
Elementary partial differential equations: homework 9

Assigned 04/22/2014, due 04/29/2014.

Exercise 1

This exercise is partly reprinted from [Strauss], §5.6, Exercise 2.
The purpose of this exercise is to solve the heat equation over the interval (0, `):

(1)
∂u

∂t
− ∂2u

∂x2
= 0,

completed with inhomogeneous Dirichlet boundary conditions:

(2) ∀t > 0, u(t, 0) = 0, and u(t, `) = et,

and initial conditions:

(3) ∀x ∈ [0, `], u(0, x) = 0.

To this end, we expand the (supposedly twice differentiable) function u and its partial derivatives ∂u
∂t , ∂2u

∂x2

as sine Fourier series over (0, `):

u(t, x) =

∞∑
n=1

un(t) sin
(nπx

`

)
,

∂u

∂t
(t, x) =

∞∑
n=1

vn(t) sin
(nπx

`

)
,

∂2u

∂x2
(t, x) =

∞∑
n=1

wn(t) sin
(nπx

`

)
.

(1) According to you, why is it more relevant to consider the sine Fourier expansions of u, ∂u
∂t and ∂2u

∂x2

than, e.g. their cosine or full Fourier expansions?
(2) By using the formulae for Fourier coefficients, express the coefficients un(t), vn(t) and wn(t) in terms

of u and its derivatives.
(3) By relying on the same methodology as in the lectures (that is, by using either inversion of the ∂

∂t

and
∫

signs, or integration by parts), express vn(t) and wn(t) in terms of un(t) and its derivative(s).
(4) From the fact that u solves (1), derive the following ODE for each of the coefficients un(t), n ∈ N∗:

dun
dt

(t) +
n2π2

`2
un(t) = (−1)n+1 2nπ

`2
et.

(5) For any fixed real numbers a, b ∈ R, solve the following first-order ODE of an unknown function y(t):

dy

dt
(t) + ay(t) = bet.

(6) Infer from the answers to Questions (5) and (6) that the coefficients un(t) are of the form:

un(t) =
(−1)n+12nπ

`2 + n2π2
et + cne

−n2π2t
`2 ,

for some constants cn yet to be found. Sketch the corresponding expansion for u(t, x).
(7) Eventually, by using the initial condition (3), find the values of cn and the expression of u(t, x).

1



Exercise 2

This exercise is partly reprinted from [Haberman], §2.5, Exercise 12.
Let Ω ⊂ R3 be a bounded domain, n be its normal vector field, pointing outward Ω. Recall that, if

V = (Vx, Vy, Vz) : Ω→ R3 is a differentiable vector field, Green’s formula reads:∫∫∫
Ω

div(V ) dx =

∫∫
∂Ω

V · n ds,

where the divergence div(V ) of V is defined as div(V ) = ∂Vx
∂x +

∂Vy
∂y + ∂Vz

∂z .

(1) Recall that the gradient ∇u of a differentiable function u : Ω → R is the vector field over Ω:

∇u =
(
∂u
∂x ,

∂u
∂y ,

∂u
∂z

)
. Show by a direct calculation that, for any differentiable function u : Ω → R

and any differentiable vector field V : Ω→ R3,

div(uV ) = u div(V ) +∇u · V.
(2) Deduce from Question (1) and Green’s formula that, for any twice differentiable functions u, v : Ω→

R, the following holds:∫∫∫
Ω

u∆v dx =

∫∫
∂Ω

u
∂v

∂n
ds−

∫∫∫
Ω

∇u · ∇v dx,

where the notation ∂v
∂n stands for ∇v · n.

(3) We now consider the Laplace equation:

(4) ∆u = f on Ω,

together with inhomogeneous Dirichlet boundary conditions

(5) u = g1 on ∂Ω.

Show unicity of the solution to (4,5) by using the energy method and the result of Question (2).
[Hint: consider two solutions u, v and take w = u − v. Express the PDE satisfied by w, multiply

it by w and integrate over Ω.]
(4) We still consider Laplace equation (4), but now with inhomogeneous Neumann boundary conditions:

(6)
∂u

∂n
= g2 on ∂Ω.

Show unicity of the solution to (4,6) up to a constant, by the same method as for Question (3).
(5) We eventually consider Laplace equation (4) with inhomogeneous Robin boundary conditions:

(7)
∂u

∂n
+ αu = g3 on ∂Ω,

for a fixed parameter α > 0. Show unicity of the solution to (4,7).

Exercise 3

This exercise is partly reprinted from [Strauss], §6.1, Exercise 9.
We consider the two-dimensional domain Ω :=

{
(x, y) ∈ R2, 1 < ||(x, y)||< 2

}
, that is, the annulus of

inner radius 1 and outer radius 2. Remember that the temperature u(t, x, y) inside the annulus is driven by
the heat equation ∂u

∂t − κ∆u = 0. In this exercise, we are interested in the steady state of this equation -
still denoted as u(x, y) - which satisfies the Laplace equation:

(8) ∆u = 0 on Ω.

The corresponding boundary conditions are:

(9) u = 100 on the inner radius,

(10)
∂u

∂n
= −γ on the outer radius,

where γ > 0, and we search u(x, y) as a radially symmetric function: u(x, y) ≡ u(r).
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(1) According to you, which properties of the problem may legitimate the search for a radially symmetric
solution to (8,9,10)?

(2) Interpret the sign of γ in terms of energy flow: is energy flowing in or out of the outer radius of Ω?
(3) By using the expression of the Laplace operator in polar coordinates:

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
.

Solve the system (8,9,10) for u(r).
(4) Where are the coldest and hottest values of the temperature u(r) located on ∂Ω? Is this in agreement

with the maximum and minimum principles?
(5) Is there a means to choose the value of γ so that the temperature at the outer radius of Ω is 20?

Exercise 4

This exercise is partly reprinted from [Strauss], §5.6, Exercise 10.
Consider a three-dimensional rod oriented along the x-axis, lying in the interval 0 < x < `. The cross-

sectional area A(x) of the rod varies with x and reads:

A(x) = b
(

1− x

`

)2

,

for some fixed parameter b > 0. The rod is insulated at its lateral sides, and its temperature is kept at 0 at
both ends. It is also assumed to be homogeneous, with coefficients c, ρ, κ equal to 1, and we assume that
the temperature u in the rod only depends on time and the x-variable: u ≡ u(t, x). The initial temperature
distribution in the rod is u(0, x) = φ(x), x ∈ [0, `], for some given function φ.

(1) Sketch a drawing of the situation.
(2) Show that the PDE governing the temperature u(t, x) inside the rod is:

(11) A(x)
∂u

∂t
=

∂

∂x

(
A(x)

∂u

∂x

)
, t > 0, 0 < x < `,

with boundary conditions:

(12) u(t, 0) = 0, u(t, `) = 0, t > 0,

(13) u(0, x) = φ(x), 0 < x < `.

[Hint: As we did in the lectures devoted to the derivation of PDE from physics, consider a slice of
rod lying between x and x+ h. Express the internal energy of the slice, as well as the energy flowing
in and out of it, and express the energy balance for this slice.]

(3) We search to solve the above system by the method of separation of variables, and search first for
separated solutions u(t, x) = T (t)X(x). Show that there exists a real constant λ such that:

(14)


T ′(t) + λT (t) = 0 for t > 0,

d
dx (A(x)X ′(x)) + λA(x)X(x) = 0 for 0 < x < `,

X(0) = X(`) = 0
.

(4) We now make the change of variable functions v(x) =
(
1− x

`

)
X(x). Show that v(x) satisfies:

(15) v′′(x) + λv(x) = 0, v(0) = v(`) = 0.

(5) Search for the negative eigenvalues λ < 0 of this last problem (15).
(6) Is λ = 0 an eigenvalue of this problem?
(7) Search for the positive eigenvalues λn of this problem, and write down the associated eigenfunctions

vn(x), as well as the corresponding functions Xn(x).
(8) Solve for the temporal part Tn(t) of the system (14) for each of the eigenvalues λn, and show that

u(t, x) can be written as the expansion:
∞∑
n=1

bn
sin
(
nπx
`

)
1− x

`

e−
n2π2t
`2 ,
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for some constants bn to be found.
(9) Eventually, by using the initial condition (13), identify bn as:

bn =
2

`

∫ `

0

φ(x)
(

1− x

`

)
sin
(nπx

`

)
dx.

Exercise 5

This exercise is reprinted from [Strauss], §5.6, Exercise 5.
The purpose of this exercise is to solve the inhomogeneous wave equation

(16)
∂2u

∂t2
− c2 ∂

2u

∂x2
= et sin(5x), t > 0, 0 < x < π,

with boundary conditions:

(17) u(t, 0) = 0, u(t, π) = 0, t > 0,

and initial conditions

(18) u(0, x) = 0,
∂u

∂t
(0, x) = sin(3x), 0 < x < π.

(1) To go back into the framework of homogeneous PDE, we seek to make a change of unknown function
u so that the new unknown function satisfies the homogeneous wave equation. In this particular
case, we consider the new function v(t, x) = u(t, x)+aet sin(5x), for some constant a. Find the value
of a such that v satisfies the homogeneous wave equation, and write down the whole system (i.e.
with boundary and initial conditions) satisfied by v.

(2) By using the contents of the lectures over the method of separation of variables, show that v can be
written as the following expansion:

v(t, x) =

∞∑
n=1

(an cos (nct) + bn sin (nct)) sin (nx),

for some coefficients an, bn, n = 1, ... to be found.
(3) By using the initial condition for v(0, x), calculate the values of the coefficients an.
(4) Now, use the second initial condition over ∂v

∂t (0, x) to calculate the coefficients bn.

[Hint: remember that you should never derivate under the
∑

sign! Express ∂v
∂t as a sine Fourier

expansion - i.e. ∂v
∂t (t, x) =

∑∞
n=1 vn(t) sin(nx), and calculate the coefficients vn(t) in terms of the

bn. Eventually evaluate vn(0).]
(5) Conclude as for the expression of v(t, x), and that of u(t, x).
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