Advanced Calculus I: Homework 1

Assigned 09/09/2014, due 16/09/2014.

Notations:

- In the whole sheet of exercises, unless otherwise specified, every mentioned function $f:A\to B$ between two sets A and B is implicitly considered to be defined on the whole set A (i.e. its domain
- If a < b are two real numbers, $(a, b) = \{x \in \mathbb{R}, a < x < b\}$ (resp. $[a, b] = \{x \in \mathbb{R}, a \le x \le b\}$) stands for the open (resp. closed) interval with bounds a and b.

Exercise 1: (Modified version of Ex. 10 p. 28 in [Gaughan]).

Describe each of the following sets as the empty set, \mathbb{R} as a whole, or as an appropriate combination of real intervals:

- (1) $\bigcap_{n=1}^{\infty} \left[0, \frac{1}{n}\right],$ (2) $\bigcup_{n=1}^{\infty} \left(-n, n\right),$
- (3) $\bigcap_{n=1}^{\infty} \left(-3 \frac{1}{n}, \frac{1}{n}\right),$ (4) $\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 \frac{1}{n}\right],$

[Hint: In each case, it may be valuable to 'draw" the situation.]

Exercise 2: Let $A = \{a_1, ..., a_m\}$ be a set composed of m elements, and $B = \{b_1, ..., b_n\}$ be a set composed of n elements.

- (1) Show that there exists an injective function $f: A \to B$ if and only if $m \le n$.
- (2) Show that there exists a surjective function $f: A \to B$ if and only if $m \ge n$.
- (3) State and prove a necessary and sufficient condition (i.e. involving an 'if and only if') for the existence of a bijective function $f: A \to B$.

Exercise 3: (Modified version of Ex. 18 p. 28 in [Gaughan]).

Let A and B be two sets and $f: A \to B$ be a one-to-one function;

- (1) Recall the definition of the image set $Im(f) \subset B$.
- (2) Show that the function $f: A \to Im(f)$ is bijective.
- (3) We now suppose in addition that Im(f) = B, that is, $f: A \to B$ is bijective. Recall that the *inverse* function $f^{-1}: B \to A$ to f is defined by:

$$\forall b \in B, \ f^{-1}(b) = \text{the unique } a \in A \text{ such that } f(a) = b.$$

Show that:

$$\forall a \in A, \ f^{-1} \circ f(a) = a \text{ and } \forall b \in B, \ f \circ f^{-1}(b) = b.$$

Exercise 4: (Modified version of Ex. 14 p. 28 in [Gaughan]).

Often, when the domain of a function is not explicitly specified, it is assumed to be the set of all real numbers x for which the formula for f(x) makes sense.

- (1) What is the domain A of the function $f(x) = \frac{x}{x+3}$?
- (2) What is the image B of this function?
- (3) Show that $f: A \to B$ is bijective.
- (4) Calculate the inverse function $f^{-1}: B \to A$ of f.

Exercise 5: (Reprinted from Ex. 20 p. 28 in [Gaughan]). Prove that, for all $n \in \mathbb{N}^*$, $1+3+5+\ldots+(2n-1)=n^2$.

Exercise 6: Prove that, for all $n \in \mathbb{N}$, for all $x \neq 1$, one has:

$$1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$