloxg + sup sup 1240 = uly)]

|| =k x.yeQ Ix —yl|°
x#y

< 0.

Let Q C RY be a bounded Lipschitz domain. Let 0 < k, 1 < m be two integers,
1 < p < oo be an exponent, such that there exists o € (0,1) satisfying:

k+rf§m7g.
p

Then, the space W™P(Q) is continuously embedded in C*?(Q), and there exists a
constant C > 0 such that:

Vu € W(Q), [[ullern(@y < Cllullwnse.

Roughly speaking, functions in W™P(£2) have “a little less” than m classical
derivatives, and “tend to have m classical derivatives” as p — oco.
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