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Foreword (I)

e Since , the level set method is
key in representing shapes.

e It allows to account for dramatic motions of
shapes, including topological changes:

- It is parametrization free;

- It is (originally) implemented on a fixed back-

ground mesh, alleviating meshing issues. . Active contour algorithm for
image segmentation

e The level set method is now ubiquitous in dy-

namic simulation (CFD, ...), image process-
ing, shape optimization, etc.

e References: ,

Motion of a vesicle through
an obstacle
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Foreword (II)

e The level set method has recently found an
interesting interplay with meshing:

- Adaptive refinement around an (evolving) in-
terface;

- Body-fitted interface tracking; Tt

Numerical simulation of a burner (Coria).

p—

- Mesh generation!

o Goals of this course:

- Provide a concise introduction to the theory
and practice of the level set method;

- Present several applications in connection with
meshing.

Body-fitted optimization of an obstacle.
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Disclaimer

e This course merely sketches the rich and difficult subject of the level set method.

e The selected applications are biased by the knowledge of the author.
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O The level set method
@ Basics about the level set method
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@ An interesting particular case: eikonal equations
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@ Resolution of the level set evolution equation
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O Applications
@ Volume mesh generation from an invalid surface triangulation
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@ Body-fitted tracking of an interface
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Basics about the level set method (I)\

A paradigm: The motion of a domain is conveniently described in an implicit way.

A domain Q C R? is equivalently defined by a function ¢ : RY — R such that:

p(x)<0 ifxeQ ; d(x)=0 ifxedQ ; ¢(x)>0 fxeQ

(Left) One domain Q C R?; (right) graph of an associated level set function.
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Let Q C RY be a domain with smooth boundary I, and let ¢ : RY — R be a smooth
level set function for €, such that V¢(x) # 0 on a neighborhood of T.

e The unit normal vector n to I pointing outward 2 reads:

Vo(x)
Vo)

Vx €T, n(x)=

Normal vector n to the boundary I of Q; some isolines of the function ¢ are dotted.
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Basics about the level set method (1I1)

e The second fundamental form II of T is:

Vxel, TI(x) =V <|§zgg|> .

e The mean curvature k of I is:

Vx €T, r(x) = div <|§28|) .

11, (v, v) is the curvature of a curve

drawn on I with tangent vector v at x.
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Evolving domains (1)

o Let Q(t) C R? be a domain with boundary I'(t), evolving over a time period
(0, T) according to a velocity field V(t, x).

o(t,x) <0 if x € Q(t),
o Let ¢(t,-) be a level set function for Q(t): o(t,x) =0 if xel(t),
o(t,x) >0 if xeQt).

e How does the motion of Q(t) translate in terms of ¢(t,-)?

e ... To start with, what does it mean for Q(t) to evolve according to V/(t,x)?
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Evolving domains (II)

The motion of Q(t) may be classified into three categories depending on the nature
of the velocity field V/(t, x).

@ Q(t) is passively transported by V/(t,x) when the latter is externally prescribed,
i.e. it does not depend on Q(t).

@ The velocity V/(t,x) depends on local features of Q(t) or I'(t), such as:

e The normal vector n.(x) at x € ['(t);

e The mean curvature k¢(x) of ['(t).

® The field V/(t,x) depends on global features of the domain Q(t), e.g. it
depends on the solution to a partial differential equation (PDE) posed on Q(t).
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\Example (1): velocity depending on local features of Q(t)\

| The flame propagation model| Q(t) represents a burnt region, whose front expands

with constant, normal velocity c:

V(t,x) = ¢ ni(x), where ¢ > 0 is a constant.

An example of the dynamics in the flame propagation model.
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‘ The mean curvature f/ow‘ The velocity field V/(t, x) reads:

V(t,x) = —ke(x) ne(x),

that is, Q(t) evolves by “resorption of its bumps”, and “filling of its creases”.

An example of the dynamics of the mean curvature flow: Grayson'’s theorem
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’ Example (I1l-a): velocity depending on global features of Q(t)‘

A domain D C RY is filled with two immiscible fluids, occupying complementary
phases o, Q1, with different densities po, p1 and dynamic viscosities vo, vy.

D

Qo

Model configuration of a bifluid problem.
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e The velocity u(t,x) and pressure p(t, x) inside D solve the unsteady Navier-Stokes

equations:

pi(%+u-VU)—VfAU+Vp:ﬁ

div(u,-) =0
ui(t,x) =0
UO(tv ) = 1(t’ )
0 — 0'1) Nt = —7YReNe

ui(t =0,-) given

for (t,x) € (0, T) x Qi(t),
for (t,x) € (0, T) x Qi(t),
for (t,x) € (0, T) x 0D,
on I'(t),

on I'(t),

on Q;(0)

e The interface I'(t) between both fluids moves along the velocity of the fluid:

V(t,x) = uo(t,x) = ui(t,x), t >0, x € [(t).
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Evolving domains (I11): definition
Definition 1.

Let V : R, x RY — R? be a smooth velocity field. The characteristic curve emerging
from a point xo € R? at time t = to is the curve t — x(xo, t, to) defined by the ODE:
%(X(Xov t, to)) = V(t7 X(XO, t, to))’
X(xo, to, to) = xo

fort € (0, T)

V(to, 170)

Lo

T1

Z2

Three characteristic curves of the velocity field V starting at t = t, from different points xg, X1, X2
o

=

DAy
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Evolving domains (1V): definition

“Intuitive” notion of an evolving domain

A domain €(t) evolves from an initial configuration Q(to) according to V/(t, x) if it is
obtained by advection of its points along V:

Q(t) = {X(Xo, t,to), xo € Q(to)}.

-
z

El= DAl
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Let Q(t) be a (smooth) domain, moving over (0, T) according to the (smooth)
velocity field V/(t, x).

Let ¢(t,-) be a smooth level set function for Q(t), i.e:

o(t,x) <0 if x € Q(t),
vte (0,T), xeRY { #(t,x)=0 ifxeTl(t),

o(t,x) >0 if x € “Q(t).

Let xo € '(0) be fixed; by the intuitive definition of an evolving domain, it comes:

vt e (07 T)7 ¢(t7X(X07 t, 0)) =0.
———

er()

Differentiating and using the chain rule, we obtain:

20 (t,x(x0,£,0)) + - (x(x0,,0)) - V{2, X(30, £,0)) = 0.
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e Since this holds for any point xo € I'(0), we obtain the level set advection equation

vt e (0,T), xeRY, %(t,x) + V(t,x) - Vo(t,x) =0.

e If, in addition, the velocity is consistently oriented along the normal vector n:(x)
to Q(t), that is:

V(t, x) = v(t, x) %
H,’_/

ne(x)

, for some scalar field v(t, x),

the equation rewrites as the Level Set Hamilton-Jacobi equation

vte (0,T), x e RY, %(t‘7 x) + v(t, x)|Ve(t, x)|= 0.
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e Strictly speaking, and only hold for pairs (t, x) with x € ['(t).
However, the previous analysis applies mutatis mutandis when

xo € [¢(0) := {X € R, ¢(0,x) = c} , for arbitrary c € R.

Thus, the equation

vte (0,T), xeRY, %(t,x) + V(t,x) - V(t,x) =0

actually encodes that all the level sets of ¢ move according to V/(t, x).

e The velocity field V/(t, x) often makes sense only for x € ['(t). In the above
derivation, it is implicitly assumed that V/(t, x) has been extended to the whole
space RY.
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e This analysis requires that Q(t), V/(t,x) and ¢(t,x) be “smooth” over (0, T).

e Unfortunately, even when Q(0) is smooth, the evolution of Q(t) under very
“simple” velocity fields V/(t, x) develops singularities in finite time.

e |t is unclear how to even define the motion of Q(t) after the onset of singularities.

V(t,x) N 07

'

In the flame propagation model, singularities develop in finite time (blue dot). Several definitions are possible
for the subsequent motion of Q(t).

e This ambiguity reflects that and have "“too many"” solutions.
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Evolving domains: comments (I11)

e This dilemma can be overcome thanks to the theory of viscosity solutions for
Hamilton-Jacobi equations

e Under very mild assumptions, and have unique viscosity
solutions, enjoying “nice” physical properties.

Mathematical notion of an evolving domain

@ Let ¢o(x) be one (any) level set function for ©(0);

@ Let ¢(t,x) be the unique viscosity solution to the evolution equation
or , with velocity field V/(t, x) and initial data ¢o.

® The domain Q(t) is defined by:

Q(t) = {x €RY, 4(t,x) < o} .

e Mathematical references about this point of view:
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The level set method: a short summary‘

e Domain Q C RY. o Level set function ¢(t, x).
e Evolution w.r.t. a vector field V/(t,x). e Resolution of the level set equation.

%2(t,x) + V(t,x) - Vo(t,x) = 0.

m \“///
| 4 )

i
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Q(t)
e An interesting particular case of the above frame-
work: Q(t) expands along n:(x),

V(t,x) = c(x)n:(x), where c¢(x) >0
(resp. c(x) < 0).

\
e A stationary PDE can be derived in terms of the
time function T(x):

T(x):inf{tzo,xeﬂ(t)}. /

e The derivation of this PDE follows the same trail as that of the level set equations:

It is first established rigorously when Q(t), V/(t,x) and T(x) are smooth,

Then, a generalized notion of viscosity solutions is introduced to select a
“physical” behavior for the solutions to the PDE where they are not smooth.
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A stationary PDE for initial value problems (I1)

We rely again on the intuitive notion of an evolving domain.

Let xo € T'(0), and t — x(t) be the characteristic curve of V(t,x), emerging from

xo at t = 0:
{ X' (t) = c(x(t))ne(x(t)),
x(0) = xo.

By definition of the time function, it holds:

Q(t) = {x eR? T(x) < t}, and I'(t) = {x eR?, T(x) = t}.

In particular, ¢(x) := T(x) — t is one level set function for Q(t). Hence,

VT(x)

Vt >0, x €l(t), n(x)= T
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e On the other hand, differentiating the relation
T(x(t)) = t, we obtain:

VE>0, x'(t)-VT(x(t))=1.

e Inserting

X () = () e

it follows that T is solution to the Eikonal equation:

Some isolines of the time

{ c(X)|VT(x)|=1 for x € R\ Q(0),
T(x)=0 for x € T'(0).

function T in the particular case

where c = 1.
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A stationary PDE for initial value problems (1V)

e A similar analysis holds in the case where Q(t) con-
stantly retracts in the normal direction:

V(t,x) = —c(x)n(x), where c(x) > 0.
e The time function T : Q(0) — R is then defined by:

T(x):inf{tZO, xeRd\W}.

e It turns out that T is solution to the Eikonal equation:

{

c(X)IVT(x)|=1 for x € Q(0),
T(x)=0 for x € [(0). Some isolines of the time

function T in the particular case
where c = 1.
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A stationary PDE for initial value problems (V)

e Again, this derivation is rigorous only when Q(t), c¢(x) and T(x) are smooth, ...
which usually fails after some time t > 0.

e In general, the eikonal equation has to be understood in the framework of the
theory of viscosity solutions, which guarantees its well-posedness under mild
conditions.
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A key example: distance functions

Theorem 1.

Assume that c¢(x) > 0 is continuous; the Eikonal equation

{ c(X)|Vu(x)|=1 inQ,

u(x)=0 onT

has a unique viscosity solution u € C(Q).
In the particular case c(x) = 1, u is the Euclidean distance function:

u(x) =d(x,IN) = ;21; |x =y

0 0 i

(Left) graph of the distance function u = d(-,T"), (right) graph of a function satisfying
|u'(x)|=1 a.e. which is not a viscosity solution of the equation |u’|= 1.
[m] = =

= DA
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© Numerical algorithms for the level set method
o Calculation of the signed distance function to a domain
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Calculation of the signed distance function (1)

e Often, a shape Q is numerically encoded as a CAD model, a mesh, ...

e A preliminary step to the practice of the level set method is thus to create one
level set function for Q from such datum.

e Among all the level set functions for 2, the signed distance function dq enjoys
multiple appealing features:

- It helps the numerical stability of the level set method ;

- It allows a more simple calculation of morphological quantities related to Q
(projection operator onto I, thickness, etc.).

o Efficient algorithms exist to calculate dq, such as the Fast Marching algorithm
, the Fast Sweeping algorithm Lo
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Calculation of the signed distance function (I1)

Definition 2.

The signed distance function dg : R? — R to a bounded domain Q C R? is given by:

0 if x €09,
d(x,09)  otherwise,

—d(x,0Q) if xeQ,
do(x) = {

where d(x,00) := rreuarg7 |x — p| is the usual Euclidean distance from x to 0.
P

,~ X /

0 1 0 1

Two level set functions for the domain Q = (0,1) C R.

[m] = =

El= DAl
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We skim over the fast marching method in the following simple context:
e Let Q be a (smooth) bounded domain in R2.

e Let D be a large computational domain, equipped with a Cartesian grid G with
steps Ax, Ay, and nodes x; = (iAx, jAy).

e
RS G S ——
SR SELEIEE o ------- 0 ------- o ------- [ RRE [ SRR .-
s b
S SETREE R R oo . IR L SEIEE .-
> i +1

e We calculate the values Tj; = T(x;) of the unsigned distance function
T(x) = d(x,T) at the nodes x; € D\ Q.
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e The Fast Marching Method mimicks the propagation of a front.

e It is an iterative algorithm, producing a sequence {T,j’}u n=0,... of closer and

closer approximations to the collection {T(x;)}

e At each iteration n, the nodes of the grid are divided into three categories:

e Each

Accepted nodes are those x; “where the front has passed”; the value T; is no
longer subject to modification.

Active nodes are “on the front”, as the neighbors of accepted nodes. Trial
values Tj are available, which are still likely to be updated.

Far nodes are those “far from the front”.
iteration n — n + 1 hinges on

A marching procedure: the active node x; with lowest trial value T} is
accepted, and the set of active nodes is updated accordingly.

A local update procedure: trial values at the neighbors of this node are
re-computed.
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® accepted nodes
O active nodes

O far nodes

(? O o---0---0----0---0---0
e
R TS

Setting of the fast marching method
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o)
o

® accepted nodes

RS
...O..

O active nodes

O far nodes

IPCHP PO S S

T T
R

Setting of the fast marching method
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® accepted nodes

O active nodes

O far nodes

RSt SN R S S T S T

O"‘% Update of trial values

N N

A
<

Setting of the fast marching method
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® accepted nodes
O active nodes

O far nodes

R S S

...Q..
R X

RSP SO0 ST S S

Setting of the fast marching method
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At an iteration n — n+ 1, a temporary value T is calculated at each active node

X, thanks to a discretization of the Eikonal equation:
IVT(x)|=1.

The discretization is:

To—T" . T _Th
ij i—1j _ H i+1j Ui
max  max (7& ,O) ,—min (7& ,0

- _ 2
Th—_T" Th . —TN
—1 . 1
+ max <max (7” :yU ,0) ,— min (7U+2y U,O))

The calculation of 7’3’ from the {T},, is upwind:

=1

- Only the accepted values within the set {T,-”_lj, s Ti—1s 7—I§,+1} are used
in the above formula.

- Only solutions T} larger than these accepted values are retained.

In the end, the new trial value T;“ is defined by:

T+ = min (TP T,-j-) .

ij
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o Initialization:
Compute the exact distance function at the nodes of the cells which intersect
', and mark them as accepted.

Use the local update procedure to compute a trial value at those neighbors
of accepted points which are not accepted, and mark them as active.

Mark all the remaining nodes as far, and assign them the value cc.

e Loop (while the set of active nodes is non empty):

Travel the set of active nodes, and identify that with minimum trial value.
This node becomes accepted.

Identify the new set of active nodes, and compute a new trial value for each
one of them by using the local update solver for the Eikonal equation.
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e The fast marching method extends straightforwardly to the 3d case.

e It can also be adapted to general Eikonal equations:

c(x)|VT(x)|=1, where c(x) > 0.

e Computational cost: The fast marching method requires O(M log(M)) operations,
where M is the total number of nodes in the grid:

- At each iteration, one node is accepted.

- The only costly operation within one iteration is the search for the smallest
element in the list of trial values.

- In practice, a heapsort algorithm is used to make this search effficient - in
O(log(M)), where M is the number of trial values.

e Under mild hypotheses, one proves that the fast marching algorithm converges to
the solution to the Eikonal equation
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This method can be adapted to a (2d, surface, or 3d) simplicial mesh

e The marching strategy is identical.

e A similar local update formula can be con-
structed from the equation

IVT| =1

to infer a trial value at an active node of a
triangle K from accepted values

ao
e An additional “causality” condition has to be
enforced: Violation of “causality”: the prediction based on
the front approximated from triangle K fetches
The update made from the information in information outside K.
K has to “come from K.”
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The signed distance function: a 3d example.

(a)

(b) (c)

(d)
Isosurfaces of the signed distance function to the “Aphrodite” in (a): (b):
—0.01, (c): isosurface 0, (d): isosurface 0.02, (e): isosurface 0.05.

(e)

isosurface

DA
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© Numerical algorithms for the level set method

@ Resolution of the level set evolution equation
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e Given an initial datum ¢ : RY — R, we aim to solve the level set evolution
equation

{ 99 (1, x) + V(t,x) - Vo(t,x) =0 for (t,x) € (0, T) x R?,
o(t = 0,x) = ¢o(x) for x € RY.

e In general, the velocity field V/(t, x) depends on ¢(t,x) in a very complicated way
(e.g. via a PDE posed on Q(t)), making the problem downright untractable.

e Workaround Split the time interval (0, T) into a series of subintervals
(t",t"), where 0 =t° < t' < ... < t" =T,
and approximate V/(t,x) = V"(x) on each (t", t""1).

When V/(t, x) is the solution to a PDE posed on Q(t), V"(x) is the
solution to a PDE posed on Q(t").
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Two such approximations are possible:

The whole velocity field V(t, x) is frozen over (t", t""!):
vt e (1", t"1), V(t,x) = V'(x) = V(t",x),

and over each interval, a standard advection equation is solved:

%2(t,x) + V"(x) - Vé(t,x) =0 on (t",t"™) x R?,
o(t = t", x) given for x € RY.

Only the normal component of V/(t,x) = v(t,x)n:(x) is frozen:
vt e (17, t"), V(t,x) = v (x)n:(x), where v"(x) = v(t", x).
Over each interval, a “classical” Hamilton-Jacobi equation is solved:

%(t,x) + v (x)|Vo(t,x)|=0 on (t", t"*l) x RY,
o(t = t", x) given for x € RY.
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e We focus on the resolution of the advection equation over a generic time period
(0, 7) :

{ 0 (t,x) + V(x)- Vo(t,x) =0 on (0,T) x B,
#(0,.) = ¢o on RY,
for given velocity field V/(x) , and initial function ¢o

e Such equations are quite well-known in numerical analysis, and efficient numerical
schemes exist.

e We present an algorithm based on the method of characteristics, see
and

49 /123



Let t" = nAt be a discretization of the time interval (0, T).

The computational domain D is equipped with a Cartesian grid G with steps Ax,
Ay, and nodes x; = (iAx, jAy).

The initial datum ¢o and the velocity field V are discretized at the vertices of G.

They are linearly interpolated from these values when needed elsewhere.

e We calculate the values ¢out(xj) =~ ¢( T, x;) of the solution to
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The exact solution ¢(t, x) to the advection equation is:

P(t,x) = $(0,x(x,0, 1)) ;
—— ————
Value of ¢ at (t,x) Initial value of ¢

at the initial position of the particle at x at ¢

where the characteristic curve t — x(x, t, to) emerging from a point x € R? at time
t = to is defined by the ODE:

{ L (x(x, t, 1)) = V(t,x(x, t, to)), forte (0,T)
X(Xa to, to) = X.
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The method of characteristics (I1)

A simple implementation of this strategy relies on Euler's method for (C):

e e . . V(z®

e Initialization: Level set function ¢o at the (=)
vertices of 7.

e For all vertices x € G: o

- Set x° = x;

- Forn=0,...,N—1:

@ Find E € G such that x" € E;

@ Calculate V at x" by interpolation
from its values at the vertices of E;

@ x"=x" - AtV(x").
- Pout(x) = do(x").

Z o

T

The efficiency of this strategy can be improved by a Runge-Kutta scheme for (C).
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e We now discuss the resolution of the Hamilton-Jacobi equation over a generic time
period (0, T):

ot

(HJ) {8¢+WHWM=00ManR%
¢(0,.)=¢o  onRY,

for given normal velocity v(x), and initial function ¢o.

e The induced approximation of the “true” level set equation (LS-ADV) retains the
information that the velocity field is consistently oriented along the normal vector
ne(x) to Q(t), and is thus appealing in many cases.

e The device of efficient algorithms for solving this equation relies on the theory of
numerical schemes for first order Hamilton-Jacobi equations:

ot

{ 9 | H(x,V$) =0 on (0, T) x RY,
60,)=¢o  onRY,

in the particular case where H(x, p) = v(x)|p|
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For i,j € Z, we denote the finite difference quantities:

tx, _ Qi1 — b oox, Qi — Pi-j
Dijd):# : Dij ¢717

and: i’ . b
D,-fyqﬁ:%y” . DyYe= 0= %int
Sethian’s first-order scheme reads:

Vn €N, ij €2, ot = ¢f — At (max(vy, 0V " + min(v;,0)V; ¢7)
v’?./ € Z? d)u = ¢0(IAX,JA)/),

with the discretizations V;Tqb and V;; ¢ of the gradient norm |V | defined by:

. max(max(Diij(b,O),fmin(D,-fXQiO))2 :
i®= ( + max(max(D; ¥¢,0), — min(D;” ¢,0)) )

and

Ni=

Vo= max(max(D,j-r’(q&,0),fmin(D,.;ngﬁ,O))2
i ¢ = ( +max(max(D,j-'yqb,O),fmin(DU_yqﬁ, 0))? )
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e The quantity V,j-qb (resp. V) is upwind (resp. downwind): it is a finite
difference approximation of |V¢| at x; based only on the values among
{pi—1j, di+1j, Dij—1, Pij+1} which are smaller (resp. larger) than ¢;.

e The discretization of the (exact) Hamiltonian H(x, p) = v(x)|p| by the numerical
counterpart:

H(xi, V(i) = Hi({ Pk} jez) = max(vi, 0) V5 4" 4 min(vyj, 0)V;; ¢"

is upwind: for given i, j, n, the update ¢j; — (;S,fj’-“ is only carried out using
information coming from

- smaller values than ¢j if v; is positive,

- larger values than ¢} if it is negative.
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This scheme can be proved to be convergent to the unique viscosity solution ¢ to
(HJ), under the following CFL condition:

At
i) ———— <1, ie.
(") min(Ax, Ay) = "€

“The information cannot travel more than one cell during one time step”.

In addition, the following error estimate can be proved:

Vij €Z,Yn < N, |} — o(t", x;)|< CVAEL.

The time accuracy of the scheme can be improved thanks to Runge-Kutta strategy.

Its space accuracy can also be improve by using high-order, (Weighted) Essentially
Non Oscillatory (W)ENO finite differences
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e The theory of schemes for Hamilton-Jacobi equations can be adapted to the
context of a simplicial mesh T, but it is a difficult task

e On the contrary, the method of character-
istics for the advection equation ex-
tends pretty readily.

e The only additional difficulty is to efficiently
locate the intermediate points

X" = X" — AtV(x")

in the mesh 7.
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e mshdist

e advect

O Search or jump to...

https://github.com/ISCDtoolbox/Mshdist

github.cor

Pull requests Issues Marketplace Explore

& ISCDtoolbox / Mshdist  public

<> Code

: Resolution

X Pin

Pull requests 1 Actions Projects Security Insights Settings

¥ 3branches © 0 tags Go to file Add file ~

@ capogny Redistancing in surface context seems to work

c 2021 O 58 commits

B documentation

ile in the documentation
ancing in surface context seems
linkinig libCommons:

Update .t ymi

[ CMakeLists.txt

of the level set equations on simplicial meshes.

https://github.com/ISCDtoolbox/Advect

. Calculation of the signed distance function on simplicial meshes.
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© Numerical algorithms for the level set method

@ Numerical practice of the level set method
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A fixed mesh T of the computational domain D is used.
The time interval (0, T) is discretized as 0 =to < t1 < ... < tn = T.

Forall n=0,..., N, the domain Q(t") is solely known as the negative subdomain
Q(t") = {x eD, ¢(t",x) < 0},
where the level set function ¢(t",-) is discretized at the vertices of 7.

The motion Q(t") — Q(t"**) is realized by solving the level set equation

%(t,x) + V(t,x) - Vo(t,x) =0 for (t,x) € (t",t") x D,
o(t", x) is given for x € D

on the fixed mesh 7.

Drawback: Q(t) is never discretized explicitly (with a mesh); hence, several
operations may prove difficult, e.g.

e The calculation of integrals on Q or T'.

e Physical PDE on (t), which are often the building blocks of the velocity
field V(t, x) have to be approximated by equations on D.
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The “classical” practice of the level set method (1)

(Upper row) Evolution of a rising bubble of fluid immersed in another, more dense fluid; (lower row) isolines of
associated level set functions.
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O The level set method
@ Basics about the level set method
@ Evolving domains within the level set framework
@ An interesting particular case: eikonal equations

© Numerical algorithms for the level set method
@ Calculation of the signed distance function to a domain
@ Resolution of the level set evolution equation
@ Numerical practice of the level set method

© (Re)meshing in connection with the level set method
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@ Mesh refinement adapted to a level set function
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@ Volume mesh generation from an invalid surface triangulation
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A few definitions about meshes (1)

Let Q € R? (d = 2 or 3) be a polyhedral domain.

A simplicial mesh T of Q is a collection {Ti},_; . of open simplices (triangles in

2d, tetrahedra in 3d) such that

=
3

ﬁ:

>

1
A
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Most often, the mesh 7 is required to be
e Valid: the open simplices T; are mutually disjoint: T; N T; = () when i # j;

e Conforming: each intersection T; N T}, i # j is reduced to either a vertex, an
edge, or a face of the mesh.

Overlapping elements in an invalid A non conforming mesh A valid, conforming mesh
mesh



A few definitions about meshes (lII)

e The mesh T naturally comprises a sur-
face mesh Sy associated to the bound-

ary 0Q:
- In 2d, St is a collection of segments;

- In 3d, St is a surface triangulation.

e In practice, the meshed domain Q is
not polyhedral and S is meant to be
an approximation of 9.

Tetrahedral mesh 7 (in green) and associated surface
triangulation S (in yellow).
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The accuracy of most numerical methods using
T as computational support (e.g. finite element
computations) crucially depends on the quality of
the simplices T € T.

The latter is measured by a quality factor Q(T):

- Q(T)~ 1 when T is close to regular;
- Q(T) ~ 0 when T is nearly flat.

In practice, Q(T) should “smoothly” discriminate

“good”, “bad” and “not so good” simplices T.

A popular quality factor is for instance:

Vol(T)

d(d+1)/2 §
Zl |eil?
iz

oT) =«

A regular tetrahedron (Q(T) ~ 1)

A nearly degenerate tetrahedron (Q(T)

~ 0)
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Quality of the geometric approximation (1)

The surface mesh St should be a close approximation of 99, e.g.:
d"(Sr,00) <e,

where ¢ is a user-defined threshold and d"(-,-) stands for the Hausdorff distance:

Definition 4.

The HausdorfF distance d"(Ku1, Kz) between two compact subsets K1, K» C R? is:

d" (K1, Kz2) = max(p(K1, K2), p(K2, K1)), where p(Ki, Ka) := max d(x, K2).
xEKy

The Hausdorff distance between K; and K, measures the “maximum gap'“between both sets. = = ) o (v
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Quality of the geometric approximation (I1)

(Left) Rough approximation of a domain Q C R?; (right) fine geometric approximation of Q.
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Meshing vs. remeshing (I)

e Meshing starts from the datum of a (line or surface) mesh S of the boundary 99.

e It aims to fill the volume Q with simplices, i.e. to construct a mesh T of Q with

surface part S+ = S.
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Meshing vs. remeshing (II)

e Remeshing assumes the input of a valid, conforming mesh 7 of Q.

e It aims to modify 7T into a "better’ mesh T of Q.
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Remeshing hinges on the intertwinement of four local operators, which are carefully
driven to improve the mesh quality, and its geometric approximation capability.

agp ao

Splitting of the three edges of a surface triangle T € S, positioning the new points on the ideal surface S.

\_—~ — \ ~
t\ 'A\

i

Collapse of point p over q in a surface configuration.

71/123



Meshing vs. remeshing (III)

Remeshing hinges on the intertwinement of four local operators, which are carefully
driven to improve the mesh quality, and its geometric approximation capability.

3d edge swap.

Relocation of node p € St.
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Remeshing with respect to a local size prescription (I)

Remeshing is often guided by a local size prescription, which may stem from
e A priori or a posteriori finite element estimators;

e Geometric approximation requirements of Q.

When the size prescription is isotropic, it is encoded in a size map h: Q — R:

For each p € Q, h(p) = desired size for the edges near p.

(Left) Size map h defined at the vertices of a mesh; (right) modified mesh.
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e An anisotropic size prescription can be encoded in a metric tensor M : Q — R9*¢

e Rationale: The length £y (e) of an edge e = pg with respect to M is defined by:

tu(e) = /01 VM(p+t(qa—p))(qd—p)-(q—p)dt.

e Introducing the eigenvalue decomposition of M(p)

di(p) 0 0
M(p) = O(p) ( 0  d(p) O ) o(p)’,
0 0 dip)

the quantities di(p) and O(p) are defined so that:

di(p) = hztp) ,hi(p) = desired size in the direction of the i*" column vector O;(p).

e The mesh T then fulfills the size prescription if

Vedge ec T, {u(e)~1.
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Remeshing with respect to a local size prescription (III)

(Left) velocity field of a supersonic flow; (right) adapted mesh.
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A(nother) word of advertisement

Mmg PLATFORM | A=

Robust, Open-source & Multidisciplinary »> .

Software for Remeshing J . Upgrade
. Uour meshes

Most of the features discussed in this presentation are integrated in the free,
open-source environment Mmg.

@ https://www.mmgtools.org

https://github.com/MmngTools/mmg
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© (Re)meshing in connection with the level set method

@ Mesh refinement adapted to a level set function
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Let D C RY be a hold-all domain equipped with a
simplicial mesh 7 and let Q C D be smooth.

Let ¢ : D — R be a smooth level set function for .

We wish to adapt 7 to the O level set

[={xeD, ¢(x)=0}.

More precisely, let ¢ be the Py finite element inter-
polate of ¢, and

M= {XGD, ¢>T:O}.

We aim that:

d"(8Q,007) < e,

where € > 0 is a user-defined tolerance.
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Refinement of the mesh near the O level set of a function (Il)

Let pr(x) be the projection of a point x € D onto .

For p €T, va(p), va(p) (resp. k1(p), k2(p)) are the
principal directions (resp. curvatures) of I' at p.

The metric tensor M(x) is defined by

ra1(p) 0 0

e
M(x) = 0 F"ze(p) 0 , p=pr(x)
1
0 0 hmin
in the IOCBI orthonormal frame (Vl(P), V2(P), n(p)) The principal curvatures of I at p satisfy

r2(p) < Ka(p)-
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Refinement of the

mesh near the 0 level set of a function

(111

Computation of the signed distance function to the Stanford "Happy Buddha" ; (left) isovalues of the signed
distance function, (middle, right) two cuts in the adapted mesh.

DAy
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Refinement of the mesh near the 0 level set of a function (1V)

(left) The initial Buddha (middle) isovalue 0.001 of the computed signed distance function right isovalue 001 * "
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| Isosurface discretization

e In many applications of interest, the hold-all domain D is equipped with a
computational, simplicial mesh 7.

e A scalar “level set” function ¢ : D — R is defined at the vertices of T.

e We wish to construct a surface mesh of the 0 level set ' of ¢, or a volume mesh of
the negative subdomain Q:

MN={xeb, ¢(x)=0}, Q:={xeD, ¢(x)<0}.

(Left) Isolines of a level set function ¢ defined at the vertices of a mesh T of a computational box D (right).

o = = =» Zl= wae
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Isosurface discretization (I1)

A two-step solution:
@ Discretize explicitly the 0 level set of ¢ into T by using patterns.

= a new valid, conforming mesh Ttemp is obtained, which is of very low quality.

@ Improve the quality of Ttemp by remeshing, to obtain T.
= A high-quality mesh T is obtained, where Q and D\ Q are explicitly discretized.

|

(Left) One level set function ¢ defined at the vertices of T; (middle) low-quality mesh Tiep, obtained from the
discretization of the 0 level set of ¢ into T ; (right) high-quality mesh T obtained after remeshing Ttemp- 84123



Isosurface discretization (I11)

—s0000e -2 soom0e-2

R =y =y TobE 01

(Left) Some isosurfaces of an implicit function defined in a cube, (centre) result after rough discretization in the

ambient mesh, (right) result after local remeshing.

85/123



O Applications
@ Volume mesh generation from an invalid surface triangulation
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Volume mesh generation from an invalid surface triangulation (1)

e Let Q C RY be a domain, supplied only via a surface mesh S of its boundary 99Q.
e The mesh S may be invalid (i.e. show intersecting elements, small gaps, etc.).

e We wish to construct a mesh of Q from this datum.

An invalid surface mesh of a domain Q.
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Volume mesh generation from an invalid surface triangulation (II)

One possible solution:

© Calculate the signed distance function dqo to , at the vertices of a mesh 7 of a
larger, computational box D.

e This calculation is possible even if the surface mesh S is invalid.
e The mesh 7 may be adapted so that this calculation is accurate.

@ Apply the isosurface discretization operation to obtain a new mesh T of D in
which Q is explicitly discretized.

Isolines of dy at the vertices of a New mesh 7 of D, enclosing Q
mesh 7 of a bounding box D. as a submesh.
=] =) = = == DA

Mesh S of the contour 9.



Volume mesh generation from an invalid surface triangulation (lIl)

(Left) isosurfaces of the signed distance function to the “Sagrada Familia”, calculated at the vertices of an
adapted mesh (right).

DAy
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Volume mesh generation from an invalid surface triangulation (1V)

[m]

=

Reconstructed mesh by using the isosurface discretization operation from the signed distance function
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In the original applications of the level set method, the computational mesh is

fixed.

One key application of remeshing consists in adapting the size of the mesh with
respect to a user-defined size map.

This allows to enforce “small” elements in regions of particular interest, and
coarser elements elsewhere.

Hence, the total size of the mesh is reasonable, while a particular focus is put on
regions of interest.

Depending on the purpose, this size prescription may be guided by:

- The wish to enforce “small” elements in the vicinity of a moving front.

- An a posteriori error estimate, attached to the resolution of a physical
phenomenon by the finite element method;
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Example: bifluid flows (1)

As a result of the rupture of a dam, a water column discharges into a lower basin.
e The problem involves two complementary fluid phases Q°(t), Q'(t) C D.
o Qo(t) is filled with water, Q;(t) is made of air.

e The velocity V/(t,x) of the motion is the solution to the two-phase Navier-Stokes
equations.

N (t)
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Example: bifluid flows (I1)

Evolution of a collapsing water column



e The initial domain Q(0) is a sphere, inside the computational domain D = (0, 1).

e The domain Q(t) evolves according to the analytical vector field
2sin?(7x1) sin(2mx2) sin(27xs) cos( %)
V(t,x) = | —sin(2mx1)sin®(mx2)sin(2mx3) cos(%E) |,

— sin(27xq) sin(2mx2) sin®(mxs) cos( Zt)

which causes an extreme stretching of ['(t) at t = T /2, before returning to the
initial configuration.
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P ¢ ¢

3d deformation test case : sequence of computed s%faces.f

PAN G4
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A large deformation example (I11)

4

(Top) Cut in the interface at t = 1.5; (bottom) Computational mesh using (left) isotropic (=~ 1,500, 000
points), (right) anisotropic mesh adaptation (=~ 700,000 points). o

5 =
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’ A large-scale example

T[K]

2200.0
2000.0
1800.0

-~ 1600.0
— 1400.0
— 1200.0
— 1000.0
800.0
600.0

300.0

PRECCINSTA burner

BFER scheme - DTFLES model - non-adiabatic walls
Dynamic mesh adaptation with surface based on flame sensor

Nt =40M — A, ,,;,, =300m

P. Benard, G. Lartigue, V. Moureau - CORIA

Qp [Wan 2]
— 5.0e+09
—4.5e+9
— 4.0e+9
- 3.5e+9

3.0e+9
2.5e+9
2.0e+9
1.5e+9
1.0e+9
5.0e+8
0.0e+00

Numerical simulation of an aeronautical burner using the Yales2 library
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preccinsta-burner.mov
Media File (video/quicktime)
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@ Resolution of the level set evolution equation

@ Numerical practice of the level set method
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Body-fitted interface tracking (1)

TOESENR
N SVAVAVY >
KRR 200
ical realizati - UL
e The numerical realization of the motion of a Ay
- i SERRERES
shape needs to reconcile the antagonistic needs ‘€§ 200
i
to 4%55
- account for dramatic evolutions (including DREEE
. NEEEAA
K
topological changes) , ;%;%%v
. . %
- Enjoy a mesh of the domain Q(t) 4
acting b Sl
uw‘ﬁnﬁgsﬁﬁﬁzé

e “Classical” numerical methods (e.g.
mesh deformation) are not robust enough to han-

dle large shape deformations.

e The level set method with the isosurface dis-
cretization operation make this possible.
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o Initialization: Mesh 7 of the computational D in which Q(0) is explicitly
discretized.

e For n=0,... convergence:

Calculate the signed distance function dgn to Q" on 7.
Calculate the velocity field V" on T7;

Solve the level set advection equation
o9 n
{ 2(,2) + V() - Vé(£,x) =0 on (0,T) x D,
#(0,.) = ¢" on RY,

on the mesh 7" and take ¢"** = ¢(At, ).

Discretize the new domain Q"1 in the mesh 7™ to obtain the new mesh

7—n+1
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S
Body-fitted interface tracking (I11)

Evolution of the rising bubble by using the combination of the level set method with isosurface discretization.
«O>» «F>r «=» « =

r El=

DAy
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Example: wild fire propagation (1)

e The ambient medium is a surface S C R3,
representing a land topography.

e We study the evolution of a burnt region
Q(t).

e Q(t) evolves according to a velocity field
V(t,x) depending on

- The geometry of Q(t) (normal vector,
curvature);

- The geometry of S (slope, ...);

- External factors (wind, ...)
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Example: wild fire propagation (Il)

Optimization of the shape of a heat diffuser, from
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fireprop.mp4
Media File (video/mp4)


e Shape optimization aims at improving the performance of the initial design Q° of a
mechanical structure (e.g. a beam, a mechanical actuator,...) or a fluid duct, with
respect to a physical criterion.

e The problem arises under the form:

amin J(Q),

where
e J(Q) is a cost functional, depending on Q in a possibly very complicated way
(via the solution to a PDE posed on Q). For instance,

- When Q is a structure, J(2) may be the work of external forces on €,
a vibration frequency, etc.

- When Q is a fluid duct, J(£2) may account for the work of viscous
forces inside Q.

e U,q is a set of admissible designs, which encompasses, e.g. volume, or
manufacturability constraints.

105 /123



Example: shape optimization (1)

e Techniques from shape optimization make it is possible to calculate a shape
gradient at a shape , i.e. a vector field Vq : R? — R? such that:

J((Id + 7Va)(Q)) < J(R2), for 7 > 0 small enough.

(Id + Vo) (52)

e Starting from an initial design Q°, the sequence of shapes
Q" = (Id + 7" Van)(Q"), where 7" is a pseudo-time step,
evolves by decreasing the criterion J().
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A thermal chamber D is divided into

- A phase Q with high conductivity v,
- A phase D\ Q with low conductivity o.

A temperature To = 0 is imposed on I'p
and the remaining boundary 9D \ T'p is in-
sulated from the outside.

A heat source is acting inside D.

The temperature ug inside D is solution to
the two-phase Laplace equation.

The average temperature inside D,

1
J(Q): ﬁ/;UQdX

is minimized under a volume constraint.
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Optimization of the shape of a heat diffuser (II)

[m]

Optimization of the shape of a heat diffuser, from [Fe/lDalo].

=

DA
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heat.mp4
Media File (video/mp4)


A solid obstacle Qs := Q is placed inside a fixed cavity D where a fluid is flowing,
occupying the phase Qf := D \ Q.

The fluid obeys the Navier-Stokes equations (Re = 60), and the solid is governed by
the linearized elasticity system.

Weak coupling between Qf and €s: the fluid exerts a traction on the interface I'.

We optimize the shape of Q, with respect to the solid compliance
5(Q) = / Ae(un,) : e(uq,) dx,

under a volume constraint.
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An advanced example in fluid-structure interaction (I1)

Optimization of the shape of a mast withstanding an incoming flow in 3d, from [Fe/lDalo].



fluid_structure_ns_iciam.mp4
Media File (video/mp4)
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Technical appendix




Surfaces and curvature (1)

At first order, in the neighborhood of a point p € I, a surface I' behaves like a plane,
the tangent plane,

e With normal vector n(p),

e Which contains the tangential directions to I'.
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e At second order in the neighborhood of p € T, the surface I' has one curvature in
each tangential direction.

e The principal directions at p are those tangential directions vi(p) et v2(p)
associated to the lower and larger curvatures x1(p) et x2(p).

e The mean curvature k(p) is the sum k(p) = k1(p) + K2(p).

p
V2
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Let V : RY — R? be a (smooth) vector field; we consider the dynamical system

{ x'(t) = V(x(t)) forte(0,T),
x(0) = xo,

for the trajectory t — x(t) of a particle with velocity V.

Introducing a subdivision t" = nAt of (0, T), n=0,...,N:= T/At, we aim to
calculate an approximation x” of x(t").
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Runge-Kutta integration of dynamical systems (I1)

The first-order, explicit Euler approximation of this dynamical system reads:
{ x™ = x"+ AtV(x") forn=0,...,N -1,

X0 = Xo.

This method is only first-order accurate as At — 0:
YneO,...,N, |x(t") —x"| < CAt for some constant C > 0.
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Runge-Kutta integration of dynamical systems (I11)

According to the Runge-Kutta 2 method, the iterate x"**

is obtained from x” by:

@ An attempt step is performed
with the 1%-order Euler method:

XM= X" AtV(X").

@ Another attempt step is per-
formed from x"+1:

)?n+2 = ;(/IH»I + Atv(;(/n+1)

® The point x™! is obtained by av-
eraging:

1 ~
Xn+1 _ (Xn + Xn+2)'

This method is second-order accurate:

¥n=0,...,N, |x(t") —x"| < CAt* for some constant C > 0.
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