Advanced Calculus I: Homework 8

Assigned 10/30/2014, due 11/06/2014.

In all the exercises of this sheet, you may use as a result of the lectures the following statement, which stems from Exercise 2 of the 8^{th} workshop session:

- Any union of open subsets of \mathbb{R} is open.
- An intersection of a *finite* number of open subsets of \mathbb{R} is open.
- Any intersection of closed subsets of \mathbb{R} is closed.
- A union of a *finite* number of closed subsets of \mathbb{R} is closed.

Exercise 1

Say (with a brief justification) if each of the following subsets of \mathbb{R} is open, closed, bounded and/or compact.

- (1) The empty set \emptyset
- (2) \mathbb{R}
- (3) The set \mathbb{Q} of rational numbers

 $[0,5] \cup \{7\}$

- $(4) \qquad \mathbb{Q} \cap [0,1].$
- (5) The set \mathbb{Z} of integers
- (6) [0,4)

(7)

(8) $(0,1) \cup (2,3)$

Exercise 2

The purpose of this exercise is to prove with two different methods that the set (1,2) is not compact.

- (1) Show it directly, as a consequence of the Heine-Borel theorem.
- (2) Negate the definition of compacity by constructing an open cover $\{O_i\}_{i\in I}$ of (1,2) which does not have a finite subcover.

Exercise 3 (Partially reprinted from Ex. 23 p. 105 in [Gaughan]).

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be *periodic* if there exists a real number T > 0 such that:

$$\forall x \in \mathbb{R}, \ f(x+T) = f(x).$$

- (1) Give an example of a non constant periodic function and draw it.
- (2) Show that if $f: \mathbb{R} \to \mathbb{R}$ is periodic and continuous, then it is uniformly continuous.

[Hint: start by showing that f is uniformly continuous on [0,T].]

Exercise 4 (Reprinted from Ex. 25 p. 104 in [Gaughan]).

Provide an example of two sets $A, B \subset \mathbb{R}$ and of a function $f : A \cup B \to \mathbb{R}$ which is continuous on $A \cup B$, uniformly continuous on A and on B, but which is not uniformly continuous on $A \cup B$.

Draw your example.

Exercise 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, which has finite limits a and b at $-\infty$ and $+\infty$ respectively. The purpose of this exercise is to show that f is uniformly continuous on \mathbb{R} .

- (1) Explain, e.g. with a drawing, why, intuitively, this property should hold.
- (2) Recall, by means of quantifiers, what it means for f to have finite limits a and b at $-\infty$ and $+\infty$.
- (3) By using the fact that f has limit a at $-\infty$, prove that for any $\varepsilon > 0$, there exists A < 0 such that:

$$\forall x \in (-\infty, A), |f(x) - a| < \varepsilon.$$

Similarly, we admit that for any $\varepsilon > 0$, there exists B > 0 such that:

$$\forall x \in (B, +\infty), |f(x) - b| < \varepsilon.$$

- (4) Show that f is uniformly continuous on [A-1, B+1].
- (5) Using the results of (3) and (4), prove that f is uniformly continuous on \mathbb{R} .

Exercise 6

The purpose of this exercise is to study the *closure* \overline{D} of an arbitrary subset $D \subset \mathbb{R}$, which is defined as:

$$\overline{D} = \bigcap_{\substack{F \text{ is closed} \\ D \subset F}} F.$$

- (1) Show that, for any subset $D \subset \mathbb{R}$, the closure \overline{D} is a closed set.
- (2) Show that it is the *smallest* (for inclusion) closed set of \mathbb{R} which contains D, i.e.

if F is any closed set such that $D \subset F$, then $\overline{D} \subset F$.

- (3) Show that D is closed if and only if $D = \overline{D}$.
- (4) (This question is more difficult and is optional): Let D' be the set of accumulation points of D. Show, by double inclusion, that $\overline{D} = D \cup D'$.

[Hint: Use double inclusion; observe that, to prove $\overline{D} \subset D \cup D'$, it is enough to show that $D \cup D'$ is a closed set.]