Elementary partial differential equations: homework 6

Assigned 03/25/2014, due 04/01/2014.

Exercise 1

This exercise is partially reprinted from [Strauss], §5.1, Exercise 2.

Let $\phi:[0,1]\to\mathbb{R}$ be the function defined by:

$$\forall x \in [0,1], \ \phi(x) = x^2.$$

- (1) Calculate the Fourier sine series of ϕ over the interval [0,1].
- (2) Calculate is Fourier cosine series over the interval [0,1].
- (3) Remember from the lectures that the Fourier sine or cosine series of a function do not necessarily converge to this function. We now assume that the Fourier cosine series of ϕ converges towards ϕ on the whole interval [0, 1]. Use the answer to question (2) to show that:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}.$$

Exercise 2

This exercise is reprinted from [Strauss], §5.1, Exercise 4.

(1) Compute the full Fourier series of the function $\phi: [-\pi, \pi] \to \mathbb{R}$ defined by:

$$\forall x \in [-\pi, \pi], \ \phi(x) = |\sin x|.$$

(2) We now assume that the full Fourier series of ϕ converges towards ϕ on $[-\pi, \pi]$. Use the result of Question (1) to compute the values of the sums:

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1}.$$

Exercise 3

This exercise is partially reprinted from [Strauss], §4.3, Exercise 9.

In this exercise, we consider the heat equation on the interval [0, 1]:

(1)
$$\frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} = 0,$$

with boundary conditions:

(2)
$$\forall t > 0, \ \frac{\partial u}{\partial x}(t,0) + u(t,0) = 0, \text{ and } u(t,1) = 0.$$

(1) Use the method of separation of variables and write down the two ODE satisfied by the temporal and spatial parts of a separated solution u(t,x) = T(t)X(x), as in the lectures. In particular, show that there exists $\lambda \in \mathbb{R}$ such that the spatial part $X:[0,1] \to \mathbb{R}$ of a separated solution should satisfy:

(3)
$$\begin{cases} -X''(x) = \lambda X(x) & \text{for } x \in (0,1) \\ X'(0) + X(0) = 0, & X(1) = 0 \end{cases}$$

- (2) Find an eigenfunction associated to the eigenvalue $\lambda = 0$. Call it $X_0(x)$.
- (3) Find an equation for the positive eigenvalues $\lambda = \beta^2$, $\beta > 0$.
- (4) Show graphically, as during the lectures, that there are an infinite number of positive eigenvalues. What are the associated eigenfunctions?

1

- (5) Does the system (3) have a negative eigenvalue?
- (6) Solve the temporal equation associated to each eigenvalue λ and write down the general series expansion for solutions to the system (1 - 2).

Exercise 4

This exercise is partially reprinted from [Haberman], §2.3, Exercise 3.

Consider a three dimensional rod oriented along the x-axis, with cross-sectional area A and lateral perimeter P (see Figure 1).

FIGURE 1. Setting for Exercise 4.

The rod is very thin, and lies in the region $(0 < x < \ell)$, so that we assume that its temperature u only depends on the time t and on x; it is insulated at both ends (homogeneous Dirichlet boundary conditions). Its (constant) density is denoted as ρ , its (constant) specific heat as c, and its (constant) Fourier constant as κ .

The rod does not contain any thermal source, but its lateral surface is not insulated: at each time, there is an energy loss in the rod through its lateral surface. We assume that the energy lost by the system around a point x at time t equals $\alpha u(t,x)$ per unit area, where $\alpha > 0$.

(1) Show that u(t,x) solves the following PDE:

$$c\rho \frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} + \frac{\alpha P}{A}u = 0,$$

with boundary conditions:

(5)
$$\forall t > 0, \ u(t,0) = 0, \ \text{and} \ u(t,\ell) = 0.$$

- (2) For the sake of simplification, we thenceforth assume that $c\rho = 1$ and $\frac{P}{A} = 1$. Find the equilibrium temperature $u_{eq}(x)$ in the rod, if any.
- (3) We use the method of separation of variables to solve (4-5). Write down the ODE satisfied by the temporal part T(t) and spatial part X(x) of a separated solution u(t,x) = T(t)X(x). In particular, show that there exists $\lambda \in \mathbb{R}$ such that X(x) satisfies:

(6)
$$\begin{cases} -X''(x) + \frac{\alpha}{\kappa} X(x) = \lambda X(x) & \text{for } x \in (0, \ell) \\ X(0) = 0, \ X(1) = 0 \end{cases}.$$

- (4) Is $\lambda = \frac{\alpha}{\kappa}$ an eigenvalue of the problem?
- (4) Is λ = κ an eigenvalue of the form λ = α/κ + β², β > 0.
 (5) Search for the eigenvalues λ of the form λ = α/κ β², β > 0.
 (6) Search for the eigenvalues λ of the form λ = α/κ β², β > 0.
- (7) Solve the temporal equation associated to each eigenvalue λ and write down the general series expansion for solutions to the system (4 - 5).
- (8) Do you retrieve the result of Question 1 from the obtained series for solutions u(t,x) to (4-5)?