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The purpose of this exercise session is to guide the attendants through the implementation of three popular
strategies for shape and topology optimization, namely density-based methods (such as the famous SIMP
method), geometric optimization methods, and level set methods. ‘Simple’ shape and topology optimization
problems are investigated, which are already quite relevant and interesting from the physical viewpoint.

The session are based on FreeFem++ [18], an open-source environment which makes it possible to solve
Partial Differential Equations (PDE) with the finite element method from the input of their variational
formulation via a syntax close to that of C++ .

The exercise session is organized as follows: the attendants are encouraged to start with the three exercises
in Section 1, in which the three physical settings of interest in this course are introduced, namely those of
the Laplace equation, the linearized elasticity system, and the Stokes equations. The main features and
commands of FreeFem++ are presented in the meantime; for the (many!) subsequent possibilities offered by
this environment, the attendants will be referred to the exhaustive, albeit comprehensive manual [19], which
may be downloaded at the following address:

http://www.freefem.org/ff++/ftp/freefem++doc.pdf

Part of the present material has been prepared in collaboration with Pascal Frey (ISCD & Laboratoire Jacques-Louis Lions,

Université Paris VI) and Yannick Privat (CNRS & Laboratoire Jacques-Louis Lions), whose help is warmly acknowledged!
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Attendants are then asked to select one of the three shape and topology optimization settings discussed
during the course, and to work on the corresponding set of exercises: topology optimization using density-
based methods are discussed in Section 2 while geometric optimization methods are considered in Section 3;
finally, the level set method for shape and topology optimization is the main purpose of Section 4.

Throughout the following sections, more difficult theoretical or practical problems - tagged with a star ∗ -
are left as food for thought to the reader. The solutions to these are not required for the correct understanding
of the targetted notions.

The present notes, as well as tentative corrections to most of the theoretical and practical questions they
contain, may be downloaded from the following GitHub repository:

https://github.com/dapogny/GDR-MOA-Course

Obviously, any comment or judgement drawn from this series of exercises (flaws in such or such method,
etc.) should apply only to the author’s personal bias and implementations.

1. Getting started with FreeFem++

This first section is a short introduction to the basic features of FreeFem++. Attendants who are already
familiar with this environment may get very quickly through this preliminary part, or even skip it altogether.

1.1. A worked example: resolution of the Laplace equation

Our first contact with FreeFem++ arises in the context of the Laplace equation, which is a basic physical
model for the stationary distribution of the temperature within a region, or for the voltage potential inside
an electrically conductive medium.

Let D be the L-shaped 2d domain depicted on Fig. 1 (left); D is filled with a material with thermal
conductivity γ; a heat source f ∈ L2(D) is acting inside D and its boundary ∂D is kept at temperature 0,
so that the temperature field u : D → R is the solution to the following Laplace equation:

(1.1)

{
−div(γ∇u) = f in D,

u = 0 on ∂D.

The numerical resolution of (1.1) using FreeFem++ relies on the finite element method, which we now briefly
summarize, referring to classical monographs such as [2]for more exhaustive presentations. The starting
point of this method is the associated variational formulation to (1.1): u is sought in the functional space
V := H1

0 (D) of functions in H1(D) whose trace vanishes on ∂D; it is the unique function in this space that
satisfies:

(1.2) ∀v ∈ V, a(u, v) =

∫
D

fv dx, where a(u, v) :=

∫
D

γ∇u · ∇v dx.

In practice, D is discretized by means of a computational mesh T (for instance composed of triangles);
see Fig. 1 (right). Such a mesh may be generated in FreeFem++ from the input of the boundary ∂D as a set
of parametrized curves, according to Listing 1.

/∗ Dec la ra t i on o f the boundary curves o f the domain ∗/
border l e f t ( t =0 ,1.0){ x=0.0 ; y=1.0− t ; l a b e l =1;} ;

border bot ( t =0 ,1.0){ x=t ; y =0.0 ; l a b e l =1;} ;

border r i g h t ( t =0 ,0.5){ x=1.0 ; y=t ; l a b e l =1;} ;

border ang1 ( t =0 ,0.5){ x=1.0− t ; y =0.5 ; l a b e l =1;} ;

border ang2 ( t =0 ,0.5){ x=0.5 ; y=0.5+t ; l a b e l =1;} ;

border top ( t =0 ,0.5){ x=0.5− t ; y =1.0 ; l a b e l =1;} ;

/∗ Build mesh , d i s p l ay and save as a . mesh f i l e ∗/
mesh Th = buildmesh ( l e f t (10)+ bot (10)+ r i g h t (5)+ang1 (5)+ang2 (5)+ top ( 5 ) ) ;

p l o t (Th, wait =1);

savemesh(Th, ”Lshape . mesh” ) ;

Listing 1. Generation of a triangular mesh for the L-shaped domain of Section 1.1.
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Figure 1. (Left) The L-shaped domain D considered in Section 1.1 and (right) an associ-
ated triangular mesh generated using FreeFem++.

Thence, the (continuous) variational formulation (1.2) is discretized on the mesh T : a finite element space
Vh ⊂ V is chosen, which is indexed by the size h of the mesh T . For instance Vh may be chosen as the set
of P1 Lagrange finite element functions on T , that is:

(1.3)
{
u ∈ H1

0 (D), ∀T ∈ T , u|T is a bivariate first-order polynomial function
}
,

or as the set of P2 Lagrange finite element functions on T
(1.4)

{
u ∈ H1

0 (D), ∀T ∈ T , u|T is a bivariate second-order polynomial function
}
.

The discrete counterpart to (1.2) reads: search for uh ∈ Vh such that:

(1.5) ∀vh ∈ Vh, a(uh, vh) =

∫
D

fvh dx.

Introducing a basis {ϕi}i=1,...,Nh
of Vh, this simply rewrites as the linear system:

(1.6) AU = b

where the unknown vector U = (uh,1, ..., uh,Nh
)T ∈ RNh gathers the coordinates of uh in the basis {ϕi}:

(1.7) uh =

Nh∑
i=1

uh,iϕi,

and A (resp. b) is the Nh ×Nh matrix (resp the vector of size Nh) whose entries are given by:

∀i, j = 1, ..., Nh, Aij = a(ϕj , ϕi), and bi =

∫
D

fϕi dx.

In FreeFem++, finite element spaces (and functions) of the form (1.3) and (1.4) are declared as in Listing 2.

/∗ D e f i n i t i o n o f f i n i t e element spaces and f u n c t i o n s ∗/
fespace Vh(Th, P1 ) ; // or P2

Vh u , v ;

/∗ Other parameters ∗/
real gamma = 1 . 0 ;

/∗ Source term ∗/
func real f ( ) {

return ( 1 . 0 ) ;
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}
Listing 2. Definition of finite element spaces and functions in FreeFem++.

Finally, the variational formulation (1.5) is programmed and solved in FreeFem++ according to the self-
explanatory syntax of Listing 3.

/∗ Stat i onary heat equat ion ( s o l v e r = Conjugate Gradient ) ∗/
problem laplace (u , v , s o l v e r=CG) = int2d (Th) (gamma∗( dx (u)∗dx ( v)+dy (u)∗dy ( v ) ) )

− int2d (Th) ( f ( )∗ v )

+ on (1 , u =0.0) ; // Homogeneous D i r i c h l e t BC

/∗ Reso lut ion o f the problem ∗/
laplace ;

/∗ Display o f the r e s u l t ∗/
p l o t (Th, u , f i l l =1);

Listing 3. Resolution of the Laplace equation (1.5) in FreeFem++.

Question 1.1.1. Implement the above listings. You may want to try out different sets of physical parameters,
and in particular:

• To modify the shape of the computational domain D;
• To select different mesh sizes;
• To choose different values for the conductivity γ and for the heat source f (e.g. space-dependent

ones).

Unfortunately, the above numerical resolution yields disappointing results, as depicted on Fig. 2 (left).
This is partly due to the fact that the solution u to (1.1) is not much more regular than just H1(D) near the
reentrant corner of D (in particular, it is not of class C2), while the mesh used for the numerical resolution
is very coarse in this region (see Fig. 1, (right)). On the other hand, it is not desirable to work out with a
very fine mesh (i.e. one composed of a lot of triangles) since the size of the linear system (1.6) would then
dramatically increase, and thereby the required CPU cost.

One remedy to this concern consists in adapting the computational mesh, so that it is selectively refined
where needed (i.e. at the regions where the computed solution uh presents large variations).

Question 1.1.2. Implement the procedure of Listing 4 to achieve this feature.

The result is that presented on Fig. 2 (right).

/∗ Mult ip l e r e s o l u t i o n s o f the Laplace equation ,

in t e r tw ined with mesh adaptat ion s t ep s ∗/
for ( int i t =0; i t<maxit ; i t ++) {

laplace ;

Th = adaptmesh(Th, u , e r r=eps ) ;

p l o t (Th, u , f i l l =1);

eps ∗= 0 . 5 ;

}
Listing 4. Iterative resolution of (1.5) using mesh adaptation.

Question 1.1.3. There is one way to vizualize the results of your computations which offers more flexibility
than the standard plot command from FreeFem++. This uses the medit software, which is integrated into
FreeFem++ under the form of ffmedit. A documentation of this software may be consulted at the address:

https://www.ljll.math.upmc.fr/frey/logiciels/Docmedit.dir/index.html

In particular, medit makes it possible to save pictures from your results, etc.
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Figure 2. Temperature field u obtained in the resolution of (1.5) using FreeFem++ with P1

elements (left) on the mesh of Fig. 1, (right) on an iteratively adapted mesh.

1.2. The linearized elasticity system

The second context considered in this course is that of linearized elasticity, a system of equations which is
widely used to model structures (e.g. beams, struts, etc.) undergoing small deformations when external
stresses are at play.

In this section, the structure Ω of interest is a two-dimensional bridge, as depicted on Fig. 3 (left): Ω is
clamped on a region ΓD of its boundary ∂Ω, and surface loads g = (0,−0.01) are applied on a disjoint subset
ΓN ⊂ ∂Ω, modelling the impact of pedestrians or cars on the upper deck of the bridge. The remaining part
Γ = ∂Ω \ (ΓD ∪ ΓN ) is traction-free.

The considered bridge Ω is filled with a linearly elastic material characterized by its Hooke’s tensor A:

(1.8) ∀e ∈ S(R2), Ae = 2µe+ λtr(e)I;

in the above equation, λ and µ are the Lamé coefficients, characterizing the elastic behavior of the material.
In the present 2d plane stress situation, these are related to the more physical quantities E (the Young’s
modulus, appraising the resistance of the material to traction stresses) and ν (the Poisson’s ratio, accounting
for its resistance to shear) via the relations:

λ =
E

2(1 + ν)
, and µ =

νE

2(1 + ν)(1− ν)
.

For the applications of this exercise session, the values

(1.9) E = 1 and ν =
1

3

may be used. The displacement u = (u1, u2) : Ω → R2 of the structure in these circumstances belongs to
the functional space

(1.10) H1
ΓD

(Ω)2, where H1
ΓD

(Ω) :=
{
u ∈ H1(Ω)2, u = 0 on ΓD

}
,

and it is the unique solution in the latter to the linearized elasticity system:

(1.11)


−div(Ae(u)) = 0 in Ω,

u = 0 on ΓD,
Ae(u)n = g on ΓN ,
Ae(u)n = 0 on Γ,

where

(1.12) e(u) =
1

2
(∇u+∇uT ), (e(u))ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2,
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is the strain tensor (i.e a matrix with size 2× 2) associated to the displacement u.

1.2.1. Solving the linearized elasticity system using FreeFem++

We first focus on the numerical resolution of (1.11) using FreeFem++ on the geometry Ω of Fig. 3 (left).

Question 1.2.1. Write down the variational formulation for (1.11).

Question 1.2.2. Implement this formulation in FreeFem++; in order to create the geometry of Ω in FreeFem++,
you may use the supplied Subjects/EVBridge/creabridge1.edp file.

Question 1.2.3. Visualize the displacement of the shape. To achieve this, you may use the movemesh

command, as is exemplified in Listing 5; see Fig. 3 (right) for the result.

/∗ Move each ver tex (x , y ) o f Th to ( x+ux (x , y ) , y+uy (x , y ) ) ∗/
Thn = movemesh(Th , [ x+ux , y+uy ] ) ;

p l o t (Thn ) ;

savemesh(Thn , ”brn . mesh” ) ;

Listing 5. Sample use of the movemesh command.

�N

�D

�

Figure 3. (Left) Geometry and mesh of the bridge considered in Section 1.2; (right) de-
formed configuration of the bridge in the situation of (1.11).

1.2.2. A fictitious domain method: the ersatz material approximation

In several realistic applications - such as those discussed in Section 4 -, the domain Ω may not be known via
a mesh (which could be difficult to construct in practice), but by quite different means. It is then no longer
possible to rely on the finite element method to solve a PDE of the form (1.11) on Ω, in the same way as in
Section 1.2.1.

To be more precise, let us consider the following context: a large, ‘hold-all’ domain D is given, and it
is equipped with a triangular mesh T . The domain Ω of interest is a subdomain of D; no mesh of Ω is
available, but Ω is known via an associated level set function φ : D → R. By this, we mean that Ω coincides
with the negative subdomain of the scalar function φ, i.e.:

∀x ∈ D,


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ D \ Ω.

In practice, φ is (for instance) a Lagrange P1 fonction on the mesh T of D; see Fig. 4 for an illustration.
The calculation of the solution u to (1.11) on Ω when Ω is given by the pair (D,φ) is achieved thanks to

a so-called fictitious domain method : the ersatz material approximation: the ‘void’ part D \Ω is filled with
a very soft material, with Hooke’s law εA, where ε � 1 (in practice, ε ≈ 1e−3). The system (1.11) is then
approximated by:

(1.13)


−div(Aεe(uε)) = 0 in D,
Aεe(uε)n = g on ΓN ,
Aεe(uε)n = 0 on Γ,

uε = 0 on ΓD,

where Aε(x) =

{
A if x ∈ Ω⇔ φ(x) < 0;
εA if x ∈ D \ Ω⇔ φ(x) ≥ 0,

It is indeed possible to prove that the solution uε to (1.13) is a close approximation to that u of (1.11) (see
Question* 1.2.5).
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Figure 4. (Left) Mesh of the hold-all domain D considered in Section 1.2.2; (right) graph
of one level set function φ : D → R for the bridge Ω of Section 1.2.2.

Question 1.2.4. Implement the numerical resolution of the above ersatz material system (1.13); compare
the resulting displacement uε with that u obtained in Section 1.2.1, possibly varying the value of the ersatz
material parameter ε. the computational mesh of D (resp. the level set function φ for Ω) is given in
the file Subjects/EVBridge/box.mesh (resp. Subjects/EVBridge/box.sol). Both files may be loaded
in FreeFem++ as in Listing 6, provided the supplied file Subjects/EVBridge/tools.idp is added to your
current folder (the latter contains pre-implemented routines that do not need to be modified).

[Hint: You may take advantage of the macro volfrac implemented in the file tools.idp, whose use is
detailed in Listing 6, in order to calculate the approximate tensor Aε featured in (1.13). ]

/∗ Load the macro f i l e ∗/
include ” t o o l s . idp ”

/∗ Load the mesh ∗/
mesh Th = readmesh( ”box . mesh ) ” ;

/∗ F i n i t e Element spaces ∗/
fespace Vh(Th, P1 ) ;

fespace Vh0(Th, P0 ) ;

/∗ Parameters and f u n c t i o n s ∗/
real e r s = 1 . eˆ−3;

Vh phi ;

Vh0 Achi ;

/∗ Read the l e v e l s e t func t i on in the e x t e r n a l f i l e ∗/
readsol ( ”box . s o l ” ,Th, phi ) ;

/∗ Ca lcu la t i on o f the P0 func t i on Achi

= volume f r a c t i o n o f mate r i a l and e r s a t z i n s i d e each t r i a n g l e ∗/
volfrac ( Achi , phi , e r s ) ;

Listing 6. Calculation of the ersatz material tensor Aε by using a personnalized macro file
in Section 1.2.2.

A glimpse of the result is displayed on Fig. 5.

Question* 1.2.5. The purpose of this question is to investigate the consistency of the ersatz material
method on a simplified version of the model (1.11) and (1.13).
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In this question, Ω b D is strongly contained in the fixed hold-all domain D, and f is a given function in
L2(D) with compact support inside Ω; u is the unique solution in H1(Ω) to the elliptic equation:

(1.14)

{
−∆u+ u = f in Ω,

∂u
∂n = 0 on ∂Ω,

and its intended approximation uε is the unique solution in H1(D) to the system

(1.15)

{ −div(Aε∇uε) +Aεuε = f in D,
∂uε

∂n = 0 on ∂D.
where Aε(x) =

{
A if x ∈ Ω,
εA if x ∈ D \ Ω.

Prove that:

||u− uε||H1(Ω)
ε→0−−−→ 0.

Remark 1.1. That uε, the ‘ersatz material’ solution to (1.15) (resp. (1.13)), be a close approximation to
that u of the exact system (1.14) (resp. (1.11)) depends crucially on the fact that the Γ of ∂Ω which is
not discretized in D bears traction-free (i.e. homogeneous Neumann) boundary conditions. For instance, a
totally different fictitious domain method would have to be designed if Γ were equipped with homogeneous
Dirichlet boundary conditions.

Figure 5. (Left) Deformed configuration of the computational domain with the ersatz ma-
terial approximation to simulate (1.11) on the implicitly-defined shape Ω; (right) norm of
the displacement.

1.2.3. An eigenvalue problem

We now turn to another key aspect in structural mechanics, namely the analysis of vibration modes, or
eigenmodes.

Mathematically, a real value λ ∈ R (resp. a H1
ΓD

(Ω)2 function u which is not identically 0) is an eigenvalue
(resp. an associated eigenfunction) for the linearized elasticity system (1.11) if:

(1.16)


−div(Ae(u)) = λu in Ω,

u = 0 on ΓD,
Ae(u)n = 0 on ΓN ,
Ae(u)n = 0 on Γ.

It is a classical, albeit non trivial result from spectral theory (see for instance [2], Chap. 7) that these
eigenvalues form a sequence λn of positive, non decreasing real numbers going to +∞ as n → ∞. The
corresponding eigenfunctions un are usually normalized by the condition

∫
Ω
u2
n dx = 1.

From the physical point of view, eigenvalues represent those values of the frequency at which imposed time-
harmonic stresses may entail a dramatically large response of the structure, thus jeopardizing its integrity;
such resonance phenomena have been responsible for the collapse of multiple buildings in the past, and
notably of that of the Tacoma bridge; see for instance [1].

Question 1.2.6. Write down the (continuous) variational formulation for (1.16).

Question 1.2.7. Using the notations of Section 1.1, the discretized version of this formulation relies on the
choice of an adequate finite element space Vh. Write this discretized version under the form:

(1.17) Search for λh ∈ R s.t. AU = λhM,
8



where the unknown vector U is given by (1.7), and A and M are two Nh×Nh matrices which are respectively
called stiffness and mass matrices.

Question 1.2.8. Implement the numerical calculation of the first (i.e. the lowest) eigenpairs (λ1, u1),
(λ2, u2),... of the system (1.16) in FreeFem++.

[Hint: the calculation of the eigenvalues of partial differential operators in FreeFem++ relies on a discretized
variational formulation such as that established in Question 1.2.6 and 1.2.7; this involves the assembly of
the above stiffness and mass matrices A and M ; see the sketch in Listing 7 for useful sample commands and
Fig. 6 for a look at the result.]

real sigma = 0 . 0 ; // s h i f t value , around which e i g e n v a l u e s are c a l c u l a t e d

int nev = 5 ; // number o f computed e i g e n p a i r s

real [ int ] ev ( nev ) ;

Vh2 [ int ] [ eVx , eVy ] ( nev ) ;

int i e r ;

/∗ B i l i n e a r form a s s o c i a t e d to the l i n e a r i z e d e l a s t i c i t y system ,

s h i f t e d by sigma∗ b i l i n e a r form f o r the rhs o f the eigenproblem ∗/
varf elas ( [ ux , uy ] , [ vx , vy ] , s o l v e r=Crout ) = int2d (Th) ( 2 .0∗mu∗

( dx ( ux )∗dx ( vx ) + 0 . 5∗ ( dy ( ux)+dx ( uy ) )∗ ( dy ( vx)+dx ( vy ) ) + dy ( uy )∗dy ( vy ) )

+ lambda ∗( dx ( ux)+dy ( uy ) )∗ ( dx ( vx)+dy ( vy ) )

− sigma ∗( ux∗vx+uy∗vy ) )

+ on (1 , ux=0.0 ,uy =0.0) ;

/∗ B i l i n e a r form a s s o c i a t e d to the rhs o f the e i g enva lue problem ∗/
varf b ( [ ux , uy ] , [ vx , vy ] ) = int2d (Th) ( ux∗vx+uy∗vy ) ;

/∗ Matr ices a s s o c i a t e d to both b i i n e a r forms ∗/
matrix A = elas (Vh2,Vh2, s o l v e r=Crout , f a c t o r i z e =1);

matrix B = elas (Vh2,Vh2, s o l v e r=Crout , f a c t o r i z e =1);

/∗ Ca lcu la t i on o f e i g e n v a l u e s and e i g e n v e c t o r s ;

Beware o f the mis l ead ing syntax :

pas s ing the f i r s t component o f eV w i l l s t o r e a l l i t s components ∗/
i e r = EigenValue (A,B, sym=true , sigma=sigma , va lue=ev ,

vec to r=eVx , t o l =1.e−10,maxit=0,ncv =0);

Listing 7. Sample resolution of the eigenvalue problem (1.16) using FreeFem++.

1.3. The Stokes system

Let us now turn to the numerical resolution of the Stokes equations from fluid mechanics. The situation
is that depicted on Fig. 8: a fluid with kinematic viscosity ν = 5e−3 is driven through a channel Ω; it is
entering via a portion Γin of the boundary ∂Ω with known velocity profile

u(x) = uin(x) on Γin,

and it exits through a disjoint region Γout, without being subject to any particular stress. The physical state
of the fluid is described in terms of its velocity u : Ω → R2 and pressure p : Ω → R. The couple (u, p)

9



Figure 6. (From left to right, top to bottom) Deformed configurations associated to the
first three eigenmodes u1, u2, u3 of the bridge considered in Section 1.2.

satisfies the Stokes system:

(1.18)


−div(σ(u, p)) = 0 in Ω,

div(u) = 0 in Ω,
u = uin on Γin,
u = 0 on Γ,

σ(u, p)n = 0 on Γout,

where

σ(u, p) = 2νe(u)− pI,

is the stress tensor inside the fluid, depending on the rate of strain tensor e(u) given by (1.12).

D

6

1

0.5

0.5

�in

�out

uin

Figure 7. Setting of the fluid mechanics examples of Section 1.3.

Question 1.3.1. Write down the variational formulation for the solution (u, p) to the Stokes equation (1.18).

Question 1.3.2. Implement this formulation with FreeFem++, using a parabolic incoming velocity profile -
i.e. uin(x1, x2) is horizontal; it is a quadratic function of x2 with maximum amplitude 1, which vanishes at
both ends of the segment Γin.

Try out different types of Finite Element pairs for discretizing the velocity u and the pressure p. Do all
combinations work equally well?

[Hint: Observe that the pressure field p is only defined up to constants in the Stokes system (1.18), as
should appear in the choice of finite element spaces involved in the variational formulation of Question 1.3.1.
To overcome this difficulty in the numerical context, it is often convenient to solve the following weakly
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compressible counterpart: 
−div(σ(u, p)) = 0 in Ω,
div(u) + εp = 0 in Ω,

u = uin on Γin,
u = 0 on Γ,

σ(u, p)n = 0 on Γout,

where ε� 1 is a very small parameter (typically ε ≈ 1e−6). ]

Question* 1.3.3. The stationary Navier-Stokes system is a more realistic model for the description of the
motion of a fluid:

(1.19)


(u · ∇)u− div(σ(u, p)) = 0 in Ω,

div(u) = 0 in Ω,
u = uin on Γin,
u = 0 on Γ,

σ(u, p)n = 0 on Γout,

where

(u · ∇)v =

(
u1
∂v1

∂x1
+ u2

∂v1

∂x2
, u1

∂v2

∂x1
+ u2

∂v2

∂x2

)
.

The difficulty in solving numerically (1.19) comes from the presence of a non linear term. The Newton
method is one method of choice to overcome this issue:

(i) Write down a (non linear) variational formulation for (1.19) under the form: search for (u, p) ∈ V such
that, for all (v, q) ∈ V ,

(1.20) a(u, v) + b(p, v) + b(u, q) + c(u, u, v) = `(v),

where ` is a linear form, (u, v) 7→ a(u, v) and (u, p) 7→ b(u, p) are bilinear forms, (u, v, w) 7→ c(u, v, w)
is trilinear and V is a suitable function space.

(ii) The solution (u, p) to (1.19) is achieved at convergence of the series of iterations (un, pn) defined by:
• (u0, p0) is the solution to the Stokes system (1.18), whose variational formulation should match

(1.20) up to the trilinear term c(u, u, v);
• For n = 0, ... until convergence,

(un+1, pn+1) = (un, pn) + (δun, δpn),

where (δun, δpn) is the solution to the linearization of the variational formulation (1.20) at (un, pn):

∀(v, q) ∈ V, a(δun, v) + b(δpn, v) + b(δun, q) + c(δun, un, v) + c(un, δun, v) = `(v).

Implement this idea in FreeFem++; a sample of the result is represented on Fig. 8.
What difference do you observe between the velocity profiles in the Stokes and Navier-Stokes descriptions

of the considered fluid?

2. Topology optimization using density-based methods

This second section focuses on one (possibly quite unefficient with respect to the existing body of literature)
implementation of density-based methods for topology optimization.

2.1. Generalities about the implementation of density-based methods

Let us first briefly outline the main features of the implementation of density-based topology optimization
methods; these are exemplified in the context of linearized elasticity described in Section 1.2, where the
minimization of a function J(Ω) is of interest.

(1) A fixed computational domain D is considered, which is meshed once and for all.
11



Figure 8. Norm of the velocity field u featured in the (top) Stokes (bottom) Navier-Stokes
system in the example of Section 1.3.

(2) Instead of the ‘exact’ linearized elasticity system (1.11) used to describe the physical behavior of a
shape Ω ⊂ D, we rather consider the ersatz material approximation (1.13), which is conveniently
posed on D:

(2.1)


−div(AΩ,εe(uΩ,ε)) = 0 in D,
AΩ,εe(uΩ,ε)n = g on ΓN ,
AΩ,εe(uΩ,ε)n = 0 on Γ,

uΩ,ε = 0 on ΓD,

where the tensor AΩ,ε is defined by:

(2.2) AΩ,ε = χΩA+ (1− χΩ)εA,

bringing into play the characteristic function χΩ of Ω:

∀x ∈ D, χΩ(x) =

{
1 if x ∈ Ω,
0 if x ∈ D \ Ω,

and the ‘ersatz’ parameter ε� 1.
(3) The essence of density-based methods is to give a meaning to the quantities AΩ,ε and uΩ,ε featured in

(2.1) and (2.2) in the more general situation where χΩ is replaced by a density function h : D → [0, 1]
- i.e. h may take ‘grayscale’ values between ‘black’ (1, indicating the presence of material) and ‘white’
(0, indicating ersatz material). To this end, one possibility is to trade (2.2) for the tensor:

(2.3) Ah,ε := ζ(h)A+ (1− ζ(h))εA,

where ζ : R → R is an interpolation function which endows material properties to intermediate
values of the density. The most common choice in the practice of the SIMP method is a power law

ζ(h) = hp; (typically, p = 3),

which has the effect of penalizing the presence of grayscale values for h; see for instance [5, 7] for
other interpolation profiles, enjoying different properties.

One then defines uh,ε as the solution to (2.1) where the tensor AΩ,ε is replaced by Ah,ε, and the
considered objective function of the domain J(Ω) is thereby given a density-based counterpart J(h).

12



(4) For various purposes, it is desirable to filter the density h before it is used into the interpolation
scheme (2.3). Here are the main two types of filters we shall be considering in the course of this
exercise session (see [21] for multiple other possibilities):
• Smoothing filter [10]: h is replaced by Lαh = q, the solution in H1(D) to the following equation:{ −α2∆q + q = h in D,

∂q
∂n = 0 on ∂D,

for a small parameter α > 0 (chosen of the order of the mesh size in practice). Doing so is a
means to ensure that the effective density q = Lαh has a minimum regularity, and does not
show too steep variations between the values 0 and 1, which could cause numerical instabilities.

• Heaviside filter: h is replaced in (2.3) by Hβh, where

Hβh = 1− e−βh + e−βh.

The rationale behind this filter is that Hβ gets closer and closer to the usual Heaviside function
as β →∞; thus, the intermediate values of the effective density will be attracted to either 0 or
1; see [17] about this idea.
One possible drawback of the above filter is that it is strongly biased towards the value 1. The
following alternative, taken from [23], does not suffer from such an inconvenience:

H̃β,ηh =
tanh(βη) + tanh(β(h− η))

tanh(βη) + tanh(β(1− η))
,

where η ∈ (0, 1) tunes the bias between 0 and 1 of the filter as β →∞.
Of course, both types of filters may be combined (i.e. composed); it is important to note that the use

of filters implies that the mappings h 7→ Lαh and h 7→ Hβh (or h 7→ H̃β,ηh) have to be differentiated
and that the corresponding derivatives will appear in the derivative of the optimized criterion.

2.2. Topology optimization of a heat lens

The purpose of this example is to optimize the shape of a heat lens - a device meant to insulate a user-defined
region from an incoming heat flux. This test-case is inspired from the thermal lens problem discussed in
[13], Example 5.4.2.

The considered 2d setting is that depicted on Fig. 9. The physics at play when the domain is occupied
with a density h is described by the following steady-state heat conduction equation:

(2.4)


−div(ζ(h)∇uh) = 0 in D,

ζ(h)∂uh

∂n = gin on Γin,

ζ(h)∂uh

∂n = gout on Γout,

ζ(h)∂uh

∂n = 0 on ∂D \ (Γin ∪ Γout),

where the incoming and outgoing fluxes equal respectively gin = −1.0 and gout = 1.0, and ζ(h) is an
interpolation profile between a poor conductor with conductivity γ0 = 1 (the phase where h(x) = 0) and a
good conductor with conductivity γ1 = 10 (the phase where h(x) = 1).

By acting on the repartition h between weak and good conductors within D, our aim is to nullify the
horizontal heat flux γ0∇uh · e1 inside a fixed region ω b D occupied with the weak conductor. In practical
applications, good conductors are more expensive than weak ones, and so a constraint on the volume Vol(h) =∫
D
h dx of the phase filled with good conductor has to be added. The considered topology optimization

problem then reads:

(2.5) min
h
{F (h) + `Vol(h)} , where F (h) =

∫
D

χωγ
2
0

∣∣∣∣∂uh∂x1

∣∣∣∣2 dx,
and ` is a fixed weight (or Lagrange multiplier); e.g. ` = 10 for this example.

Question 2.2.1. Write down the variational formulation for (2.4), and implement it, for instance in the case
where the density h0 identically takes the value 0.5, except inside ω where it is set to 0.

[Hint: Take care of the fact that only homogeneous Neumann boundary conditions are applied in (2.4), so
that the field uh is defined up to a constant. How do you take this fact into account in FreeFem++?]
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Figure 9. Setting of the thermal lens test-case of Section 2.2.

Question 2.2.2. Calculate the derivative of the objective function F (h) given in (2.5), for instance by using
the method of Céa.

Question 2.2.3. Implement a basic, steepest-descent density-based topology optimization algorithm to solve
the problem (2.5). The device of your algorithm notably implies several choices as regards:

• The interpolation profile ζ(h) between the conductivity values γ0 and γ1 of the poor and good
conductors, respectively;

• The use of one or several of the density filters described in Section 2.1;
• The use of a change of inner products to infer a descent direction from the derivative calculated in

Question 2.2.2 (see Section 3.1 below, where this feature is explained in the context of geometric
optimization methods);

• The particular gradient-based optimization algorithm based on the result of Question 2.2.2 (use of
a line search procedure for finding a good descent step, etc.).

A proposition of correction lies in the file Solutions/DensityThermal/simpheat.edp; see Fig. 10 for an
illustration of the result.

Question* 2.2.4. Of great physical interest for applications are also devices achieving the opposite physical
behavior to that of thermal lenses, namely so-called field concentrators, whose aim is to maximize the
horizontal heat flux F (h) through the region ω, while still imposing a constraint on the volume of the phase
filled with good conductor.

Adapt the previous questions to this new setting.

Question* 2.2.5. In the practice of the SIMP method, people generally use different (still gradient-based)
optimization algorithms from the steepest-descent strategy advocated in Question 2.2.3. Here are two ex-
amples of popular strategies that you may try to implement:

• The Optimality Criteria (OC) method, which allows to impose exactly a desired volume constraint
(instead of a mere penalization of the objective in (2.5)) by relying on the optimality conditions of
constrained optimization programs; see for instance [8] §1.2.2 about this strategy.

• The Method of Moving Asymptotes (MMA) [22], a method from constrained optimization relying
on convex approximations of the objective and constraint functions which is especially tailored to
density-based topology optimization; see also [8] §1.2.3.

You may also consider to try out different optimization algorithms such as the nonlinear conjugate gradient
method; see [19], Section 8.1 about the implementation of such algorithms in FreeFem++
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Figure 10. Iterations 0, 10, 75 and 200 of the heat lens optimization test-case of Section 2.2.

2.3. The classical cantilever benchmark in linearized elasticity

We now turn to the first instance of the perhaps most classical example in shape and topology optimization,
namely the so-called cantilever example. The physical setting is illustrated in Fig. 11: a beam occupies a
rectangular hold-all domain D with size 2 × 1; D is clamped on its left-hand side ΓD and vertical traction
loads g = (0,−1) are applied on a part ΓN of their right-hand side. Body forces within D are neglected.

D

�D �N •

g

2

1 0.1

Figure 11. Setting of the cantilever test case of Section 2.3.

In the context of density-based topology optimization, the problem at stake consists in searching for the
repartition of an elastic material with Hooke’s tensor A defined by (1.8) and (1.9), and of the corresponding
ersatz material εA, with ε = 1e−3 within D, as described in Section 2.1.

Question 2.3.1. Write down the linearized elasticity system for the displacement uh ∈ H1
ΓD

(D)2 character-
izing the behavior of D when the repartition between both phases is characterized by the density function
h : D → (0, 1). Write down the corresponding variational formulation for uh.
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Our aim is to minimize the compliance of the structure in the above situation; the latter may be equiva-
lently understood as the elastic energy stored in the structure D, or as the work of external loads acting on
D:

C(h) =

∫
D

Ahe(uh) : e(uh) dx =

∫
ΓN

g · uh ds.

A constraint on the volume Vol(h) of the material phase is added, so that we solve the problem

(2.6) min
h
{C(h) + `Vol(h)}

for a fixed Lagrange multiplier ` (in the application of this section, you may use ` = 10).

Question 2.3.2. Calculate the derivative of the mapping h 7→ C(h), for instance by using the method of
Céa.

Question 2.3.3. Implement a steepest-descent algorithm for the numerical resolution of (2.6), in the spirit
of that of Question 2.2.3.

Again, you may be interested in try out different mesh sizes, different filters, and different initial designs.
What do you observe?

The formulation (2.6) of the considered optimization problem is a little unsatisfactory, since it does not
account for a constraint on the volume of used material, so to speak, but rather for a penalization of the
minimized objective (the compliance) by this volume constraint. In particular, a little tuning of the Lagrange
multiplier ` is in order so as to ‘guess’ which value will yield an optimized design with the desired volume.

Question 2.3.4. The purpose of this question is to implement an augmented Lagrangian algorithm (see e.g.
[20], Chap. 17) dedicated to the resolution of the equality constrained optimization program

(2.7) min
h
C(h) s.t. Vol(h) = VT ,

where VT is a user-defined desired volume target.
Roughly speaking, the augmented Lagrangian algorithm transforms the constrained optimization problem

(2.7) into a sequence of unconstrained problems of the form (2.6) (hereafter indexed with the superscript n),
in which the weighting parameter is consistently updated.

More precisely, let us define the augmented Lagrangian functional L(h, `, b) by:

L(h, `, b) = J(h)− `(Vol(h)− VT ) +
b

2
(Vol(h)− VT )2;

intuitively, ` is intended as a closer and closer estimate of the Lagrange multiplier for the equality constraint
in the optimality conditions of (2.7) while b is a penalty parameter, initialized with a ‘low’ value, increasing
so as to impose steadily this constraint in (2.7).

The augmented Lagrangian algorithm then alternates between the update of the coefficients `n and bn

and the search for a minimizer hn to h 7→ L(h, `n, bn) for fixed values `n and bn. In practice, since the latter
search is computationally expensive, the following practical version is used:

• Initialization: Start with an initial design h0 and initial values `0 and b0.
• For n = 0, ... until convergence:

– Find a descent direction δhn for h 7→ L(h, `n, bn);
– Find a small enough time-step τn so that L(hn + τnδhn, `n, bn) < L(hn, `n, bn) and set hn+1 =
hn + τnδhn;

– Update the coefficients `n and bn according to the rule:

`n+1 = `n − bn(Vol(hn)− VT ), and bn+1 =

{
αbn if bn < bmax,
bn otherwise,

where α > 1 and bmax are user-defined parameters.

Implement the augmented Lagrangian algorithm in the context of the cantilever test-case.

A proposition of correction lies in the files Solutions/DensityCantilever/simpcanti.edp and
Solutions/DensityCantilever/simpcantiauglag.edp; see Fig. 12 for an illustration of the result.
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Figure 12. (From left to right, top to bottom) Iterations 20, 35, 50 and 200 in the topology
optimization example of the cantilever beam of Section 2.3.

2.4. Topology optimization of a compliant mechanism

One very important application field of topology optimization is concerned with the design of efficient
actuators, or compliant mechanisms, namely mechanisms adopting a prescribed behavior (in terms of their
elastic displacement, for example) when they are submitted to a given input force.

In this section, we consider the optimal design of a displacement inverter, as illustrated on Fig. 13. In a
square-shaped hold-all domain D, the considered structures Ω ⊂ D are clamped near the upper and lower
regions ΓD of their left-hand side, and a known force g = (100, 0) is applied on the middle ΓN of their
left-hand side. A region ΓS of their right-hand side is connected to a spring with stiffness constant ks = 0.1,
which opposes the motion of the latter part. In this setting, the displacement uΩ ∈ H1

ΓD
(Ω)2 of a shape

Ω ⊂ D satisfies the following linearized elasticity system:

(2.8)


−div(Ae(u)) = 0 in Ω,

u = 0 on ΓD,
Ae(u)n = g on ΓN ,

Ae(u)n+ ksu = 0 on ΓS ,
Ae(u)n = 0 on Γ.

In this context, we aim to maximize the negative horizontal displacement of Ω on the output area ΓS ,
while minimizing the positive horizontal displacement in the input region ΓN . To achieve this goal, we
minimize the functional A(Ω) defined by:

A(Ω) = αin

∫
ΓN

uΩ · e1 ds+ αout

∫
ΓS

uΩ · e1 ds,

under a constraint on the volume of shapes. Here αin and αout are two weighting constants (for instance,
αin = 1 and αout = 2).
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Figure 13. Mechanical setting of the displacement inverter mechanism test-case of Section 2.4.

Question 2.4.1. Write down the density-based formulation corresponding to the shape optimization problem

min
Ω
A(Ω) s.t. Vol(Ω) = VT ,

where VT is a user-defined target volume.

Question 2.4.2. Calculate the derivative of the objective function A(h) involved in this density-based
topology optimization problem, for instance by using the method of Céa.

Question 2.4.3. Implement a steepest-descent algorithm for the resolution of this topology optimization
problem, taking stock of the knowledge obtained from the work in Sections 2.2 and 2.3.

One possible correction is proposed in the file Solutions/DensityInverter/simpinvert.edp; see Figs. 14
and 15 for an illustration of the result.

Figure 14. (From left to right) Iterations 0, 50 and 200 in the topology optimization ex-
ample of the inverter mechanism of Section 2.4.

3. Geometric optimization using mesh movement

This section describes the implementation of a typical geometric optimization method.
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Figure 15. Deformed configuration of the optimized inverter mechanism of Section 2.4.

3.1. Basics about geometric optimization methods

We first sketch the main features of geometric optimization methods, still in the structural mechanics context
of Section 1.2: an objective function J(Ω) is minimized (without constraints, for simplicity), which depends
on the domain Ω via the solution uΩ to the linearized elasticity system (1.11).

(1) The optimized shape Ω is explicitly meshed at each iteration of the process. More precisely, a
sequence of shapes Ωn, n = 0, ... is produced, and each Ωn is equipped with a triangular mesh
T n. Therefore, the resolution of a PDE of the form (1.11) on the optimized shape may be achieved
straightforwardly by using the finite element method, along the lines of Section 1.2.1.

(2) A descent direction for J(Ω) is found as a vector field θ : Ω→ R2 such that, equivalently

J((Id + τθ)(Ω)) < J(Ω) for τ > 0 small enough, or J ′(Ω)(θ) < 0.

(3) A naive attempt to calculate such a descent direction relies on the general structure of the shape
derivative of J(Ω):

(3.1) J ′(Ω)(θ) =

∫
Γ

vΩ θ · n ds,

where Γ is the optimized region of the boundary of Ω, and vΩ : Γ→ R is a scalar function depending
on uΩ and the optimized criterion J(Ω) (for instance via an adjoint state). Indeed, from (3.1), a
descent direction for J(Ω) is revealed as:

(3.2) θ = −vΩn.

In other terms, θ is the (negative) gradient associated to the differential θ 7→ J ′(Ω)(θ) via the L2(∂Ω)
inner product. Unfortunately, this choice often proves awkward for a number of reasons, including
the lack of regularity of the field vΩ (which may cause spurious oscillations of the boundary Γ in the
course of the optimization process).

(4) A common trick consists in changing inner products when it comes to finding a descent direction
from J ′(Ω)(θ). More precisely, a Hilbert space H of admissible deformations is chosen, as well as a
coercive bilinear form a(·, ·) on H; the following problem is then solved:

Find ṽ ∈ H s.t. ∀w ∈ H, a(ṽ, w) = J ′(Ω)(w),

and it is easily seen that θ = −ṽ is a descent direction for J(Ω). Several choices are possible as for
the pair (H, a(·, ·)); for instance (see also [11, 15]):
• The choice H = H1(Ω)2 and a(w, z) =

∫
Ω

(∇w : ∇z + w · z) dx yields a shape gradient which is
defined on Ω as a whole, and which is more regular than the naive choice (3.2);
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• The choice H = H1(Ω)2 and a(w, z) =
∫

Ω
(Ae(w) : e(z) + wz) dx yields a shape gradient which

‘resembles’ an elastic displacement;
other requirements on the sought descent direction (e.g. that it should vanish on some fixed region
of ∂Ω) may be encoded likewise in the choice of H and a.

(5) Once a descent direction θn is obtained at some stage Ωn, the new shape Ωn+1 is obtained by:

Ωn+1 := (Id + τnθn)(Ωn)

for a suitable choice of a time step τn (resulting e.g. from a line search strategy).
From the numerical viewpoint, the mesh T n+1 of Ωn+1 may be obtained from that T n of Ωn by

moving each vertex xni , i = 1, ..., N along the vector field θn, formally:

(3.3) xn+1
i = xni + τnθn(xni ),

while the connectivity of the mesh (the connections between vertices) remain unchanged.
(6) In practice, the greatest stake of geometric optimization methods has to do with the procedure used

to update the shape. Indeed, such a basic rule as (3.3) is bound to result in an invalid mesh, i.e. a
mesh containing inverted, or overlapping triangles.

For this reason, one needs to devise more ‘clever’ mesh update techniques, which alleviate this
issue, or at least postpone its emergence. This may involve
• A periodic remeshing of the shape, i.e. an improvement of the quality of the computational

mesh thanks to mesh operations. In FreeFem++, such an operation is possible via the adaptmesh
command which we have already encountered in Section 1.1; see Listing 4.
• The use of a descent direction produced by an ‘adapted’ inner product; see the point (4) above.

3.2. The cantilever example

We revisit the 2d cantilever example of Section 2.3 with geometric shape optimization methods; see the
educational article [4] for a similar example. The considered shapes Ω are clamped on a region ΓD of their
boundary, and a vertical load g = (0,−1) ∈ L2(ΓN )d is applied on a disjoint subset ΓN ⊂ ∂Ω. Neither ΓD
nor ΓN is subject to optimization, which leaves the remaining, ‘traction-free’ region of ∂Ω as the unique
region subject to optimization; see Fig. 11 for an illustration.

In these circumstances, the elastic displacement uΩ of Ω belongs to the space H1
ΓD

(Ω)2, where we recall

that H1
ΓD

(Ω) is defined by (1.10); it is the unique solution in this space to the system of linear elasticity
−div(Ae(uΩ)) = 0 in Ω,
Ae(uΩ)n = g on ΓN ,
Ae(uΩ)n = 0 on Γ,
uΩ = 0 on ΓD.

As in Section 2.3, our aim is to minimize a weighted sum of the compliance of the beam and its volume:

(3.4) min
Ω
{C(Ω) + `Vol(Ω)} , where C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx, Vol(Ω) =

∫
Ω

dx,

and ` is a fixed Lagrange multiplier (in this example, one may take ` = 5).

Question 3.2.1. By using either a rigorous calculation or the formal method of Céa, prove that the shape
derivative of the compliance C(Ω) reads:

∀θ, C ′(Ω)(θ) = −
∫

Γ

Ae(uΩ) : e(uΩ) θ · n ds.

[Hint: Remember that the optimized region Γ ⊂ ∂Ω bears homogeneous Neumann boundary conditions.]

Question 3.2.2. Implement a steepest-descent algorithm for the resolution of the program (3.4). You may
start from the initial geometry constructed in the supplied file Subjects/GeomCanti/cantigeom ini.edp.

In particular, you may want to pay close attention to:

• The needed remeshing needed to maintain a good quality of the computational mesh;
• The strategy for deriving a descent direction from the knowledge of the shape derivative calculated

in Question 3.2.1; in particular, it is interesting to investigate different possibilities as regards the
choice of an inner product; see Point (4) in Section 3.1.
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You may also want to try out different initial designs, different values for the Lagrange multiplier `, etc.
[Remark: you may notice a parasitic behavior of the descent direction near the corners marking the

interface between the regions ΓD and Γ; this is because the shape gradient is ill-defined at these points, whose
movements ought better be prevented.]

Question 3.2.3. As was observed in Section 2.3, the formulation (3.4) of the considered optimization prob-
lem is a little clumsy, since the weighting parameter ` has no physical meaning, and is in particular difficult
to relate to the volume of the resulting optimized design. It is therefore tempting to try and solve the
constrained optimization program:

min
Ω
C(Ω) s.t. Vol(Ω) = VT ,

where VT is a volume target.
Implement an augmented Lagrangian algorithm to achieve this purpose, by relying on the sketch provided

in Question 2.3.4, which applies mutatis mutandis to the present situation.

A proposition of correction lies in the file Solutions/GeomCanti/cantigeom.edp and Fig. 16 depicts a
glimpse of the result.

Figure 16. Iterations 0, 40 and 200 of the cantilever geometric optimization test-case of
Section 3.2.

3.3. Geometric optimization for an eigenvalue problem

As we have already seen in Section 1.2.3, the excitation of an eigenmode of a structure may dramatically
jeopardize its safety; hence, it is sometimes desirable to reinforce a given structure (with as little additionnal
material as possible) in such a way to increase its fundamental frequency.

The present example is inspired by [8]: here, shapes Ω are 2d beams clamped on their left-hand side ΓD,
which have to be optimized so as to increase their lower eigenfrequency. So as to prevent trivial optimization
results (such as the void domain!) incompatible with the anticipated use of the structure, we artificially
assume that the beam has inhomogeneous density ρ (and that the outer frame of the beam is much denser
than the interior region).

More rigorously, the optimization problem reads

(3.5) min
Ω
{−λ1(Ω) + `Vol(Ω)} ,

where ` is a fixed Lagrange multiplier (here, ` = 1e−5) and λ1(Ω) is the lowest eigenvalue of the linearized
elasticity operator. In other terms, λ1(Ω) is the lowest positive value λ such that there exists a function
uΩ ∈ H1

ΓD
(Ω)2 which does not vanish everywhere, satisfying

(3.6)

 −div(Ae(uΩ)) = λρuΩ in Ω,
uΩ = 0 on ΓD,

Ae(uΩ)n = 0 on Γ.
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As usual, uΩ is normalized by the condition

(3.7)

∫
Ω

ρu2
Ω dx = 1.

Question 3.3.1. By using, for instance, the formal method of Céa, and admitting that the fundamental
mode, defined by (3.6) and (3.7), is single, prove that the shape derivative of λ1(Ω) is

∀θ, λ′1(Ω)(θ) =

∫
Γ

(
Ae(uΩ) : e(uΩ)− ρu2

Ω

)
θ · n ds.

Question 3.3.2. Implement a steepest-descent algorithm for the resolution of the optimization problem
(3.5). You may use the domain constructed in the supplied file Subjects/GeomEigen/eigengeom ini.edp

as initial design; the density function ρ featured in (3.6) is defined in the same file.

A proposition of correction lies in the files Solutions/GeomEigen/eigengeom.edp and Fig. 24 depicts one
possible result.

Figure 17. Iterations 0, 50, 70 and 200 of the eigenvalue optimization test-case of Section 3.3.

Question* 3.3.3. You may be interested in using a similar strategy to reinforce the bridge of Fig. 3 (left),
i.e. to increase the value of its fundamental frequency.

3.4. An example in fluid mechanics

In this section, we slip into a fairly different context, that of fluid mechanics. A Newtonian fluid with
kinematic viscosity ν is entering a pipe Ω via an inlet Γin with known (parabolic) velocity profile uin. The
fluid is conveyed by the pipe, from where it exits via the outlet Γout; see Fig. 18 for a schematics of the
situation. As in Section 1.3, the physical state of the fluid is described by its velocity uΩ ∈ H1(Ω)2 and
pressure pΩ ∈ L2(Ω)/R, which are the solutions to the Stokes system:

(3.8)


−div(σ(u, p)) = 0 in Ω,

div(u) = 0 in Ω,
u = uin on Γin,
u = 0 on Γ,

σ(u, p)n = 0 on Γout,

where the viscous stress tensor reads:

σ(u, p) = 2νe(u)− pI.
In this setting, we are interested in minimizing the energy dissipated by the pipe under viscous effects,

D(Ω) = 2ν

∫
Ω

e(uΩ) : e(uΩ) dx,

under a constraint on the volume Vol(Ω) of Ω. As in previous examples, this constraint is simply aggregated
to the objective function, so that the problem rewrites as the unconstrained minimization problem

(3.9) min
Ω
{D(Ω) + `Vol(Ω)} ,

where ` is a fixed Lagrange multiplier (for this example, you may take ` = 5).
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Figure 18. Setting of the pipe geometric optimization test-case of Section 3.4.

Question 3.4.1. By using either a rigorous calculation, or the method of Céa, prove that the shape derivative
of the energy dissipation D(Ω) reads:

D′(Ω)(θ) = −2ν

∫
Γ

e(uΩ) : e(uΩ)θ · n ds.

[Hint: In the practice of the method of Céa, beware of the fact that the optimized boundary in this case is
equipped with homogeneous Dirichlet boundary conditions.]

Question 3.4.2. Implement a steepest-descent geometric optimization algorithm for the numerical resolu-
tion of (3.9). To this end, you may use the initial design constructed in the supplied file Subjects/GeomFluids/pipe ini.edp,
as well as the input velocity profile uin defined in there.

A proposition of correction is given in the file Solutions/GeomFluids/pipe.edp; see Fig. 19 for a sample
result.

Figure 19. Iterations 0, 40 and 200 in the pipe optimization test-case of Section 3.4.

Question 3.4.3. You may try another example with the exact same algorithm, such as the double branch
structure which consists in solving the exact same optimization program (3.9), in the physical situation of
Fig. 20.

Remark 3.1. The interested reader by the context of fluid mechanics may consult the educational article
[14] in which several similar (and more elaborated) examples are discussed.
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Figure 20. Setting of the double branch geometric optimization test-case of Section 3.4.

4. Shape and topology optimization using the level set method

We finally discuss the implementation of shape and topology optimization algorithms relying on the level
set method.

4.1. Practice of the level set method in the context of linearized elasticity

Let us start our encounter with level set methods with a short summary of their main features, in the context
of the minimization of a function J(Ω) of the domain involving the solution uΩ to the linearized elasticity
equations on Ω:

(1) A fixed computational domain D is defined, and it is equipped with a fixed mesh T .
(2) Any considered shape Ω ⊂ D is represented by means of a level set function φ : D → R such that:

(4.1)


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ D \ Ω;

see Fig. 4 for an illustration.
(3) In practice, only the level set function φ : D → R is known (not the domain Ω); it is discretized, for

instance, as a P1 finite element function on T .
(4) The calculation of geometric quantities attached to Ω, such as the normal vector field n(x) or the

mean curvature κ(x) may be achieved by discretizing the continuous formulas

n(x) =
∇φ(x)

|∇φ(x)| , and κ(x) = div

( ∇φ(x)

|∇φ(x)|

)
.

The various supplied files named tools.idp contains two macros for calculating these quantities,
whose use is exemplified in Listing 8.

/∗ Inc lude packages ∗/
include ” t o o l s . idp ”

/∗ F i n i t e Element spaces ∗/
fespace Vh(Th, P1 ) ;

fespace Vh0(Th, P0 ) ;

/∗ F i n i t e Element f u n c t i o n s used i n t e r n a l l y in the macros ∗/
Vh nx , ny , v , vx , vy , kappa ;

Vh0 nx0 , ny0 , ngrphi , kappa0 ;

/∗ [ nx , ny ] = P1 normal vec to r f i e l d to the domain de f ined by phi ∗/
Vh phi ;
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normalvec ( phi ) ;

/∗ kappa = P1 curvature o f the domain de f ined by phi ∗/
curvature ;

Listing 8. Calculation of the normal vector and the mean curvature of a domain
from its level set function in FreeFem++ using the macros in tools.idp.

(5) The evaluation of the objective function J(Ω) (or the shape derivative J ′(Ω)) is a little more difficult
than in the context of geometric methods of Section 3.1: no mesh of Ω is available for the practice of
the finite element method, only the fixed mesh T of D. To overcome this issue, the level set function
φ for Ω is used to calculate an approximate displacement uε for uΩ on the whole mesh T , by relying
on the ersatz material method of Section 1.2.2. More precisely, the system

(4.2)


−div(Aεe(uε)) = 0 in D,
Aεe(uε)n = g on ΓN ,
Aεe(uε)n = 0 on ∂D \ (ΓN ∪ ΓD),

uε = 0 on ΓD,

where Aε(x) =

{
A if x ∈ Ω⇔ φ(x) < 0;
εA if x ∈ D \ Ω⇔ φ(x) ≥ 0,

is solved on D for a small value ε� 1 (typically, ε = 1.e−3).
The supplied files tools.idp contain the macro volfrac, which was already used in Section 1.2.2

to calculate the approximate tensor Aε in (4.2); see also Listing 6.
(6) A second important issue about the level set method has to do with how the shape Ω is updated

from the knowledge of the shape derivative J ′(Ω)(θ) and of the inferred descent direction θ (see also
Section 3.1, Point (4)). In the framework of the level set method, the motion of a domain Ω(t)
according to the velocity field θ(x) with normal component v(x) = θ(x) · n(x) is achieved by solving
the following Hamilton-Jacobi equation for a level set function φ(t, x):

(4.3)
∂φ

∂t
(t, x) + v(x)|∇φ(t, x)|= 0, t > 0, x ∈ D.

In practice, an advection equation, counterpart to (4.3), is solved, by using the set of commands in
Listing 9, relyting on macros defined in the supplied files tools.idp.

/∗ Inc lude packages ∗/
load ” d i s t ance ”

include ” t o o l s . idp ”

/∗ F i n i t e Element spaces and f u n c t i o n s ∗/
fespace Vh(Th, P1 ) ;

Vh phio , phi , phitmp , nx , ny ;

real s tep = 0 . 1 ;

/∗ Solve the l e v e l s e t HJ equat ion with

− i n i t i a l data phio ,

− vec to r v e l o c i t y [ nx , ny ] ,

− f i n a l time step

and perform r e i n i t i a l i z a t i o n as a d i s t anc e func t i on ∗/
advectRedist ( phio , phi , nx , ny , s tep ) ;

Listing 9. Advection and redistancing of a level set function in FreeFem++ using the macros
in tools.idp.
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4.2. Optimal shape of a wheeled bridge

4.2.1. Implementation of the ‘classical’ level set method

Our first example in the context of the level set method is concerned with the optimal design of a wheeled
bridge, as depicted on Fig. 21: the structure Ω to be optimized is filled with a linearly elastic material with
Hooke’s law A given by (1.8); Ω is clamped on its bottom right-hand side ΓD, and its vertical displacement
is prevented on its bottom left-hand side ΓS (so that the structure may only slide horizontally in this area).
A vertical load g = (0,−1) is applied on the central region ΓN of the bottom part, and only the remaining
free part Γ := ∂Ω \

(
ΓD ∪ ΓS ∪ ΓN

)
of the boundary of shapes is subject to optimization.

The displacement uΩ = (uΩ,1, uΩ,2) : Ω → R2 of the structure is therefore the solution to the following
linearized elasticity system:

(4.4)


−div(Ae(uΩ)) = 0 in Ω,
Ae(uΩ)n = g on ΓN ,
Ae(uΩ)n = 0 on Γ,
uΩ = 0 on ΓD,
uΩ,2 = 0 on ΓS .

In this context, our purpose is to minimize the compliance of the domain

(4.5) C(Ω) :=

∫
Ω

Ae(uΩ) : e(uΩ) dx =

∫
ΓN

g · uΩ ds,

under a constraint on the volume Vol(Ω) =
∫

Ω
dx of shapes. A simplified version of this program arises

under the form of the unconstrained minimization of a weighted sum of both functionals:

(4.6) min
Ω
{C(Ω) + `Vol(Ω)} ,

where ` is a fixed Lagrange multiplier (here, the value ` = 0.2 may be used).

D

�D�N

g

2

1.5

�S

0.10.10.1

Figure 21. Setting of the wheeled bridge test-case of Section 4.2.

Question 4.2.1. Establish the variational formulation for the state system (4.4).

Question 4.2.2. Calculate the shape derivative of the compliance functional C(Ω) in (4.5); you may either
resort to a rigorous calculation to this end, or to the fast method of Céa.

Question 4.2.3. Implement the level set framework sketched in Section 4.1 to deal with the above wheeled
bridge optimization example. You may take advantage of the functions or macros present in the file
LSBridge/tools.idp in your implementation.
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Experience the effect of using different initial shapes (with different numbers of holes), different mesh
sizes, as well as different inner products for calculating a descent direction from the knowledge of J ′(Ω) (see
Section 3.1, Point (4)), etc...

A proposition of correction is given in the file LSBridge/LSBridge.edp and a few iterations of the optimiza-
tion process are represented on Fig. 22.

Figure 22. Iterations 0, 20, 100 and 200 of the wheeled bridge optimization test-case of
Section 4.2.

Question 4.2.4. In some applications, it may be of interest to put also a constraint on the perimeter

Per(Ω) =

∫
∂Ω

ds

of shapes. By elaborating on your numerical program, solve now the problem

(4.7) min
Ω
{C(Ω) + `1Vol(Ω) + `2Per(Ω)} ,

where `1 and `2 are two fixed Lagrange multipliers (in this example, you may take `1 = 0.2 and `2 = 0.02).
You may use the macros and functions contained in the file Subjects/LSBridge/tools.idp during your
implementation.

A proposition of correction is given in the file Solutions/LSBridgePer/LSBridgePer.edp and a few itera-
tions are represented on Fig. 23.

Question 4.2.5. Adapt your optimization algorithm to implement the augmented Lagrangian strategy
outlined in Question 2.3.4 in order to deal with the true constrained optimization programs

min
Ω
C(Ω) s.t. Vol(Ω) = VT ,

and

min
Ω
C(Ω) s.t.

{
Vol(Ω) = VT ,
Per(Ω) = PT ,

where VT and PT are user-defined targets for the volume and perimeter constraints, instead of the (penalized)
unconstrained formulations (4.6) and (4.7).
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Figure 23. Iterations 0, 50, 70 and 200 of the wheeled bridge optimization test-case of
Section 4.2 under volume and perimeter constraints.

4.2.2. Optimisation of the shape of a bridge using topological derivatives

As you may have experienced, it is sometimes difficult to find a suitable initial shape: on the one hand,
considering an initial shape with many holes may precipitate the algorithm into local minima with poor
structural performance; on the other hand, initializing the method with few holes is equally awkward since
the algorithm is not able to nucleate holes inside shape (it only proceeds by moving the boundary of shapes).

A quite convenient remedy to this drawback relies on a different means for differentiating a functional of
the domain, that of topological derivative. This notion appraises how the optimized functional, say J(Ω),
behaves when a small hole, centered at a given point x0 ∈ Ω, with radius r > 0 is nucleated inside Ω, i.e.
when Ω is replaced by

Ωx0,r := Ω \B(x0, r).

Definition 4.1. A functional of the domain J(Ω) has a topological derivative at a point x0 ∈ Ω if there
exists a real value gTΩ(x0) such that the following asymptotic expansion holds in the neighborhood of r = 0:

J(Ωx0,r) = J(Ω) + rdgTΩ(x0) + o(rd), where
|o(rd)|
rd

r→0−−−→ 0.

Hence, at some point x0 where gTΩ(x0) < 0, a hole with small radius r > 0 may be nucleated inside Ω,
leading to a new shape Ωx0,r with a lesser value of J(Ω).

When the considered shape functional J(Ω) is the compliance, the topological derivative reads (in two
space dimensions):

∀x ∈ Ω, gTΩ(x) =
π(λ+ 2µ)

2µ(λ+ µ)
(4µAe(uΩ) : e(uΩ) + (λ− µ)tr(Ae(uΩ))tr(e(uΩ))) (x).

Question 4.2.6. What is the value of the topological derivative of the volume functional Vol(Ω) at some
given point x ∈ Ω?

As proposed for instance in [3, 12], topological derivatives may be combined with shape derivatives in the
framework of the level set method for shape and topology optimization. Indeed, in the iterative optimization
process of a function J(Ω), one may alternate between stages where the shape derivative J ′(Ω) is calculated
and used (exactly as in the previous section), and some iterations where the topological derivative gTΩ is
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calculated everywhere inside Ω, and where a small hole is nucleated around the point x0 where gTΩ(x0) is the
most negative.

Question 4.2.7. Redo the bridge example of Section 4.2.1 by starting from a half-domain (without hole)
as in Fig. 24 (top, left), and replacing one every, say, five step, the update of the shape based on the shape
derivative of the optimized functional with one using its topological derivative.

You may in particular try several strategies as regards the nucleation of holes during steps involving
topological derivatives (frequency of these stages, number of holes nucleated, etc.); see the macro perTopDer

from the file Subjects/LSBridgeTopDer/tools.idp about this point.

One possible correction is contained in the file Solutions/LSBridgeTopDer/LSBridgeTopDer.edp, and an
illustration is provided on Fig. 24.

Figure 24. Iterations 0, 15, 50 and 200 of the wheeled bridge optimization test-case of
Section 4.2, using topological derivatives.

4.2.3. Beyond the bridge

Question 4.2.8. There are several quite classical benchmark test-cases that you may consider by using and
elaborating on the previous material; to name a few,

• You may first revisit the classical cantilever example of Sections 2.3 and 3.2 from the viewpoint of
the level set method.

• You may consider the double cantilever example - an example of a multiple load case: the setting is
presented on Fig. 25 (left). The aim is to minimize the sum

J(Ω) =

2∑
i=1

Ci(Ω), where Ci(Ω) :=

∫
Ω

Ae(uΩ,i) : e(uΩ,i) dx,

is the compliance under the load gi applied on the fixed region ΓN,i. The function Ci(Ω) involves
the displacement uΩ,i, solution to the linearized elasticity system where only the load gi is at play;
for instance: 

−div(Ae(uΩ,1)) = 0 in Ω,
Ae(uΩ,1)n = g1 on ΓN,1,
Ae(uΩ,1)n = 0 on Γ ∪ ΓN,2,
uΩ,1 = 0 on ΓD,
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and similarly for uΩ,2. A volume constraint is added either under the form of a fixed penalization of
J(Ω), or by means of an augmented Lagrangian strategy.

• Finally, you may turn to a stress minimization problem, such as the L-shaped beam example depicted
on Fig. 25 (right). In there, the minimized functional is a global measure S(Ω) of the stress σ(uΩ) :=
Ae(uΩ) in the structure:

S(Ω) =

(∫
Ω

χω(x)||σ(uΩ)||2 dx
) 1

2

,

where χω is the characteristic function of a subdomain ω ⊂ D which avoids the region (in blue in
Fig. 25) where the load is applied. In this example again, a constraint on the volume of shapes
should be added (either by means of a fixed penalization, or by an augmented Lagrangian strategy).
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Figure 25. (Left) Setting of the double cantilever test-case; (right) setting of the L-shaped
beam example.

4.3. A level set-based fixed point algorithm relying solely on topological derivatives

The notion of topological derivative may alternatively be used on its own in a topology algorithm, in com-
bination with a level set representation of shapes, as was initially proposed by S. Amstutz [6].

4.3.1. A description of the algorithm

Let us present the main stakes of this topology optimization algorithm in the context of linearized elasticity.

(1) This algorithm is fundamentally a two-phase topology optimization algorithm; more precisely, the
setting is as follows: a ‘hold-all’ domain D is equipped with a fixed mesh T . Each shape Ω ⊂ D
divides the domain D into two complementary phases Ω0 = Ω and Ω1 = D \ Ω, filled with different
elastic materials, associated to the respective Hooke’s tensors A0 and A1. The total structure D is
clamped on a region ΓD of its boundary ∂D, and traction loads are applied on the disjoint subset
ΓN ⊂ ∂D, so that the displacement uΩ of the total structure D belongs to the space H1

ΓD
(D)2 and
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is the unique solution to the system:

(4.8)


−div(AΩe(uΩ)) = 0 in D,
AΩe(uΩ)n = g on ΓN ,
AΩe(uΩ)n = 0 on ∂D \ (ΓN ∪ ΓD),

uΩ = 0 on ΓD,

where AΩ(x) =

{
A0 if x ∈ Ω0;
A1 if x ∈ Ω1.

Note that the context of optimization of only one material, as investigated in the previous sections,
is recovered in this setting by the particular choice of materials A0 = A and A1 = εA, where ε� 1
is the parameter involved in the ersatz material approximation, as in Section 1.2.2.

(2) An objective function J(Ω) is then considered, which depends on Ω via the solution uΩ to (4.8). For
instance, J(Ω) may stand for the compliance C(Ω) of the total structure D:

(4.9) C(Ω) =

∫
D

AΩe(uΩ) : e(uΩ) dx.

(3) The notion of topological derivative for such a function J(Ω) of the domain takes a slightly different
meaning from that of Definition 4.1. More precisely, we now consider perturbations of Ω of the form:

Ωx,r :=

{
Ω \B(x, r) if x ∈ Ω,
Ω ∪B(x, r) if x ∈ D \ Ω;

i.e. Ωx,r is obtained from Ω by nucleation of a small ball centered at x if x ∈ Ω, or by addition of a
small ball if x /∈ Ω.

Definition 4.2. A function J(Ω) of the domain has a topological derivative at a particular point
x ∈ Ω0 ∪ Ω1 if there exists a real number gTΩ(x) such that the following asymptotic expansion holds:

F (Ωr,x) = F (Ω) + sΩ(x)gTΩ(x)|B(x, r)|+o(|B(x, r)|), where lim
r→0

o(|B(x, r)|)
|B(x, r)| = 0,

and:

(4.10) sΩ(x) = 1 when x ∈ Ω0 and sΩ(x) = −1 when x ∈ Ω1.

For instance, the following result yields the topological derivative of the two-phase compliance
(4.9); see [9, 16]:

Theorem 4.1. For any two-dimensional admissible shape Ω ∈ Uad, the function C(Ω) defined in
(4.9) has a topological derivative gTΩ(x) at any point x ∈ Ω0 ∪ Ω1. Its expression reads:

gTΩ(x) = sΩ(x) Pσ(uΩ(x)) : e(uΩ(x)),

where sΩ(x) is defined by (4.10) and P is the fourth-order Pólya-Szegö polarization tensor, given by:

(4.11) ∀e ∈ S(Rd), Pe =
1

ρ2ρ3 + τ1

(
(1 + ρ2)(τ1 − ρ3)e+

1

2
(ρ1 − ρ2)

ρ3(ρ3 − 2τ3) + τ1τ2
ρ1ρ3 + τ2

tr(e)I

)
,

where

(4.12) ρ1 =
1 + ν

1− ν , ρ2 =
3− ν
1 + ν

, ρ3 =
E?

E
, τ1 =

1 + ν?

1 + ν
, τ2 =

1− ν?
1− ν and τ3 =

ν?(3ν − 4) + 1

ν(3ν − 4) + 1
.

and we have posed:
• If x ∈ Ω1, E = E1, E? = E0, ν = ν1, and ν? = ν0,
• If x ∈ Ω0, E = E0, E? = E1, ν = ν0, and ν? = ν1.

(4) From the numerical point of view, an arbitrary shape Ω ⊂ D is represented by means of an associated
level set function φ : D → R, i.e. (4.1) holds.

(5) The main idea of the algorithm is that one shape Ω ⊂ D is (locally) optimal for the functional J(Ω)
provided the following holds: {

∀x ∈ Ω, gTΩ(x) ≤ 0,
∀x ∈ D \ Ω, gTΩ(x) ≥ 0.
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In other terms, Ω is optimal for J(Ω) if and only if the topological derivative gTΩ is one level set
function for Ω. Noting in addition that if φ is one level set function for Ω, then so is cφ for any
constant c > 0, one sufficient optimality condition for φ is that:

(4.13) ||φ||L2(D)= 1, and φ =
1

||gTΩ ||L2(D)

gTΩ , with Ω = {x ∈ D, φ(x) < 0} .

(6) A fixed-point algorithm with relaxation is applied to the condition (4.13); elementary calculations
yield the sequences of level set functions φn and associated shapes Ωn := {x ∈ D, φn(x) < 0} defined
by:

(4.14) φn+1 =
1

sin an
(
sin((1− τn)an)φn + sin(τnan)g̃n

)
,

where g̃n = 1
||gn||L2(D)

gn is the normalized version of the gradient gn := gTΩn , an ∈ [0, π] is the angle

an = arccos((φn, gn)L2(D)), and τn is a time step.

4.3.2. Application to the optimization of the shape of an electric mast

We consider the optimization of the shape and topology of a T-shaped electric mast, as represented on
Fig. 26. The considered shapes are clamped on their lower side ΓD, and vertical loads g = (0,−1) are
applied on the ends ΓN of their arms (accounting for the weight of the electric cables). The remaining part
of the boundary Γ := ∂Ω \ (ΓD ∪ ΓN ) is traction-free and it is the only region of ∂Ω which is subject to
optimization.
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Figure 26. Setting of the mast test-case of Section 4.3.

The displacement uΩ of the structure in this context is then the unique solution to the linearized elasticity
system (1.11), and the considered problem is that (4.6) of minimizing a weighted sum of the compliance C(Ω)
of the mast and of its volume Vol(Ω) (in this setting, it is possible to use the weighting parameter ` = 2).

Question* 4.3.1. Implement the algorithm sketched in Section 4.3.1. Again, you may take advantage of
the macros contained in the file LSMast/tools.idp to this end.
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It is interesting to experiment various initial designs, and various mesh sizes to appraise the sensitivity of
the algorithm to these parameters.

A possible correction is given in the file LSMast/LSMast.edp, and results are depicted on Fig. 27.

Figure 27. Iterations 0, 10, 30 and 200 of the mast optimization test-case using the topo-
logical gradient algorithm of Section 4.3.
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numérique, Editions Ecole Polytechnique, 2005.

[3] G. Allaire, F. De Gournay, F. Jouve, and A.-M. Toader, Structural optimization using topological and shape sensi-

tivity via a level set method, Control and cybernetics, 34 (2005), p. 59.
[4] G. Allaire and O. Pantz, Structural optimization with FreeFem++, Structural and Multidisciplinary Optimization, 32

(2006), pp. 173–181.

[5] S. Amstutz, Connections between topological sensitivity analysis and material interpolation schemes in topology optimiza-
tion, Structural and Multidisciplinary Optimization, 43 (2011), pp. 755–765.
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