
Elementary partial differential equations: correction of Midterm 1

Exercise 1

The proposed three PDE are linear and first-order. A natural means to solve them is then the method
of characteristics.

(1) We consider the PDE:

(1) −∂u
∂x

+ 2
∂u

∂y
+ xu = 0.

Its characteristic curves s 7→ (x(s), y(s)) fulfill the following ODE:

(2)

{
x′(s) = −1
y′(s) = 2

,

which gives, {
x(s) = −s
y(s) = 2s+ c

,

where c is an arbitrary constant (as usual, strictly speaking, two arbitrary constants should stem from
the integration of (2), one of which disappearing by operating a reparameterization of the curves; see the
correction of Homework 1).

Now, consider a given characteristic curve (i.e. c is fixed), and let z(s) := u(x(s), y(s)) be the value of the
solution to the PDE along this curve. Differentiating in the definition of z(s) yields a subsequent ODE:

z′(s) = x′(s)∂u
∂x (x(s), y(s)) + y′(s)∂u

∂y (x(s), y(s))

= −∂u
∂x (x(s), y(s)) + 2∂u

∂y (x(s), y(s))

= −x(s)z(s)
= sz(s)

,

where the first line stems from the use of chain rule, the second line from (2), and the third line is nothing
but (1) evaluated at point (x(s), y(s)). Solving this ODE then yields the existence of a constant D such
that:

z(s) = De
s2

2 .

Now, we come to the final resolution of our PDE (1): the constant D in the expression of z(s) depends
on the considered characteristic curve (i.e. on c), and we now rewrite:

u(x(s), y(s)) = z(s) = f(c)e
s2

2 ,

where f is an arbitrary differentiable function. Eventually, using the formulae () which express the charac-
teristic curve c and the parameter s on this curve of an arbitrary point (x, y) in the plane, we get:

u(x, y) = f(y + 2x)e
x2

2 ,

where f is an arbitrary function. Now, you only have to check this result (which you should do systematically)!

If now u(x, 0) = 2xe
x2

2 , then f(2x)e
x2

2 = 2xe
x2

2 and f(x) = x. Eventually:

u(x, y) = (y + 2x)e
x2

2 .

(2) We now turn to the PDE

2x
∂u

∂x
+
∂u

∂y
= 0.

Its characteristic curves s 7→ (x(s), y(s)) fulfill the following ODE:{
x′(s) = 2x(s)
y′(s) = 1

,
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which gives, {
x(s) = ce2s

y(s) = s
,

where c is an arbitrary constant.

Considering a fixed characteristic curve (i.e. c is fixed), the value function z(s) = u(x(s), y(s)) along this
curve satisfies:

z′(s) = 0.

Consequently, the solution to our PDE reads:

u(x(s), y(s)) = f(c),

where f is an arbitrary differentiable function. Expressing this relation in terms of x and y only yields:

u(x, y) = f(xe−2y).

Eventually, using the ‘boundary condition’ u(x, 0) = sin(x), we have f(x) = sin(x) and:

u(x, y) = sin(xe−2y).

(3) Let us finally deal with the PDE

(3) (1 + x2)
∂u

∂x
+
∂u

∂y
− u = ey.

Its characteristic curves s 7→ (x(s), y(s)) fulfill the following ODE:{
x′(s) = 1 + x2(s)
y′(s) = 1

,

which gives, {
arctan(x(s)) = s+ c

y(s) = s
,

where c is an arbitrary constant.

Considering a fixed characteristic curve (i.e. c is fixed), the value function z(s) = u(x(s), y(s)) along this
curve satisfies:

z′(s) = x′(s)∂u
∂x (x(s), y(s)) + y′(s)∂u

∂y (x(s), y(s))

= (1 + x2(s))∂u
∂x (x(s), y(s)) + ∂u

∂y (x(s), y(s))

= z(s) + es
.

We now end up with an ODE:

(4) z′(s)− z(s) = es.

The solution z0(s) of the corresponding homogeneous ODE is simply:

z0(s) = Des,

where D is an arbitrary constant. Now, we apply the method of variation of constant to solve the inhomo-
geneous ODE (4), and search for its solution under the form z(s) = D(s)es, where D(s) is a function to be
found. Plugging this expression into (4) yields:

D′(s)es = es,

and D′(s) = 1. Thus, there is a constant E such that:

z(s) = ses + Ees.

Now, we return to our PDE (3). The constant E appearing above as usual depends on the particular
characteristic curve considered in the analysis (hence, it is actually a function f(c)). Expressing the value
function in terms of x and y instead of s and c gives:

u(x, y) = yey + f(y − arctan(x))ey,
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Exercise 2

(1) (a) has determinant ∆ = 0.0 − ( 5
2 )2 = − 25

4 and is therefore hyperbolic. (b) has determinant ∆ =

1.2− (1)2 = 1 and is elliptic. Eventually, (c) has determinant ∆ = 4.0− 02 = 0 and is parabolic.

(2) The determinant of the PDE

(5) x
∂2u

∂x2
+ (x+ y)

∂2u

∂x∂y
+ y

∂2u

∂y2
= 0

depends on the considered point since its coefficients are not constant. It reads:

∆(x, y) = xy −
(
x+y
2

)2
= 4xy−(x2+y2+2xy)

4

= −(x2+y2−2xy)
4

= −
(
x−y
2

)2 .

This last expression is:

• null if x = y, in which case (5) is parabolic
• negative if x 6= y, in which case (5) is hyperbolic.

The situation is then as depicted in Figure 1.

x

y

0

x = y

hyperbolic

hyperbolic

parabolic

Figure 1. Sketch of the regions where the PDE (5) is elliptic, parabolic or hyperbolic.

(3) We consider the second-order linear PDE:

(6)
∂2u

∂x2
+
∂2u

∂y2
+ 3

∂u

∂x
− 4

∂u

∂y
+ 25u = 0.

(a): This simply makes use of the formula for differentiating a product of two functions. We have:

∂u

∂x
(x, y) = aeax+byv(x, y) + eax+by ∂v

∂x
(x, y),

∂u

∂y
(x, y) = beax+byv(x, y) + eax+by ∂v

∂y
(x, y),

and for the second-order derivatives:

∂2u

∂x2
(x, y) = a2eax+byv(x, y) + 2aeax+by ∂v

∂x
(x, y) + eax+by ∂

2v

∂x2
(x, y),

∂2u

∂y2
(x, y) = b2eax+byv(x, y) + 2beax+by ∂v

∂y
(x, y) + eax+by ∂

2v

∂y2
(x, y).

(b): Plugging the above expressions in (6) yields:

eax+by ∂
2v

∂x2
+ eax+by ∂

2v

∂y2
+ (2a+ 3) eax+by ∂v

∂x
+ (2b− 4) eax+by ∂v

∂y
+
(
a2 + b2 + 3a− 4b+ 25

)
eax+byv = 0,
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i.e.:
∂2v

∂x2
+
∂2v

∂y2
+ (2a+ 3)

∂v

∂x
+ (2b− 4)

∂v

∂y
+
(
a2 + b2 + 3a− 4b+ 25

)
v = 0.

Consequently, for v to satisfy a PDE of the form:

∂2v

∂x2
+
∂2v

∂y2
+ cv = 0,

(i.e. the first-order term have disappeared, and the second-order ones are unchanged), one must chose

a = − 3
2 and b = 2. In this situation, the 0th order coefficient c equals:

c = a2 + b2 + 3a− 4b+ 25 =
75

4
.

Exercise 3

(1) u(t, x) solves the following system, composed o the heat equation, and supplemented with initial condi-
tions, and Neumann boundary conditions:

∀t > 0, ∀x ∈ (0, L), cρ
∂u

∂t
(t, x)− κ∂

2u

∂x2
= 0,

∀t > 0, −κ∂u
∂x

(t, 0) = α, −κ∂u
∂x

(t, L) = β,

∀x ∈ (0, L), u(0, x) = φ(x).

α = −κ∂u
∂x (t, 0) is the heat flux crossing through the ‘surface’ x = 0, from the left to the right, at time t. It

is therefore a flux going in the rod. On the contrary, β = −κ∂u
∂x (t, L) is the heat flux crossing through the

‘surface’ x = L, from the left to the right, at time t, and corresponds to an energy leaving the rod.

(2). Since the cross- sectional area A is constant, the total heat H(t) reads:

H(t) = A

∫ L

0

cρu(t, x) dx.

(3) Let us compute:

H ′(t) = A
d

dt

(∫ L

0

cρu(t, x) dx

)
= A

∫ L

0

cρ
∂u

∂t
(t, x) dx

= A

∫ L

0

κ
∂2u

∂x2
(t, x) dx

= A

(
κ
∂u

∂x
(t, L)− κ∂u

∂x
(t, 0)

)
= A(α− β),

where the second line follows from the theorem of differentiation under the integral sign, and the third line
is a consequence of the fact that u solves the heat equation. As a consequence, one has:

(7) ∀t ≥ 0, H(t) = A(α− β)t+H(0).

(4) An equilibrium state to this equation does not exist under any circumstances. Indeed, relation (7) shows
that the heat energy H(t) contained in the rod goes tremendously large in time (i.e. H(t) → ±∞), which
prevents the existence of such a state... unless the ‘exploding’ term A(α − β)t vanishes, which is only pos-
sible provided α = β. This can be easily understood, since the total heat energy received by the rod from
the outside at time t is α (see the first question), and the total energy leaving the rod at time t is β. An
equilibrium state can exist only if those two terms compensate one another, i.e. α = β.

Exercise 4
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(1) See the lectures (or the textbook)!

(2) This is a direct consequence of the maximum and of the minimum principles. We know that:

∀x ∈ [0, 1], u(0, x) = 4x(1− x) ≤ 1,

and, as far as the boundary conditions are concerned:

∀t > 0, u(t, 0) = 0 ≤ 1, u(t, 1) = 0 ≤ 1.

The maximum principle allows to conclude that:

∀t > 0, ∀x ∈ [0, 1], u(t, x) ≤ 1.

In the very same way, using the minimum principle yields:

∀t > 0, ∀x ∈ [0, 1], 0 ≤ u(t, x).

(3) As suggested by the hint, denote as v(t, x) = u(t, 1− x). We have, by the chain rule:

∂v

∂t
(t, x) =

∂u

∂t
(t, 1− x),

and:
∂v

∂x
(t, x) = −∂u

∂x
(t, 1− x),

∂2v

∂x2
(t, x) =

∂2u

∂x2
(t, 1− x).

As a consequence: (
∂v

∂t
− κ∂

2v

∂x2

)
(t, x) =

(
∂u

∂t
− κ∂

2u

∂x2

)
(t, 1− x) = 0.

What’s more, we also have:

∀t > 0, v(t, 0) = u(t, 1) = 0, v(t, 1) = u(t, 0) = 0,

and

∀x ∈ [0, 1], v(0, x) = u(0, 1− x) = 4(1− x)(1− (1− x)) = 4x(1− x) = u(0, x).

All in all, v and u are two solutions of the heat equation ∂u
∂t − κ ∂u

∂x2 = 0, with the same homogeneous
Dirichlet boundary conditions, and the same initial conditions u(0, x) = 4x(1− x). As we have seen during
the lectures, the solution to such a system is unique. Consequently:

∀t > 0, ∀x ∈ [0, 1], u(t, x) = v(t, x) = u(t, 1− x).

(4) This is a simple computation, as we have seen several times during the lectures:

E′(t) =
1

2

d

dt

(∫ L

0

u2(t, x) dx

)
=

∫ L

0

u(t, x)
∂u

∂t
(t, x) dx

=

∫ L

0

κu(t, x)
∂2u

∂x2
(t, x) dx

=

[
u(t, x)

∂u

∂x
(t, x)

]L
0

− κ
∫ L

0

(
∂u

∂x

)2

(t, x) dx

= −κ
∫ L

0

(
∂u

∂x

)2

(t, x) dx

≤ 0

,

where the second line follows from the theorem of differentiation under the integral sign, the third line is a
consequence of the fact that u solves the heat equation, the fourth line stems from an integration by parts,
and the fifth line is obtained by using the information about the homogeneous Dirichlet boundary conditions.

Exercise 5
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(1) With the notations proposed in the midterm, the d’Alembert formula for the solution to the wave
equation is:

∀t > 0, ∀x ∈ R, u(t, x) =
1

2
(φ(x− ct) + φ(x+ ct)) +

1

2c

∫ x+ct

x−ct
ψ(s) ds.

(2) The only thing to do here is to plug the supplied data in the above formula:

u(t, x) = 1
2 (cos(x− ct) + cos(x+ ct)) + 1

2c

∫ x+ct

x−ct 0 ds.

= 1
2 (cos(x) cos(ct) + sin(x) sin(ct) + (cos(x) cos(ct)− sin(x) sin(ct)))

= cos(x) cos(ct),

as desired.

(3) I am pretty sure you will manage to draw the graph of the ‘cos’ function by yourselves!
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