Advanced Calculus I: Homework 6

Assigned 10/16/2014, due 10/23/2014.

Exercise 1

Let D be a subset of \mathbb{R} , $f: D \to \mathbb{R}$ be a function, and x_0 be an accumulation point of D. Draw an example of a situation corresponding to each of the following statements, and express what it means in terms of quantifiers:

- (1) f has a limit $\ell \in \mathbb{R}$ at x_0 .
- (2) f has a left-limit $\ell \in \mathbb{R}$ at x_0 .
- (3) f has a right-limit $\ell \in \mathbb{R}$ at x_0 .
- (4) f goes to $+\infty$ when $x \to x_0$.
- (5) $D = (0, +\infty)$ and f has a finite limit $\ell \in \mathbb{R}$ when x goes to $+\infty$.

Exercise 2

Let $f:(0,1)\to\mathbb{R}$ be the function defined by $f(x)=\frac{\sqrt{9-x}-3}{x}$. Show that f has a limit at $x_0=0$, and calculate this limit.

Exercise 3

Calculate the following limits:

- (1) $\lim_{x \to 0} \frac{x^3 2x + 1}{x 1}$ (2) $\lim_{x \to 1} \frac{x^3 2x + 1}{x 1}$
- (3) $\lim_{x \to 1} \frac{x^3 2x + 1}{x 1}$ (4) $\lim_{x \to 0} \frac{x^3 2x^2 + x}{x^2 x}$
- $(5) \quad \lim_{x \to 0}^{x} \frac{x^3 2x + 1}{x^2 x}$

[Hint: For (3), notice that $x^3 - 2x + 1 = (x - 1)(x^2 + x - 1)$.]

Exercise 4

Let D be a subset of \mathbb{R} , $f: D \to \mathbb{R}$ be a function such that, for any $x \in D$, $f(x) \neq 0$, and x_0 be an accumulation point of D. We assume that f has a limit $\ell \neq 0$ at x_0 . The purpose of this exercise is to show by two different methods the following property, called (*):

(*)
$$(\exists \delta > 0), (\exists M > 0), \forall x \in D \cap (x_0 - \delta, x_0 + \delta), |f(x)| \ge M.$$

- (1) Explain what (*) means using a drawing.
- (2) First method: Show this property by using directly the definition of the limit of a function.
- (3) Second method: using sequences
 - (a) Express the *negation* of the property (*) in terms of quantifiers.
 - (b) We now argue by contradiction, assuming that (*) does not hold. Use the negation of the previous question to construct a sequence (x_n) of points of D such that, for all $n \in \mathbb{N}$, $x_n \neq x_0$ and $x_n \to x_0$,

$$|f(x_n)| \le \frac{1}{n}.$$

(c) Conclude.

Exercise 5 (This exercise is reprinted from [Gaughan], ex. 22 p. 80)

Show an example of functions f and g which fail to have limits at a point x_0 , but such that f+g has a limit at x_0 . Give similar examples for fg and $\frac{f}{g}$.

1

Exercise 6

Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by:

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ x & \text{if } 0 < x \le 1, \\ 2 - (x - 1)^2 & \text{if } x > 1. \end{cases}$$

- (1) Draw the function f.
- (2) Calculate the left- and right-limits $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ and $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ at $x_0 = 0$ and $x_0 = 1$. (3) At which points $x_0 \in \mathbb{R}$ is f continuous?