Advanced Calculus I: Revisions for Midterm 2

Exercise 0:

(1) Let D be a subset of \mathbb{R} , and $x_0 \in D$. Let $f: D \to \mathbb{R}$ be continuous at x_0 , and such that $f(x_0) \neq 0$. Show that there exists a neighborhood Q of x_0 such that:

$$\forall x \in D \cap Q, \ f(x) \neq 0.$$

- (2) Define precisely the notion of a uniformly continuous function f on a subset $D \subset \mathbb{R}$.
- (3) Let $D \subset \mathbb{R}$, and $x_0 \in D$ be an accumulation point of D. Prove that, if $f, g : D \to \mathbb{R}$ are two functions which are differentiable at x_0 , then so is their product fg, and provide its derivative.
- (4) Let $D \subset \mathbb{R}$, $x_0 \in D$, and consider a function $f: D \to \mathbb{R}$. Express, in terms of quantifiers, what it means for f not to be continuous at x_0 .
- (5) Recall the definition of a compact set; then, state the Heine-Borel theorem.
- (6) Let $D \subset \mathbb{R}$, and $f: D \to \mathbb{R}$ be a function; prove that, if f is uniformly continuous on D, then it is continuous at any point $x_0 \in D$.
- (7) State Rolle's theorem.
- (8) State the intermediate-value theorem.
- (9) State the mean-value theorem.
- (10) State the theorem of sequential characterization of the limit of a function at a point.

Exercise 1:

- (1) State the theorem around sequences of elements lying in a compact set $K \subset \mathbb{R}$.
- (2) Show that the interval A = [0, 2) is not compact by finding a sequence $\{x_n\}$ of elements of A which does not satisfy the criterion stated in (1).
- (3) State the definition of a compact subset of \mathbb{R} .
- (4) Show that this interval is not compact by using only the definition of compactness.
- (5) Show that this interval is not compact by using the Heine-Borel theorem.

Exercise 2:

f, g continuous on [0, 1], such that:

$$0 < f(x) < g(x)$$
.

Show that h = f/g is well-defined and continuous. Show that its image is in (0,1). Show that there exist m, M st

$$mg \leq f \leq Mg$$
.

Exercise 3:

Let a < b be two real numbers, and let $f : [a, b] \to \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b). Assume in addition that there exists a real number M > 0 such that, for all $x \in (a, b)$:

$$|f'(x)| \leq M$$
.

Show that, for all $x, y \in [a, b]$, one has:

$$|f(x) - f(y)| \le M|x - y|.$$

Exercise 4:

(1) Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the function defined by:

$$\forall x \neq 0, \ f(x) = \frac{\sin(x)}{x}.$$

Show that f has a limit at 0 and calculate this limit.

(2) Let $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the function defined by:

$$\forall x \neq 0, \ f(x) = \frac{\cos(x) - 1}{x}.$$

Show that f has a limit at 0 and calculate this limit.

Exercise 5:

Let $f:[0,2] \to \mathbb{R}$ be the function defined by:

$$f(x) = |x - 1|.$$

Show that f(0) = f(2), but that there does not exists any $c \in [0, 2]$ such that f'(c) = 0. Why does it not come in contradiction with Rolle's theorem?

Exercise 6:

By using the mean-value theorem, show that:

(1) For any real numbers 0 < a < b, one has the inequality:

$$\frac{1}{b} < \frac{\log(b) - \log(a)}{b - a} < \frac{1}{a}.$$

(2) For all x > 0, one has:

$$\frac{1}{x+1} < \log(1+x) - \log(x) < \frac{1}{x}.$$

Exercise 7:

The purpose of this exercise is to provide an alternative proof of the Heine theorem. Let $K \subset \mathbb{R}$ be a compact set, and let $f: K \to \mathbb{R}$ be a continuous function. The proof goes by a contradiction argument.

- (1) Negate the definition of uniform continuity for f.
- (2) Show that, if f is not uniformly continuous on K, then there exist $\varepsilon > 0$, as well as two sequences $\{x_n\}_{n \in \mathbb{N}^*}$ and $\{y_n\}_{n \in \mathbb{N}^*}$ of elements of K which satisfy the following properties:

$$\forall n \in \mathbb{N}^*, |x_n - y_n| < \frac{1}{n}, \text{ and } |f(x_n) - f(y_n)| > \varepsilon.$$

- (3) Show that there exist two subsequences $\{x_{n_k}\}$ and $\{y_{n_k}\}$ of $\{x_n\}_{n\in\mathbb{N}^*}$ and $\{y_n\}_{n\in\mathbb{N}^*}$ respectively, which converge to a common limit $\alpha\in K$.
- (4) End the proof by obtaining a contradiction between this fact and the properties of Question (2).

Exercise 8:

- (1) Is the function $f(x) = \frac{1}{x^2}$ uniformly continuous on $(0, +\infty)$? In any case, prove your answer.
- (2) Is it true that, if $f: [0,1] \to \mathbb{R}$ is a continuous function such that, for all $x \in [0,1]$, $f(x) \neq 0$, then $g(x) = \frac{1}{f(x)}$ is a uniformly continuous function? If your answer is yes, prove it; else, provide a counterexample.

Exercise 9:

Let I be an interval of \mathbb{R} , $f, g: I \to \mathbb{R}$ be two continuous functions such that:

$$\forall x \in I, |f(x)| = |g(x)| \neq 0.$$

Show that, either

$$\forall x \in I, \ f(x) = g(x),$$

or

$$\forall x \in I, \ f(x) = -g(x).$$

Exercise 10:

Let a < b be two real numbers, and $f: [a,b] \to \mathbb{R}$ be a function such that f is differentiable on (a,b), and:

$$\forall x \in [a, b], \ f(x) > 0.$$

Show that there exists $c \in (a, b)$ such that:

$$\frac{f(a)}{f(b)} = e^{(b-a)\frac{f'(c)}{f(c)}}.$$