## Advanced Calculus I: revision exercises for Midterm 1.

## Exercise 1

For each of the following statements, state whether it is true or false; if it is true, prove it (or invoke a theorem of the lectures), and if it is false, provide a counterexample.

- (1) Each sequence  $\{a_n\}$  of real numbers has a convergent subsequence.
- (2) If a sequence  $\{a_n\}$  of real numbers is increasing and not bounded from above, then it goes to  $+\infty$ .
- (3) A sequence  $\{a_n\}$  of real numbers is convergent if and only if it is bounded.
- (4) A sequence  $\{a_n\}$  of real numbers is convergent if and only if it is Cauchy.

## Exercise 2

Let  $\{a_n\}$  be a sequence of integers; show that, if  $\{a_n\}$  converges, then is is stationary after a certain rank.

## Exercise 3

Show that, if A is uncountable, and B is countable, then  $A \cap B$  is countable.

# Exercise 4

Let  $\{a_n\}$  be a monotone sequence of real numbers. Show that if  $\{a_n\}$  has a convergent subsequence, then it is convergent. Is it true in the case that  $\{a_n\}$  is not monotone?

## Exercise 5

Let  $A \subset \mathbb{R}$  be a non empty set which is bounded from above.

- (1) Does A have a maximum? A supremum?
- (2) Show that, if  $x \in A$  is such that  $x < \sup(A)$ , then  $\sup(A \setminus \{x\}) = \sup(A)$ .
- (3) Show that, if  $x \in A$  is such that  $\sup(A \setminus \{x\}) < \sup(A)$ , then  $x = \sup(A)$ .

#### Exercise 6

- (1) Recall the definition of a Cauchy sequence.
- (2) Show the identity:

$$\forall x, y \in \mathbb{R}, \sin(x) - \sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right).$$

[Hint: introduce  $p = \frac{x+y}{2}$ ,  $q = \frac{x-y}{2}$ , and remark that x = p + q, y = p - q.]

(3) Deduce from the answer to (2) that:

$$\forall x, y \in \mathbb{R}, \ |\sin(x) - \sin(y)| \le |x - y|.$$

(4) Let  $b \in (0,1)$  and  $c \in \mathbb{R}$ . Let  $\{a_n\}_{n \in \mathbb{N}}$  be the sequence of real numbers defined by:

$$u_0 \in \mathbb{R}$$
, and  $\forall n \in \mathbb{N}$ ,  $a_{n+1} = b\sin(a_n) + c$ .

Show that, for all  $n \in \mathbb{N}$ ,

$$|a_{n+1} - a_n| \le b^n |a_1 - a_0|.$$

(5) Show that  $\{a_n\}$  is a Cauchy sequence.

[Hint: For n < m, decompose  $|a_m - a_n| \le |a_m - a_{m+1}| + ... + |a_{m+1} - a_n|$ , and use the previous question with the inequality  $1 + b + b^2 + ... + b^n \le \frac{1}{1-b}$ .]

(6) Infer that  $\{a_n\}$  converges.