Advanced Calculus I: Homework 2

Assigned 09/18/2014, due 09/25/2014.

Exercise 1 (Around the absolute value...).

This exercise is meant as a revision over the notion of absolute value, which is the natural way to appraise the distance between two real numbers. Recall that the absolute value |x| of a real number x is defined as:

$$|x| = \left\{ \begin{array}{cc} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{array} \right..$$

- (1) Show that, for any real numbers x, y, |xy| = |x||y|.
- (2) Show that, for any $x \in \mathbb{R}$, and M > 0, one has: $|x| \le M$ if and only if $-M \le x \le M$.
- (3) Show that, for any $x, y \in \mathbb{R}$ and any $\varepsilon > 0$, one has: $|x y| \le \varepsilon$ if and only if $y \varepsilon \le x \le x + \varepsilon$.
- (4) Show the triangle inequality:

$$\forall x, y \in \mathbb{R}, \ |x+y| \le |x| + |y|.$$

(5) Show the reverse triangle inequality:

$$\forall x, y \in \mathbb{R}, \ ||x| - |y|| \le |x + y|.$$

Exercise 2 Let A, B be two sets, with A countable, such that there exists a surjective function $f: A \to B$. Show that B is countable.

[Hint: use the fact that there exists a bijective function $g:\mathbb{N}\to A$ and construct an injective function $h: B \to \mathbb{N}$.

Exercise 3 Let B be an uncountable set, and $A \subset B$ be a countable subset of B. Show that the complement $B \setminus A = \{b \in B \text{ s.t. } b \notin A\}$ is uncountable.

[Hint: argue by contradiction.]

Exercise 4 For each of the following subsets of \mathbb{R} , determine if it admits an infimum and / or a supremum, and provide it when it does:

- (1) [0,1],
- (2) [0,1),
- $(3) \mathbb{Q},$
- $(4) \ \mathbb{Q} \cap [0, \sqrt{2}),$

- $(5) \left\{ \frac{1}{n}, n \in \mathbb{N}^* \right\},$ $(6) \left\{ (-1)^n, n \in \mathbb{N} \right\},$ $(7) \left\{ (-1)^n + \frac{(-1)^{n+1}}{n}, n \in \mathbb{N}^* \right\},$ $(8) \left\{ (-1)^n + \frac{1}{n}, n \in \mathbb{N}^* \right\},$
- $(9) \left\{ \frac{1+x}{1+x^2}, \ x \in \mathbb{R} \right\}.$

Exercise 5

Let A and B be two subsets of \mathbb{R} enjoying the following property:

$$\forall a \in A, \forall b \in B, \ a < b.$$

- (1) Give an example of two such subsets of \mathbb{R} where neither A nor B is the empty set.
- (2) Show that A admits an upper bound, and B admits a lower bound.
- (3) Show that $\sup A$ and $\inf B$ exist, and satisfy $\sup A < \inf B$.

(4) Give an example of two such subsets of \mathbb{R} where neither A nor B is the empty set, where $\sup A = \inf B$. (i.e. the strict inequality is not preserved when passing to the \sup /\inf).

Exercise 6 (Reprinted from Ex. 44 – 45 p. 29 in [Gaughan]). Let $S \subset \mathbb{R}$ be a set.

- (1) If $x = \sup S$, show that, for any $\varepsilon > 0$, there exists an element $a \in S$ such that $x \varepsilon < a \le x$.
- (2) If $y = \inf S$, show that, for any $\varepsilon > 0$, there exists an element $a \in S$ such that $y \le a < y + \varepsilon$.