
Advanced Calculus I: Revisions for the final exam

Exercise 1:
Let f : R → R be a uniformly continuous function. Prove that there exist two real numbers m, p ∈ R

such that:

∀x ∈ R, |f(x)|≤ m|x|+p.

Exercise 2:
Let f : (0, 1)→ R be an increasing function, which is bounded from above. Show that the limit lim

x→1
f(x)

exists.

Exercise 3:

Let f : [0, 1]→ R be a continuous function such that f(0) = f(1). Show that there exists c ∈
[
0, 12

]
such

that:

f(c) = f

(
c+

1

2

)
.

Exercise 4:

(1) Give an example of a continuous and bounded function f : (0, 1)→ R which has neither a maximum,
nor a minimum on (0, 1).

(2) Give an example of a bounded function f : [0, 1]→ R which has neither a maximum, nor a minimum
on [0, 1].

Exercise 5:
Let f : [0, 1] → R be a differentiable function, whose derivative is continuous, such that f(0) = 0, and,

for all x ∈ [0, 1], f ′(x) > 0. Show that there exists a real number m > 0 such that:

∀x ∈ [0, 1] , f(x) ≥ mx.

Exercise 6: (Around the constant of Euler-Mascheroni)

(1) By using the mean-value theorem, show that, for any natural number n ∈ N∗, one has:

1

n+ 1
< log(n+ 1)− log(n) <

1

n
.

Let {xn}n∈N∗ be the sequence defined by:

xn = 1 +
1

2
+ ...+

1

n
− log(n).

(2) Show that the sequence {xn}n∈N∗ is strictly decreasing.
(3) Show that, for any n ∈ N∗, one has:

0 ≤ xn ≤ 1.

(4) Conclude that {xn}n∈N∗ has a limit γ ∈ [0, 1). This limit is called the Euler-Mascheroni constant.

Exercise 7:
Let a < b be two real numbers, and let f : [a, b] → R be a differentiable function such that f(a) = f(b)

and f ′(a) = f ′(b) = 0. By applying Rolle’s theorem to the auxiliary function h(x) = e−x(f(x) + f ′(x)),
show that there exists a number c ∈ (a, b) such that:

f ′′(c) = f(c).

Exercise 8:
Let f, g : R→ R be two continuous functions. We assume that:

∀x ∈ Q, f(x) < g(x).
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(1) Show that, for all x ∈ R, f(x) ≤ g(x).
[Hint: Start by observing that, for any real number x, there exists a sequence {rn} of elements of

Q such that rn → x.]
(2) Does it necessarily hold that, for all x ∈ R, one has: f(x) < g(x)? If your answer is yes, prove it;

else, provide a counterexample.

Exercise 9:
Let f : R→ R be the function defined by:

∀x ∈ R, f(x) =
1

3
(4− x2).

Let also {un}n∈N be the sequence defined recursively by:

• u0 = 1
2 ,

• ∀n ∈ N, un+1 = f(un).

(1) Calculate u1, u2.
(2) Show by induction that, for any n ∈ N, un ∈

[
0, 43

]
.

(3) Calculate the derivative of f .
(4) Show that, for any x ∈

[
0, 43

]
, one has:

|f(x)− 1|≤ 8

9
|x− 1|.

[Hint: apply the mean-value theorem to f .]
(5) Infer from your answer to the previous question that, for any n ∈ N:

|un+1 − 1|≤ 8

9
|un − 1|.

(6) Show that, for any n ∈ N, |un − 1|≤
(
8
9

)n |u0 − 1|.
(7) Conclude that {un}n∈N converges to 1.

Exercise 10:
For any natural number n ≥ 2, let fn : [1,+∞)→ R be the function defined by:

fn(x) = xn − x− 1.

(1) Show that, for a given n ≥ 2, the function fn is strictly increasing on [1,+∞).
(2) Show that, for a given n ≥ 2, there exists a unique real xn ∈ [1,+∞) such that fn(xn) = 0.
(3) Show that, for any n ≥ 2, one has: fn+1(xn) > 0.
(4) Infer that the sequence {xn} is decreasing.
(5) Show that the sequence {xn} has a limit `.
(6) Show that ` = 1.

[Hint: Argue by contradiction; if ` 6= 1, show that there is a fixed number α > 0 and a rank N ∈ N
in the sequence such that, for n ≥ N , xn > 1 + α, and infer a contradiction from this last fact.

Exercise 11:
Let f : [0, 1]→ R be a continuous function such that f(0) = 0 and f(1) > 0.

(1) Let C ⊂ [0, 1] be defined by:

C = {x ∈ [0, 1] , f(x) = 0} .
Show that C is compact.

(2) infer that there exists a number x0 ∈ [0, 1) such that:

f(x0) = 0 and ∀x > x0, f(x) > 0.

Exercise 12:
Let f : R→ R be a continuous function which satisfies the following property:

∀x, y ∈ R, f(x+ y) = f(x) + f(y).

Denote as m = f(1).
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(1) Show that, for any rational number x ∈ Q, one has f(n) = mx.
[Hint: Start by proving this property for x ∈ N, then for x ∈ Z.]

(2) infer that, for any real number x ∈ R, one has f(x) = mx.

Exercise 13:
Let a < b be two real numbers, and f, g : [a, b]→ R be two continuous functions such that:

f(a) ≤ g(a) and f(b) ≥ g(b).

Show that the equation f(x) = g(x) has a solution in [a, b].

Exercise 14
A function f : R → R is said to be even if, for any x ∈ R, f(x) = f(−x), and is said to be odd if

f(x) = −f(−x).

(1) Give examples of non constant even and odd functions, and draw their graphs.
(2) Show that the derivative f ′ of a differentiable, odd function, is even.
(3) Does the converse necessarily hold (i.e. if f ′ is even, is f necessarily odd)? If your answer is yes,

prove it; else, provide a counterexample.
(4) Show that the derivative f ′ of a differentiable, odd function, is even.
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