Advanced Calculus I: Homework 10

Assigned 11/13/2014, due 11/20/2014.

Exercise 1

Let C be a non empty, bounded and connected subset of \mathbb{R} . Let $a = \inf(C)$ and $b = \sup(C)$. We assume that $a \in C$, but $b \notin C$.

- (1) Why do $a = \inf(C)$ and $b = \sup(C)$ exist?
- (2) Show that C = [a, b).

Exercise 2

In each of the following situations, identify the domain of definition of the function f, and the set of points where it is differentiable. Then, calculate f'(x) wherever it makes sense.

- $f(x) = |3x + x^{2}| \quad (2) \quad f(x) = x^{2} \tan(x)$ $f(x) = \frac{3x 2}{2x 3} \quad (4) \quad f(x) = \frac{x^{2} + 2}{x^{2} 1}.$ $f(x) = \frac{\cos(x)}{1 + 2\sin(x)} \quad (6) \quad f(x) = \frac{e^{x} \log(x)}{x^{2} + 2x^{3}}$

Exercise 3 (Partially reprinted from Ex. 12, 13 p. 130 in [Gaughan]).

- (1) Let $f:[a,b] \to [c,d], g:[c,d] \to \mathbb{R}$ be two differentiable functions, such that f' and g' are also differentiable. By using the chain-rule, show that $(g \circ f)'$ is differentiable on [a, b] and calculate its derivative.
- (2) Let $f:[a,b]\to [c,d], g:[c,d]\to [p,q]$ and $h:[p,q]\to \mathbb{R}$ be three functions. Let $x_0\in [a,b]$ be a point such that f is differentiable at x_0 , g is differentiable at $f(x_0)$ and h is differentiable at $g \circ f(x_0)$. By using the chain rule, show that $h \circ (g \circ f)$ is differentiable at x_0 , and express its derivative in terms of those of f, g, h.

Exercise 4

Let a < b be two real numbers, and let $f : [a, b] \to \mathbb{R}$ be a continuous function such that f(a) = f(b). Define the function $g: \left[a, \frac{a+b}{2}\right] \to \mathbb{R}$ as:

$$g(t) = f\left(t + \frac{b-a}{2}\right) - f(t).$$

- (1) Show that there exists a real number $t_0 \in \left[a, \frac{a+b}{2}\right]$ such that $g(t_0) = 0$.
- (2) Application: A person travels 4 miles within an hour. Show that there exists an interval of time of half an hour during which it travels exactly 2 miles.

Exercise 5

Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and $x_0 \in \mathbb{R}$.

- (1) Recall the definition of the differentiability of f at x_0 .
- (2) Prove that, if f is differentiable at x_0 , the two-sided rate of change R(t), defined by:

$$\forall t \neq 0, \ R(t) = \frac{f(x_0 + t) - f(x_0 - t)}{2t}$$

has limit $f'(x_0)$ at x_0 .

(3) Assume now that f is a function such that $\lim_{t\to 0} R(t)$ exists, and let $\ell\in\mathbb{R}$ be that limit. Is it necessarily true that f is differentiable at x_0 ? If your answer is yes, prove it; else, provide a counterexample.

Exercise 6

Let $n \in \mathbb{N}$ be fixed; define the function $f_n : [0, +\infty) \to \mathbb{R}$ by:

$$\forall x \in [0, +\infty), \ f_n(x) = \log(1 + x^n) + x - 1.$$

- (1) Show that there exists a real number $x \in [0,1]$ such that $f_n(x) = 0$.
- (2) Show that f_n is a strictly increasing function. [Hint: show that f_n is differentiable, and study the sign of its derivative.]
- (3) Deduce from your answers to (1) and (2) that there exists a unique real number $x \in [0, 1]$ such that $f_n(x) = 0$.