
Elementary partial differential equations: homework 5

Assigned 03/11/2014, due 03/25/2014.

Exercise 1

(1) Find the solution to the PDE
∂u

∂t
+ x

∂u

∂x
+ u = 3x

of a function u ≡ u(t, x) of two variables, such that u(0, x) = 2x, x ∈ R.
(2) (Optional) Find the solution to the PDE

x
∂u

∂x
− y ∂u

∂y
+ y2u = y2

of a function u ≡ u(x, y) of two variables, such that u(x, 1) = 1, x ∈ R.

Exercise 2

This exercise is reprinted from [Strauss], §2.3, Exercises 6− 7.

(1) Consider the one-dimensional heat equation:

(1)
∂u

∂t
− κ∂

2u

∂x2
= 0,

over the space interval x ∈ (0, `), and for t > 0. Prove the comparison principle: if u and v are two
solutions to (1) such that:

u(t, x) ≤ v(t, x) for

 (t, x) = (0, x) x ∈ [0, `]
(t, x) = (t, 0) t > 0
(t, x) = (t, `) t > 0

,

then u(t, x) ≤ v(t, x) for all x ∈ [0, `], t > 0.
(2) Consider now two solutions u, v to the following heat equations:

∂u

∂t
− κ∂

2u

∂x2
= f,

∂v

∂t
− κ∂

2v

∂x2
= g,

posed for values x ∈ (0, `), and for t > 0, associated to different sources f, g. We assume that f ≤ g,
and that u and v satsify:

u(t, x) ≤ v(t, x) for

 (t, x) = (0, x) x ∈ [0, `]
(t, x) = (t, 0) t > 0
(t, x) = (t, `) t > 0

.

Prove that u(t, x) ≤ v(t, x) for all x ∈ [0, `], t > 0.
[Hint: during the lectures, we have proved the maximum principle for the heat equation without

sources. Observe that it stays true if there is a negative source. The proof of this fact is exactly the
same as the one seen during the lectures.]

(3) (Optional) Let v(t, x) be a function that fulfills the inequality:

∂v

∂t
− ∂v

∂x2
≥ sin(x), for 0 ≤ x ≤ π, t > 0.

We also assume that:

∀t > 0, v(t, 0) ≥ 0, v(t, π) ≥ 0,

and:

∀x ∈ (0, `), v(0, x) ≥ sin(x).
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Use question (2) to show that:

∀t > 0, ∀x ∈ (0, `), v(t, x) ≥ (1− e−t) sin(x).

Exercise 3

This exercise is reprinted from [Strauss], §2.4, Exercise 15.
Consider the one-dimensional heat equation with source f :

(2)
∂u

∂t
− κ∂

2u

∂x2
= f(t, x),

over the space interval x ∈ (0, `), and for t > 0, with Neumann non homogeneous boundary conditions:

(3) ∀t > 0,
∂u

∂x
(t, 0) = g(t),

∂u

∂x
(t, `) = h(t),

and initial condition:

(4) ∀x ∈ (0, `), u(0, x) = φ(x).

Show that the system (2-3-4) has at most one solution (i.e. if the solution exists, it is unique), by using the
energy method as during the lectures.

Exercise 4

This exercise is reprinted from [Strauss], §2.4, Exercise 16.
Consider the one-dimensional heat equation with constant dissipation:

∂u

∂t
− κ∂

2u

∂x2
+ bu = 0,

over the whole real line x ∈ R, for t > 0, where b > 0 is a constant, and with initial condition:

∀x ∈ (0, `), u(0, x) = φ(x).

(1) Define the function v(t, x) by the relation:

∀x ∈ R, ∀t > 0, u(t, x) = e−btv(t, x).

Compute the partial derivatives of v in terms of those of u, and show that v satisfies the ‘classical’
heat equation over the real line.

(2) By using the content of the lectures over the diffusion equation over the real line, find the expressions
of v(t, x) and u(t, x).

(3) Use the same process as in Questions (1−2) to find the expression of the solution to the heat equation
with variable dissipation:

∂u

∂t
− κ∂

2u

∂x2
+ bt2u = 0,

where b > 0 is a constant, and with initial conditions

∀x ∈ (0, `), u(0, x) = φ(x),

by performing the change of variable functions

∀x ∈ R, ∀t > 0, u(t, x) = e−
bt3

3 v(t, x).

Can you figure how those change of variable functions have been devised ?

Exercise 5

This exercise is partly reprinted from [Strauss], §4.1, Exercise 4.
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This exercise is devoted to the study of the wave equation in a resistant medium:

(5)
∂2u

∂t2
− c2 ∂

2u

∂x2
+ r

∂u

∂t
= 0,

where t > 0, x ∈ (0, `), and 0 < r < 2πc
` is the resistance coefficient. This system is endowed with Dirichlet

homogeneous boundary conditions:

(6) ∀t > 0, u(t, 0) = 0, u(t, `) = 0,

and the initial conditions read:

(7) ∀x ∈ (0, `), u(0, x) = φ(x),
∂u

∂t
(0, x) = ψ(x),

for given functions φ, ψ.

(1) By using the energy method, show that the system (5 - 6 - 7) admits at most one solution.
[Hint: assume there exists two solutions u1, u2 to the system, and consider their difference w =

u2−u1, which satsifies (5) with null initial conditions. Multiply both sides of (5) by ∂w
∂t and perform

integration by parts so as to show that the energy E(t) := 1
2

∫ `
0

((
∂w
∂t

)2
+ c2

(
∂w
∂x

))
dx decreases.]

(2) We now study this system by the method of separation of variables. Let u(t, x) = T (t)X(x) be a
solution to (5-6) under separated form, if any. Show that:

(8) ∀t > 0, ∀x ∈ (0, `), −T
′′(t) + rT ′(t)

c2T (t)
= −X

′′(x)

X(x)
= λ,

for some constant λ, and:
X(0) = X(`) = 0.

(3) Show that a separated solution to (5 - 6) which differs from 0 exists only in the case:

λ = λn =
(nπ
`

)2
, n = 1, 2, ...,

and calculate the associated eigenfunctions Xn(x).
(4) Calculate the associated time function Tn(t) for each value of λn by solving the related ODE,

stemming from relation (8).
(5) By using the superposition principle, write down the general series expansion for the solutions to (5

- 6) provided by the above study. What are the initial conditions φ, ψ associated to these solutions,
i.e. those initial conditions you have actually solved the system (5 - 6-7) for ?

Exercise 6

This exercise is reprinted from [Strauss], §4.2, Exercise 4.
In this exercise, we study the one-dimensional heat equation in a rod of length 2`:

(9)
∂u

∂t
− κ∂

2u

∂x2
= 0,

where t > 0, −` < x < `. This system comes with periodic boundary conditions:

(10) ∀t > 0, u(t,−`) = u(t, `),
∂u

∂x
(t,−`) =

∂u

∂x
(t, `).

(1) Show that the eigenvalues of the problem are:

λn =
(nπ
`

)2
, n = 0,1, 2, ...,

and compute the associated eigenfunctions Xn(x).
(2) Show that the general form of solutions to (9 - 10) is provided by the following series:

u(t, x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
`

)
+ bn sin

(nπx
`

))
e−

n2π2κt
`2 ,

for some coefficients an, n = 0, ..., bn, n = 1, ....
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